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ABSTRACT

The multi-agent modeling and analysis of catastrophic events raise many challenging
problems since they involve a large, interacting, mobile population with complex
behaviors. This research aims to address these problems through the analysis of
simulations and to aid planning efforts for future catastrophic events through
parameterized stochastic models covering the health care providers, emergency
responders, and affected population. As a test case, we examine the massive outbreak of
Staphylococcus aureus food poisoning that occurred in Minas Gerais, Brazil, in 1998 to
demonstrate and evaluate our tools and techniques. In this incident, 8,000 people
consumed contaminated food at a priest’s ordination. Of these, 81 were admitted to
intensive care units of 26 local hospitals after a triage, and 16 of them eventually expired.
We capture the dynamics of such an outbreak by using two kinds of abstract agents —
hospital and person, further augmented with information and communication channels.
Hospital locations and current capacities are broadcast by the hospital to its patients and
to persons with a radio and subsequently exchanged between neighboring persons. This
“outbreak” model has been implemented in the Java version of Repast 3.0. Most
attributes are scaled to be in the range of 0 to 1, with most behavior being probabilistic.
We document the relative performance of the different simulations by using a range of
parameter values for communication channels, personalities, and triage policies, to
understand their combined effect on the overall survival rates. We also introduce the
XSSYS trace analysis and model checking tool for answering complex temporal logic
queries over Repast traces. We discuss how such simulation-based analysis can become a
rigorous tool in aiding public health policy planning.
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INTRODUCTION

The computer modeling and simulation of catastrophic scenarios, when enhanced with
sophisticated automated reasoning, promise to be a very valuable tool for developing public
health policies and disaster management strategies. In the horrific wake of Hurricane Katrina that
ravaged the State of Louisiana, it became doubly shocking as word spread very rapidly about the
computer models that had accurately predicted many of the ramifications of such a disaster.
Indeed, the Center for the Study of Public Health Impacts of Hurricanes of Louisiana State
University had conducted extensive research on this topic and constructed elaborate models of
such a scenario (see Heerden and Binselam 2004). While it is much less likely that other
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simulation efforts can achieve such predictive fidelity, most catastrophe simulation projects
(e.g., SEAS project of Chaturvedi et al. 2003, Project RESCUE of Mehrotra et al. 2004, and
VISTA tool of Louie and Carley 2004) still focus on one of two nonoverlapping goals: disaster
prediction and disaster management. In this paper, we do not even broach disaster prediction;
instead, we focus on the analysis of simulations to aid planning efforts for future catastrophic
events. We are part of the Large Scale Emergency Response (LaSER) research group of the New
York University (NYU) Center for Catastrophe Preparedness and Response (CCPR), which is a
partnership with the U.S. Department of Homeland Security and its Office for Domestic
Preparedness. Catastrophe preparedness involves stocking and distributing resources to minimize
fatalities, planning an emergency response strategy, and educating the general population. These
desiderata will dictate, among other things, the distribution and use of available resources, and
the means and nature of the information and instructions provided to the health care providers,
emergency responders, and affected population (see Lasker 2004). This paper deals with these
issues through the multi-agent modeling of catastrophic events that involve a large, interacting,
mobile population with complex behaviors and goals.

We use the massive outbreak of Staphylococcus aureus food poisoning that occurred in
Minas Gerais, Brazil, in 1998 (Do Carmo et al. 2004) to demonstrate and evaluate our tools and
techniques. Although the fraction of fatalities (16/8,000) may not be regarded to be of
catastrophic magnitude, the scenario is ideal for observing the effects of different instructions
and policies on the behavior of the large affected population and the medical facilities. We
capture the dynamics of such an outbreak by using two kinds of abstract agents — hospital and
person — enhanced with information and communication channels. After exploring a number of
simulation systems, this “outbreak” model has been implemented in the Java version of Repast
(Collier et al. 2005). Most attributes are in the range of 0 to 1, with most of the behavior
governed by random-number-based probabilities. We document the relative performance of the
different simulations by using a range of parameter values for communication channels,
personalities, and triage policies, to understand their combined effect on the overall survival
rates. We also introduce the XSSYS trace analysis and model checking tool (Antoniotti et al.
2003) developed in our laboratory and show how it can answer complex temporal logic queries
over Repast traces. We conclude by suggesting how such a schema provides a reasonable way of
modeling, simulating, and analyzing other catastrophic scenarios as well.

BRAZILIAN OUTBREAK

In 1998, a massive outbreak of Staphylococcus aureus food poisoning occurred in the
rural town of Minas Gerais, Brazil, where around 8,000 individuals attended a Catholic priest’s
ordination. The trace-back investigation implicated food preparers, who were culture positive for
enterotoxigenic Staphylococcus aureus, as the source of contamination. However, it was the
improper storage temperature of the food, which was prepared 2 days in advance, in the summer
weather that allowed the optimal growth of bacteria and production of Staphylococcus
enterotoxin (SE). Symptoms like intense nausea, emesis, diarrhea, abdominal pain, prostration,
and dizziness were pronounced in less than 4 hours after consumption of the contaminated food
in about half the population (~4,000). Almost half of them (~2,000) decided to proceed to one of
the 26 nearby hospitals without letting the situation exacerbate further. However, this
overwhelmed their emergency departments, forcing a triage. A triage, in medical parlance, refers
to a set of policies to partition the vast number of patients into different groups (e.g., those
requiring immediate intensive care, those requiring general hospitalization, and those requiring



only medication or saline). This process helps the hospital distribute the available resources
optimally under the time constraints imposed by the prognosis of the disease. In Minas Gerais,
396 (~20%) people required admission after triage, and of these, 81 (~20%) required admission
to the intensive care unit (ICU). Patients with improving health were discharged from the ICU
within 7-10 days. A total of 16 (~20%) patients subsequently developed irreversible multi-
system shock and expired while hospitalized. While people of all ages (1-86) attended the
ordination, the 16 fatalities occurred only in the oldest (65 and above) and the youngest (5 and
under) groups. The sex of the individual was found to have no influence on the clinical outcome
among those treated in the ICU.

MULTI-AGENT OUTBREAK MODEL

We capture the dynamics of such an outbreak by using two kinds of abstract agents:
hospital and person. A hospital is an abstraction of any medical facility accessible in the area
(26 in the Brazilian case), while a person is an abstraction of any individual who consumed the
contaminated food (8,000 in the Brazilian case). The effect of the general population who did not
attend the ordination is not modeled in our simulation. The model is then enhanced with
information and communication channels, with the two vital pieces of information being the
locations of the hospitals and their current capacities.

Food Poisoning

The food poisoning is modeled by functions that describe the time variation of the
person’s health, with and without treatment. Effectively, any “disease” can be modeled in terms
of the (possibly time-varying) amount by which the affected agent’s “health” can deteriorate or
recover with and without treatment, at each time-step of the simulation. The individual’s
resistance or susceptibility to the specific disease is captured by a personalized variable, which
modifies the disease-health-treatment functions. This can be used to abstract factors such as age,
sex, health condition before food consumption, and genetic makeup. Probabilities are introduced
to capture unpredictability and variability in real situations. We can use this simple but effective
abstraction to model other conditions, such as Sarin gas attacks, radiation exposure, etc. Since
the initial amount consumed and the dose/response relationship in human oral exposure to SE are
unknown, the initial health of each person is assumed to be a random value in a meaningful
range.

People’s Behavior

The persons move toward their place of work from the site of food poisoning. Depending
on their deteriorating health level and personality parameters, they choose to go to the one
hospital they are initially aware of. Additional information is acquired by talking to neighboring
agents. A time stamp of the information is maintained, so the persons update their knowledge
only if more current information is available. Further, some persons are equipped with radios,
which give them access to the current information about all the hospitals. People recompute the
destination hospital toward which they should be moving on the basis on the distance to and the
believed current capacity of each medical facility they are aware of. In addition, they always
move toward the nearest free hospital, unless they are very sick and opt to go to the nearest



hospital, even if it is full. The complexity of the model is increased further with personality
parameters, which capture whether an agent chooses to go to a hospital, talk to neighbors, accept
the new information, or recompute the best hospital. Group behavior is captured by letting
adjacent people moving toward the same destination wander less.

Hospital Behavior

The hospital aims to admit every person who reaches its premises and invests its
resources in the order of their admittance and proportional to their ill health. Hospital resources,
consisting of infrastructure, beds, nurses, and doctors, are recovered when a patient is discharged
or deceased; medical supplies, like drugs and saline, are irrecoverable. The hospitals also
perform a local broadcast of complete current information to all persons who are admitted or
waiting at their facility. The hospital model is enriched by identifying three different modes of
operation — full, critical, and available — corresponding to the current amount of resources.
With the triage policy in place, the hospital agent handles admitted persons as before. However,
it admits new persons only if it has resources to spare (available mode). If it is operating in the
critical mode, it admits only critically ill persons. No new persons are admitted in the full mode.
With the transfer policy in place, admitted patients who have recovered reasonably are
discharged earlier than usual and instructed to go to a different hospital if symptoms recur. In
their place, critically ill persons who are waiting are admitted. Probabilistic parameters are used
to capture the policies that govern the hospital’s decisions on when to admit a new patient, in
which order to treat the admitted patients, when to transfer a recovering patient to a nearby
hospital, and which critically ill patient to admit in the vacancy created.

ANALYZING THE OUTBREAK

Since the modeled system involves a large number of agents, uses a vast number of
parameters, and attempts to capture the stochastic nature of the infection and behavior,
traditional symbolic or algebraic analyses are not immediately possible. Instead, the analyst must
resort to simulation-based analysis to obtain average performance statistics over a large number
of trials. Combined with individual inspection of a small number of characteristic traces,
evaluation of the relative merits of different emergency response strategies becomes possible.
We use the statistics-based analysis tools provided by Repast and introduce the temporal logic
trace analysis tool XSSYS.

Numerical Results

Since the most significant aspect of the model is its extreme sensitivity and
unpredictability, general average/comparative trends (as opposed to absolute values) in the death
rate can be used to observe the effect of variations in parameters of interest (with the other
dimensions fixed at justifiable values). We obtain trends (typically averaged over three runs)
around the Brazilian scenario with 8,000 people and 26 hospitals leading to a death rate of 0.2%.



Effect of Hospital Resources, Communication, and Grid-Size on Death Rate

We first observe how the number of deaths varies with hospital resources (Figure 1).
Shown there are the plots for a 250 x 250 grid and an 800 x 800 grid, with communication
enabled and disabled, and with no triage policy implemented. From the plot, we observe that the
number of deaths clearly declines when hospitals have more resources, since each hospital is
able to allocate more resources (treatment) per person. Also note that in a small grid (250 x 250),
where hospitals have few resources, communication works against our model. This is because
people converge to the nearest hospitals, exhausting their resources quickly. By the time the
hospital runs out of resources and turns people away, they are too sick to survive a trip to the
next hospital. However, when the hospitals have plenty of resources, the difference in survival
rates is negligible when communication is used versus when it is not. In the 800 x 800 cases, the
difference in distances between the closer and farther hospitals is much greater. Hence, it works
to a person’s benefit to communicate and obtain information about nearby hospitals.

Effect of Number of Hospitals, Triage, and Grid Size on Death Rate

Next we analyze how the number of hospitals affects the number of deaths by using plots
(Figure 2) for a 300 x 300 grid and an 800 x 800 grid, with the triage policy enabled and
disabled. We first note the expected phenomenon: increasing the number of hospitals decreases
the death rate, since there are fewer patients per hospital. We also note a slightly higher death
rate when the grid size is larger because the average distance to a hospital is longer: people reach
the hospitals when they are sicker, and more persons are not able to survive the journey. More
important, this figure leads to a dramatic conclusion: the triage policy, as interpreted in the
model, always works against the people. The failure of the triage policy can be attributed to a
key aspect of the food-poisoning health function: a healthy person is just as likely to worsen as
an already unhealthy person. Thus the patients who were discharged slightly early because of the
critically ill people who were waiting end up falling sick again, and the critical ill persons
themselves seldom recover. Second, the health of people who are refused admission (because
they are not critically ill or because the hospital is full) worsens during their trip to a different
hospital. The net effect is that the hospitals have to treat sicker people. This suggests that it is
wiser for people to reach the nearest hospital, and then for the hospitals to have a system of
redistributing their resources (i.e., moving equipment and doctors, as opposed to moving
patients).

Effect of Number of People, Grid Size, and Initial Pattern on Survival Rate

Next, we observe how the number of people affects the fraction of people who survive by
using plots (Figure 3) for a 300 x 300 grid and an 800 x 800 grid, with communication enabled
and the triage policy disabled. We also inspect the effect of people starting at random positions
in the grid as opposed to being concentrated at a location. From these plots, we again observe the
expected trend: as the number of people increases, the fraction of people who survive declines.
Similarly, the 800 x 800 grid results in a slightly larger percentage of the people dying because
the average distance to the nearest hospital is longer. The difference in survival percentages for
the concentrated and the random initial positions is not statistically significant. This can be
understood as the average person’s starting point’s distance to the nearest hospital being roughly
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the same in both cases. However, the number of initial neighbors in the distributed case must be
sufficient to supply the required information about the nearest hospitals.

Trace Analysis in XSSYS

The XSSYS temporal logic trace analysis system can answer linear temporal logic (LTL)
queries about the time course behavior of a set of traces. It was developed originally as a part of
Simpathica for simulating and analyzing biochemical pathways. XSSYS allows the user to
formulate queries about multiple traces in temporal logic or English (via a natural language
interface). The person and hospital traces of Repast can be read by using XSSYS. These traces
reveal very insightful aspects of the behavior of persons and hospitals and serve as a good
starting point for coming up with new policies to be tested. Complex temporal queries linking
different traces can help in discovering finer truths about the underlying dynamics of the system.
In this section, we demonstrate the XSSYS trace analysis tool in some simple examples.

Time-trace of a Person

The variation of a person’s health with time (in this case, Person-78) during the course of
a simulation is plotted in Figure 4. XSSYS plots this curve by using data imported from Repast
in the btd format by using the PtPlot tool. In addition to the health level (HealthLevel), the
person’s current location (X, y) and destination (destx, desty) are plotted. To indicate when the
person actually received treatment, a Boolean value admitted is also plotted.
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Time-trace of a Hospital

In the case of a hospital, we plot the depletion of resources (HospitalResources) with
time (Figure 5). The number of people admitted and the number of people waiting indicate the
stress on the hospital (in this case, Hospital-1). The successful creation of vacancies by early
discharge and their filling by critically ill persons awaiting treatment are also presented.

Temporal Logic Analysis

Temporal properties of these traces can be analyzed by formulating queries in linear
temporal logic by using the operators Eventually (sometime in the future) and Always
(henceforth in the future). In the specific case being demonstrated (Figure 6), the traces of
Person-13 and Person-113 are being compared. Person-113 is seen to have a consistently better
HealthLevel than Person-13, although both their HealthLevels are dropping. Person-113 is also
seen to have reached the destination hospital, while Person-13 has not.
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DISCUSSION

The Brazilian food-poisoning scenario proved to be a considerably complex problem,
which had all the essential elements of a typical catastrophic scenario: a large number of agents
(8,000 + 26), agents of different types (persons and hospitals), external factors governing the
time evolution of the agents’ features (effect of food poisoning on health), mobility (persons),
mutual interaction (within persons, and between persons and hospitals), and multiple
communication channels (talking, broadcast, and radios).

Repast proved to be sufficient to model and simulate the Brazilian food poisoning
scenario. The analytical capabilities were enhanced by feeding its output to XSSYS. Despite the
extreme parameter sensitivity of the model, we were able to explore the effectiveness of different
emergency response strategies and catastrophe preparedness policies. The complexity and
unpredictability of the model, because of the vast number of parameters, became apparent very
quickly. Our model was able to capture the reported statistics to a reasonable extent, and it
elucidated different conditions that could have led up to them. Factors that could have increased
or decreased the number of fatalities also became evident. More specifically, the results showed
that the distance the people need to travel to reach the hospital greatly determines how many
people survive. We also observed that the survival rate increases when either the resources each
hospital has or the number of hospitals increases, and that the survival rate decreases when the
number of people increases. When the average distance to the nearest hospital is almost the
same, there is almost no difference in survival rates between concentrated and random initial
patterns. We found that communication among people about hospitals is beneficial when the
difference in distances to hospitals is substantial, but it is harmful when all hospitals are close by
and have few resources. We also found that our triage system harms the survival rate, since it is
better to keep patients at a hospital, even if it has low resources, rather than have them transfer to
another hospital and then having to treat a sicker person. The emergence of such interesting
unanticipated behaviors already suggests a potential utility of such simulation-based analysis
tools.

Many additional enhancements to the outbreak model to make it more realistic are
possible. We might need to switch the environment to a real city. Transportation constraints and
modes, roads, subways, and other geographical information might need to be incorporated. The
moment these additional constraints emerge, we will need to model the agent’s transportation
choices. For example, Raney and Nagel (2004) describe a framework for running large-scale
multi-agent simulations of travel behavior on the basis of each agent’s “plan” of activities, times,
and preferred modes of transport. However, as described by Sono and Ishibashi (2004), the
change in the transportation choices after a disaster will need to be worked into the plan, with
commuters and noncommuters having to be treated differently (a rather simple situation, which
nonetheless seems to have had a major impact in the Katrina disaster). A somewhat complex
model of this nature will endow each agent with a current-mobility variable, which decreases
with a decrease in the agent’s health, increases if the agent is being helped by a neighbor, and
decreases if the agent is helping a neighbor.

We will need to add social networks at various levels (families, friends, etc.) and the
social characteristics of subsets of the population to model the cultural differences in response
behavior. A good example of the application of social judgment theory appears in the work on
group attitude emergence via assimilation and contrast effects as described by Jager and
Amblard (2004). The benefits of cooperation could be captured by increased mobility and
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information, while moving in groups. We could also add social infrastructure, like first
responders, volunteer-based relief organizations, and law enforcement officers. Also, some of the
people who consumed the contaminated food could belong to these groups, thus complicating the
interaction dynamics even further.

We could also add more detailed models of communication and information exchange.
For instance, the logic-based framework for handling messages and belief-state changes
discussed by Perrussel and Thevenin (2004) could be combined with ideas from the work on the
geographical divergence of knowledge via interactive-learning-based diffusion by Morone and
Taylor (2004). This could prove useful in capturing the realistic transmission and accumulation
of information during calamities. We could incorporate into the model long-distance 1-to-1 and
1-to-many communication channels, where 1-to-1 channels are between persons via cell-phone
and 1-to-many are from authorized broadcasters to equipped receivers. We could model the
ability to give instructions and the ability to receive instructions separately. Similarly, there
could be a difference in the transmission of different kinds of information (e.g., the location of
the nearest hospital, measures to use to slow down the progression of the sickness, instruction to
proceed to a hospital). (See the work of Lawson and Butts [2004] on the propagation of rumors
and information in crisis contexts.)

The food poisoning in itself could have been modeled differently. For instance, the
spread of Mycoplasma pneumoniae via interaction between patients and caregivers is modeled
by using network theory by Meyers et al. (2003). Similarly, Rahmandad and Sterman (2004)
analyze the pros and cons of agent-based modeling versus differential equation modeling for
contagion modeling. Although the work of Eidelson and Lustick (2004), who developed a
stochastic agent-based model, VIR-POX, to explore the viability of available containment
measures as defenses against the spread of smallpox, is similar to the Brazilian scenario analysis,
it is different in its approach and goals.

On the pure computational side, the biggest challenge is in scaling up to a very large-
scale simulation through parallelization, abstraction, hierarchy, and other strategies. We are
working on enhancements to XSSYS to improve its expressivity and power. We also need to
investigate the applicability of other formal reasoning techniques, such as probabilistic reasoning
(Xiang 2002) and probabilistic argumentation systems and causal analysis (see the WIZER tool
of Yahja and Carley 2004). We could treat the estimation of the triage policy parameters
(e.g., the health level at which a person who is waiting gets deemed as critically ill, or the health
level at which a recovering patient may be discharged to create a vacancy) as an optimum-value
computation problem. From a practical utility point of view, we need to identify a way of
describing the simulations in a manner that is formal and accurate enough to create a meaningful
simulation but simple enough for a nonprogrammer to use. We are in the process of compiling a
survey of approaches to model and analyze catastrophic scenarios. Our goal is to first extend this
modeling and analysis approach from the Brazilian food-poisoning example to other scenarios.
For example, the effects of several people independently consuming botulinum-contaminated
milk at their homes (following the scenario investigated by Wein and Liu [2005]) could be
modeled by a different health-modulation curve, and with people starting at their homes as
opposed to congregating at a church. We would additionally need to model the transmission of
the instruction to not consume any more contaminated milk. Eventually, we hope to develop and
demonstrate the tools and technologies necessary for such simulation-based analysis to provide a
rigorous yet user-friendly approach for exploring assumptions about public health policies in
catastrophe preparedness and emergency response.
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