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Abstract The use of  computer simulation for building theoretical models in social 
science is introduced. It is proposed that agent-based models have potential as a "third 
way" of  carrying out social science, in addition to argumentation and formalisation. With 
computer simulations, in contrast to other methods, it is possible to formalise complex 
theories about processes, carry out experiments and observe the occurrence of  emergence. 
Some suggestions are offered about techniques for building agent-based models and for 
debugging them. A scheme for structuring a simulation program into agents, the environment 
and other parts for modifying and observing the agents is described. The article concludes with 
some references to modelling tools helpful for building computer simulations. 

Keywords agent based computational economics," social simulation; neural net- 
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1. Computational modelling as a third way of building social science models 

1.1. Building models 

Almost all social science research proceeds by building simplified representa- 
tions of  social phenomena. Sometimes these representations are purely verbal. For 
example, the traditional work of  historical scholarship is a book-length representa- 
tion of  past events, abstracted and simplified to emphasise some events and some 
inter-relationships at the expense of  others. The difficulty with such verbal presen- 
tations is that it is hard for the researcher and the reader to determine precisely the 
implications of  the ideas being put forward. Are there inconsistencies between the 
various concepts and relationships? Can they be generalised and if so, what infer- 
ences can one make? 

In other fields, for example, some areas of economics, the representation is usu- 
ally much more formal and often expressed in terms of  statistical or mathematical 
equations. These make assessing consistency and generalisability and other desir- 
able properties much easier than with verbal representations. In these areas, it is 
generally accepted that understanding the social world involves model-building. 
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However, statistical and mathematical models also have some disadvantages. Prime 
among these is that many of the equations which one would like to use to represent 
real social phenomena are simply too complicated to be analytically tractable. This 
is particularly likely when the phenomena being modelled involve non-linear rela- 
tionships, and yet these are pervasive in the social world. The advantages of  mathe- 
matical formalisation thus evaporate. A common solution is to make simplifying 
assumptions until the equations do become solvable. Unfortunately, these assump- 
tions are often implausible and the resulting theories can be seriously misleading. 
This is the criticism often put before economists who make assumptions such as the 
availability of perfect information, perfect rationality and so on, not because they 
believe the economic world really does have these characteristics, but because oth- 
erwise their models cannot be analysed. 

Ostrom (1988) proposed that there are three different "symbol systems" available 
to social scientists: the familiar verbal argumentation and mathematics, but also a 
third way, computer simulation. Computer simulation, or computational modelling, 
involves representing a model as a computer program. Computer programs can be 
used to model either quantitative theories or qualitative ones. They are particularly 
good at modelling processes and although non-linear relationships can generate 
some methodological problems, there is no difficulty in representing them within a 
computer program. 

The logic of developing models using computer simulation is not very different 
from the logic used for the more familiar statistical models. In either case, there is 
some phenomenon that we as researchers want to understand better. This is the 
"target". We build a model of  the target through a theoretically motivated process 
of  abstraction (this model may be a set of  mathematical equations, a statistical 
equation, such as a regression equation, or a computer program). We then examine 
the behaviour of  the model and compare it with observations of  the social world. If  
the output from the model and the data collected from the social world are suffi- 
ciently similar, we use this as evidence in favour of the validity of the model (or 
use a lack of  similarity as evidence for disconfirmation). 

If  the model is a mathematical equation, it may be possible to infer its behaviour 
by a process of mathematical reasoning. If the model is a statistical equation, we 
run it through a statistical analysis program such as spss. If the model is a com- 
puter program, its behaviour can be assessed by "running" the program many times 
to evaluate the effect of  different input parameters. It is the behaviour of  the pro- 
gram that we call a computer simulation. In all these cases, we need data about the 
target. For example, we might be interested in spread of opinions within a commu- 
nity of  people. We would conduct surveys, perhaps several over a span of  time, to 
measure the community members' opinions (the dependent or output variable) and 
a number of variables thought to influence their opinions (the independent or input 
variables). The model would then be "run". If the model consists of  a regression 
equation, this amounts to deriving a vector of expected values of the dependent 
variable, given some measured values of  the independent variables. If the model 
consists of  a computer program, it consists of  running the program with a variety of  
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input parameters and observing the program's outputs (Bratley, Fox & Schrage, 
1987). Finally, the values of the output variable derived from the run are compared 
with corresponding values of  the independent variable measured from the target. 
(See Gilbert & Troitzsch, 1999, for an extended discussion). 

1.2. The uses o f  simulation 

Computer simulation has been widely adopted in the natural sciences and engi- 
neering as a methodology (Zeigler, 1976), but is a comparatively recent approach 
in the social sciences. This may be because the principal value of  simulation in the 
social sciences is for theory development rather than for prediction. In engineering, 
the usual purpose of  a simulation of, for example, the trajectory of a space station 
is to predict its future position. Similar types of prediction are unusual in the social 
sciences. Examples where simulation has been used for prediction are in demogra- 
phy, where the aim is to predict the age and sex structures of a population in the 
future, and for "microsimulation" to predict, for example, future dependency ratios 
as the proportion of  the population at work decreases and the number of  elderly 
people increases. 

Recently, however, the use of simulation in the social sciences has undergone 
major growth for two linked reasons. First, there has been the development of 
agent-based simulations, considered in more detail in the next section. Second, the 
value of  computer programs as models for discovery, understanding and formal- 
isation has been better appreciated. For example, it has been discovered through 
simulation that given certain kinds of relationship between people's purchasing de- 
cisions, under some wide range of conditions, after a short time people will prefer 
one of two competing products and that this preference will persist (a phenomenon 
called "lock-in" by Arthur, 1989). A well-known instance is the competition be- 
tween the VHS and Betamax video tape formats. 

Another example of the use of simulation is the discovery that, if  one person's 
attitude on some issue (e.g., Left vs. Right or a preference for beer rather than 
wine) influences others' according to a non-linear relationship (we do not need to 
specify very closely what this relationship is, other than that it is not linear), we can 
expect clusters of people sharing the same attitude, but also the persistence of  a 
minority with the other preference (Nowak & Latan6, 1994). In both these exam- 
ples, it is not possible to use the models to make predictions (the model does not 
tell us which tape format or whether wine and beer will be favoured), but the mod- 
els do point to classes of  those observations (e.g., lock-ins) which could be ex- 
pected (and rule out others) and illustrate a mechanism through which those obser- 
vations could arise. 

Once one has a model, the fact that it is formulated as a computer program will, 
in principle at least, allow it to be communicated to others. In practice, it is rare for 
programs themselves to be published in the literature. More commonly, a high 
level rendering of  the algorithm, perhaps in "pseudo-code", is made available. 
There are several reasons for this. Perhaps the least defensible is programmers' re- 
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luctance to expose their coding style to the critical gaze of others. Once a program 
has been experimented with, debugged and used to generate results for a range of 
inputs, the code is often not in the elegant shape that the author would have liked. 
A better reason for publishing only a high level version of the code is that even to- 
day, programs are often not easily portable from one machine and one oper- 
ating system to another. A program written to work on a PC in C++ will 
probably not work first time when run on a Unix machine. There is a solution 
to this now emerging: the use of  special toolkits and libraries (e.g., Swarm, 
http://www.santafe.edu/projects/swarm, and SDML, Moss et al., 1998) that both 
provide a suite of  functions useful for the programming of  social simulations and a 
guarantee of  machine independence. 

1.3. From top to bottom and back again 

The breakthrough in computational modelling in the social sciences came with 
the development of multi-agent systems (MAS). These models were derived from 
work in a sub-area of artificial intelligence called distributed artificial intelligence 
(DAI). DAI aimed to solve problems by dividing them amongst a number of pro- 
grams or agents, each with its own particular type of  knowledge or expertise. In 
combination, the collection of  agents would be better at finding solutions than any 
one agent working on its own. While DAI is primarily concerned with engineering 
effective solutions to real world problems, it was soon noticed that the technology 
of interacting intelligent agents could be applied to modelling social phenomena, 
with each agent representing one individual or organisational actor. 

The standard MAS today consists of  a number of "agents" communicating via 
messages passed between them through an "environment". All the agents and the 
environment are represented within one computer program. Often the environment 
is modelled as a two dimensional space and each agent is positioned in a different 
location. In some models, the agents are free to travel thorough the space while in 
others they are fixed. The design of the latter models is often influenced by the tra- 
dition of  work on cellular automata (Hegselmann, 1996). 

There is a certain amount of  confusion over the term "agent" because the basic 
idea has recently been applied in many different domains in addition to social sci- 
ence modelling. For example, agents have been built that search the Internet on the 
user's behalf for cheap deals. Other agents are employed as "wizards" helping the 
user learn to use application programs such as word processors. From the point of  
view of MAS, agents are processes implemented on a computer that have autonomy 
(they control their own actions); social ability (they interact with other agents 
through some kind of  "language"); reactivity (they can perceive their environment 
and respond to it); and pro-activity (they are able to undertake goal-directed actions) 
(Wooldridge & Jennings, 1995). 

Because agents are computational processes intended to model, in a much- 
simplified way, the capabilities of  humans, it is easy to drop into using a vocabu- 
lary normally reserved for describing people, such as "intelligent", "intention" and 
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"action". This only becomes a .source of  confusion if it is then thought that there is 
no significant difference between, for instance, the intelligence of  a computer agent 
and the intelligence of a person. Even the most sophisticated agent programs are 
probably less intelligent than an ant (although it is difficult to formulate an appro- 
priate indicator of intelligence at this level) and ascription of intentionality to a 
program must always be considered as metaphorical. Nevertheless, as we shall see, 
there are lessons that can be learned even from such apparently crude representa- 
tions of  people. 

The task of the modeller is thus to define the cognitive and sensory capabilities 
of  the agents, the actions they can carry out and the characteristics of  the environ- 
ment in which they are located, to set up the initial configuration of  the system, and 
then to observe what happens when the simulation is run. Generally, one is looking 
for emergent phenomena, that is some patterns arising at the level of  the system as 
a whole that are not self-evident from consideration of the capabilities of  the indi- 
vidual agents. For example, the phenomenon of "lock-in" mentioned above is one 
such emergent feature. If the agents are constructed to be deliberative consumers, 
purchasing one brand of video tape or another because of the availability of  ma- 
chines on which to play it, it is not obvious from just examining individual agents 
that one format will win out almost completely over the other. A more formal defi- 
nition of emergence is that a phenomenon is emergent if  it requires new categories 
to describe it which are not required to describe the behaviour of the underlying 
components (in this case, agents). The idea of emergence has had a powerful influ- 
ence on some branches of the natural sciences and it also has obvious resonances in 
the social sciences, where the relationship between individual action and emergent 
social structure is a fundamental issue. For example, institutions such as the legal 
system and government that are recognisable at the "macro-level" emerge from the 
"micro-level" actions of  individual members of society. 

In comparison with the natural sciences, a complication needs to be borne in 
mind when considering emergent phenomena in the social sciences. In the physical 
world, macro-level phenomena, built up from the behaviour of  micro-level compo- 
nents, generally themselves affect the components. For example, the macro-level 
behaviour of  an avalanche is constituted by the micro-level behaviour of  millions 
of  snow particles, but itself pulls more snow along with it. The same is true in the 
social world, where an institution such as government self-evidently affects the 
lives of individuals. The complication in the social world is that individuals can  
recognise, reason about and react to the institutions that their actions have created. 
Understanding this feature of human society, variously known as second-order 
emergence (Gilbert, 1995), reflexivity (Woolgar, 1988) and the double hermeneu- 
tic, is an area where computational modelling shows promise. 

2. Building multi-agent systems 

There is no one recognised best way of  building agents for a multi-agent sys- 
tem. Different architectures (that is, designs) have merits depending on the purpose 
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of the simulation. Nevertheless, every agent design has to include mechanisms for 
receiving input from the environment, for storing a history of  previous inputs and 
actions, for devising what to do next, for carrying out actions and for distributing 
outputs. Agent architectures can be divided into those that are rooted in the sym- 
bolic paradigm of AI and non-symbolic approaches such as those based on neural 
nets. In addition there are a few hybrid MAS (e.g., Kltiver, 1998). 

2.1. Techniques for constructing agents 

Production systems 

One of  the simplest but nevertheless effective designs for an agent is to use a 
production system. A production system has three components: a set of  rules, a 
working memory and a rule interpreter. The rules each consist of  two parts: a con- 
dition, which specifies when the rule is to executed ("fire"), and an action part, 
which determines what is to be the consequence of the rule firing. For example, an 
agent might be designed to roam over a simulated landscape, collecting any food 
that it encounters on its travels. Such an agent might include a rule that states (in an 
appropriate symbolic programming language): IF I am next to some food, THEN 

pick it up. This would be one of many rules, each with a different condition. Some 
of the rules would include actions that inserted facts into the working memory 
(e.g., I am holding some food) and other rules would have condition parts that 
tested the state of the working memory (e.g., IF I am holding food  THEN eat it). The 
rule interpreter considers each rule in turn, fires those for which the condition part is 
true, performs the indicated actions for the rules that have fired, and repeats this cycle 
indefinitely. Different rules may fire on each cycle either because the immediate en- 
vironment has changed or because one rule has modified the working memory in 
such a feay that a new rule begins to fire. 

Using a production system, it is relatively easy to build reactive agents that re- 
spond to each stimulus from the environment with some action. It is also possible, 
but more complicated, to build agents with some capacity to reflect on their deci- 
sions and thus begin to model cognition (e.g., Verhagen, 1999). Another possibility 
is to enable the agents to change their own rules using an adaptive algorithm which 
rewards rules that generate relatively effective actions and penalises others. This is 
the basis of  classifier systems (for an example, see Ballot et al., 1999; the algorithm 
is described in Holland & Miller, 1991). 

Learning 

Production system based agents have the potential to learn about their environ- 
ment and about other agents through adding to the knowledge held in their working 
memories. The agents' rules themselves, however, always remain unchanged. For 
some problems, it is desirable to create agents that are capable of more fundamen- 
tal learning: where the internal structure and processing of the agents adapt to 
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changing circumstances. There are two techniques commonly used for this: neural 
networks and evolutionary algorithms such as the genetic algorithm. 

Neural networks are inspired by analogy to nerve connections in the brain. A 
neural network consists of  three or more layers of  neurons, with each neuron con- 
nected to all other neurons in the adjacent layers. The first layer accepts input from 
the environment, processes it and passes it on to the next layer. The signal is 
transmitted through the layers until it emerges at the output layer. Each neuron ac- 
cepts inputs from the preceding layer, adjusts the inputs by positive or negative 
weights, sums them and transmits the signal onward. Using an algorithm called the 
back propagation of error, the network can be tuned so that each pattern of inputs 
gives rise to a different pattern of outputs. This is done by training the network 
against known examples and adjusting the weights until it generates the desired 
outputs given particular inputs (Garson, 1998). 

In contrast to a production system, a neural network can modify its responses to 
stimuli in the light of  its experience. A number of network topologies have been 
used to model agents so that they are able to learn from their actions and the re- 
sponses of  other agents (e.g., Hutchins & Hazlehurst, 1995; Terna, 1997). 

Another way of enabling an agent to learn is to use an evolutionary algorithm. 
These are also based on a biological analogy, drawing on the theory of  evolution 
by natural selection. The most common algorithm is the genetic algorithm (GA). 
This works with a population of  individuals, each of which has some measurable 
degree of  "fitness", using a metric defined by the model builder. The fittest indi- 
viduals are "reproduced" by breeding them with other fit individuals to produce 
new offspring that share some features taken from each parent. Breeding continues 
through many generations, with the result that the average fitness of the population 
increases as the population adapts to its environment. 

For both neural networks and GAs, the experimenter has to make a decision 
about the scale at which the model is intended to work. For example, with a GA 
model, it is possible to have a whole population within each agent. The GA would 
then be a "black box" mechanism used to give the agent some ability to learn and 
adapt (see Chattoe & Gilbert, 1997, for an example). Alternatively, every individ- 
ual could be an agent with the result that it would be the population of agents as a 
whole that would evolve. Similarly, it is possible for either an individual agent to 
be modelled using a neural network, or a whole society to be represented by a net- 
work, with each neuron given an interpretation as an agent (although in the latter 
case, it is hard to build in all the attributes of  agents usually required for multi- 
agent modelling). 

2.2. The agent's environment 

Agents are almost always modelled as operating within some social environ- 
ment consisting of a network of interactions with other agents. Sometimes, how- 
ever, it is also useful to model them within a physical environment that imposes 
constraints on the agents' location. The usual assumption is then that nearby agents 
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are more likely to interact or are better able to influence each other than those far- 
ther apart. 

Models of  this kind may be built using techniques drawn from work on cellular 
automata. A cellular automata consists of a regular array of cells, each of  which is 
in one of a small number of states (e.g., "on" or "off"). A cell's state is determined 
by the operation of  a few simple rules and depends only on the state of  its neigh- 
bouring cells and its own previous state. Cellular automata have been studied in- 
tensively by mathematicians and physicists because they are useful models of  some 
physical materials and have some interesting computational properties. The classic 
cellular automata have only very simple mechanisms for determining the state of  
their cells, but the same principles can be used with more complex machinery so 
that cells represent agents and the array as a whole can be used to model aspects of  
a society (Hegselmann, 1998). 

3. Object oriented programming in the agent based models perspective 

In Sections 1 and 2 we have introduced the premises, the contents and the per- 
spectives of the agent based simulation framework. Now we have to pay attention 
to the "container" used to build the experiments or, in technical terms, to the com- 
puter codes allowing us to run simulations in a machine. 

For the reasons outlined in Section 1.2, the characteristics of the software we 
use are crucially important in assuring the success of this third way of formalising 
models. Only if we use high quality software we are able to communicate the de- 
tails of  our model, allow other scholars to replicate the results, and avoid difficulties 
in modifying poorly written code. The best way to improve the quality of  the pro- 
gramming is to choose an object-oriented language. This choice simplifies the trans- 
lation of the problem into a set of  agents and events. From a computational point of 
view, agents become objects and events become steps activated by loops in the 
program. In addition, in a fully object oriented environment, events (or time steps) 
can be organised as objects. The key term here is object: a piece of code containing 
data and rules operating on them. 

3.1. Memory and synchronisation problems 

There are three different degrees of completeness in the structure of software 
tools for agent-based programming. 

At the lowest level (e.g., using plain C) we have to manage both the agent 
memory structures (commonly constructed from arrays) and the time steps, using 
"for" loops to drive events; this is feasible, but also costly (a lot of  software has to 
be written; many "bugs" have to be discovered). At a more sophisticated level, em- 
ploying object oriented techniques (C++, Objective C, etc.), the memory manage- 
ment problem can be avoided, but nevertheless stepping through simulated time 
still needs the activation of loops. Finally, using a high level tool such as Swarm, 
both the memory management and the time simulation problems can be avoided. 
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With such high level tools, events are treated as objects, scheduling them in time- 
sensitive widgets (such as action-groups). 

An additional advantage of using a high level tool is that it is then possible to 
publish simulation results in a useful way. To quote from the Swarm documenta- 
tion: 

The important part (...) is that the published paper includes enough detail 
about the experimental setup and how it was run so that other labs with 
access to the same equipment can recreate the experiment and test the 
repeatability of the results. This is hardly ever done (or even possible) in 
the context of  experiments run in computers, and the crucial process of 
independent verification via replication of results is almost unheard of in 
computer simulation. One goal of  Swarm is to bring simulation writing 
up to a higher level of  expression, writing applications with reference to 
a standard set of  simulation tools. 
(Swarm, http://www.santafe.edu/proj ects/swarm). 

4. From simple models to complex results 

Following Axtell & Epstein (1994, p. 28), the problem of coping with complex- 
ity via agent-based modelling or simulation is that the experiments would be of  lit- 
tle interest "if we cannot understand these artificial complex systems any better that 
we understand the real ones". To understand - and to allow others to understand - 
our work, simple but robust guidelines have to be followed. 

First, we have to consider the agents as objects: i.e., pieces of software capable 
of  containing data and rules to work on the data. The rules provide the mechanisms 
necessary to react to messages coming from outside the object. 

Second, we have to observe the individual agents' behaviour via the internal 
variable states of each agent-object and, at the same time, the results arising from 
their collective behaviour. One important feature of the software is therefore to 
synchronise the experiment clocks: we have to be sure that the observations made 
at the aggregate level and the knowledge that we are picking up about the internal 
states of  the agents are consistent in terms of the experimental schedules. 

Now let us suppose that a community of agents, acting on the basis of  public 
(i.e. common to all agents) and private (i.e. specific to each agent) information and 
of  simple internal local rules, shows, as a whole, an interesting, complex, or 
"emergent" behaviour. There are two kinds of  emergence: unforeseen and unpre- 
dictable emergence. An example of unforeseen emergence occurs when we are 
looking for an equilibrium state, but some sort of  cyclical behaviour appears; the 
determinants of  the cyclical behaviour are hidden in the structure of  the model. 
Unpredictable emergence occurs when, for example, chaos appears in the data pro- 
duced by an experiment. Chaos is obviously observable in true social science phe- 
nomena, but it is not easy to reverse engineer in an agent-based simulation. For an 
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experiment exhibiting both unforeseen and unpredictable emergence, see Terna 
(1998a and 1998b). 

Thirdly, we need to evaluate whether the simulation is a success. A mathematical 
statistics approach can be used in which, according to Kleijenen (1998): 

The type of  statistical test actually applied depends on the availability of 
data on the real system (that we are simulating): (i) no data, (ii) only out- 
put data, and (iii) both input and output data. In case (i), the system ana- 
lyst can still experiment with the simulation model to obtain simulated 
data. Those experiments should be guided by the statistical theory on de- 
sign of experiments (DOE); an inferior - but popular - approach is to 
change only one factor at a time. In case (ii), real and simulated output 
data may be compared through the well-known Student t statistic. In case 
(iii), trace-driven simulation becomes possible. 

This type of approach is potentially relevant, but often difficult to apply to an 
agent based computational model, where qualitative results are expected as well as 
quantitative ones. 

We therefore have to adopt a weaker criterion. One such is to compare the actions 
of  the agent behaving in the simulated framework with our knowledge about the way 
that actual agents behave. A more severe degree of assessment is to test the aggregate 
effects of  agents' behaviour in terms of  emerging structure, groupings, spatial ef- 
fects, and so on. 

Following Axtell & Epstein (1994), we can summarise the levels of  agent-based 
model performance and analysis as follows. 

Level 0: the model is a caricature of reality, as established with simple graphical 
devices (e.g., allowing visualisation of agent motion). 

Level 1: the model is in qualitative agreement with empirical macro-structure, 
as established by plotting the distributions of  some attributes of the agent popula- 
tion. 

Level 2: the model produces quantitative agreement with empirical macro- 
structure, as established through statistical estimation routines. 

Level 3: the model exhibits quantitative agreement with empirical micro- 
structures, as determined from cross-sectional and longitudinal analysis of the 
agent population. 

Nevertheless, even if we obtain satisfactory results at level 3, a basic question 
may remain unsolved: the so-called many-to-one or identification problem, i.e. the 
possibility of obtaining similar results with quite different agent structures. This is, 
however, a general problem of scientific method, not confined to the methodology 
of simulation. 

Finally, we can observe that simulated results about collective behaviour can be 
as difficult to understand as reality. The problem is analogous to the classic one of  
understanding links between genotype and phenotype. It may be impossible to 
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foretell what kind of phenotype emerges from an engineered genotype; this is a 
topic central to the Artificial Life (AL) domain. 

In that context the idea is to assume that the behaviour of single agents is simple 
but adaptive, in order to explore the complexity of aggregate behaviour. Unexpected 
results can easily arise. Many AL models demonstrate, for example, recurrent rela- 
tively short periods of great variance or turbulence, apparently similar to the explo- 
sion of life-forms in the Cambrian period. It is not easy to describe such structures 
in precise terms, even though such an operation would be useful in order to com- 
pare the results of  different models. If the adaptability allowed to the agents con- 
sists only in learning to forecast, then the results follow directly from the behav- 
ioural rules and from the learning algorithms that have been wired into the model. 
All the collective emergent behaviour can therefore be understood as the result of  
alternative learning schemes that may be imputed to the agents. 

The task is much more complicated in the context of models where agents not 
only learn to forecast, but also have themselves to design their own behaviour. 
Here we must take into account separately both the variety of emergent behaviours 
of  the agents and the aggregate effects of  their different ways of acting. It is mainly 
in this context that we can discover the emergence of unexpected consequences of  
different initial settings of the model. The core explanation, and the related lesson 
useful for the interpretation of  reality, is the discovery both of the micro-mechanisms 
individual behaviour and of the way by which those mechanisms, even if very sim- 
ple, can generate complex consequences as a result of  the agents' interaction. 

At present, standard tools for the interpretation of collective behaviour in agent 
models are lacking, but some techniques can be suggested. For example, following 
Beltratti et al. (1996), one could study clusters of  agents to see how their behav- 
iours can be interpreted. Or, to extend the idea of derivatives, one might think of 
"social derivatives", where the reactions of the system as a whole to changes in the 
behaviour of some particular group are analysed, keeping constant the actions of  
other social groups, to see which group is most likely to affect the aggregate out- 
come, 

4.1. Guidelines in building environment, rules and agents 

The problems arising when we go from simple models to complex results sug- 
gest that a crucial role for the usefulness and the acceptability of the experiments is 
played by the structure of  the underlying models. For this reason, we introduce 
here a general scheme that can be employed in building agent-based simulations. 
Similar schemes are advocated and implemented in Moss (1998) and Gilbert & 
Troitzsch (1999). 

The main value of  the Environment-Rules-Agents (ERA) scheme shown in Fig- 
ure 1 is that it keeps both the environment, which models the context by means of  
rules and general data, and the agents, with their private data, at different concep- 
tual levels. To simplify the code, we suggest that agents should not communicate 
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directly, but always through the environment; as an example, the environment allows 
each agent to know the list of  its neighbours. This is not mandatory, but if we admit 
direct communication between agents, the code becomes more complex. 

E n v ' k  o h m  er~ 

I Agenttyloe I I 

I Agenttyloe I I -- 

O4~ 

- -  I Agenttype2 I -- 

_i ?.l- 
r  

1 A~nttypen I _- 

I Agenttyl~ I- 

Rule Ma~e~ 
A 

Rule Maste~ 
B 

Rule Master 
M 

Rule Maker 

Rule Maker Q 

Figure 1. The Environment-Rules-Agent framework to build agent based computational models 

With the aim of  simplifying the code design, agent behaviour is determined by 
external objects, named Rule Masters, that can be interpreted as abstract represen- 
tations of  the cognition of the agent. Production systems, classifier systems, neural 
networks and genetic algorithms are all candidates for the implementation of Rule 
Masters. 

We may also need to employ meta-rules, i.e., rules used to modify rules (for ex- 
ample, the training side of a neural network). The Rule Master objects are therefore 
linked to Rule Maker objects, whose role is to modify the rules mastering agent 
behaviour, for example by means of a simulated learning process. Rule Masters 
obtain the information necessary to apply rules from the agents themselves or from 
special agents charged with the task of collecting and distributing data. Similarly, 
Rule Makers interact with Rule Masters, which are also responsible for getting data 
from agents to pass to Rule Makers. 

Although this code structure appears to be complex, there is a benefit when we 
have to modify a simulation. The rigidity of the structure then becomes a source of 
invaluable clarity. An example of the use of this structure can be found in the code 
of a Swarm application called BP-CT in which the agents are neural networks. (The 
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code can be obtained directly from the second author or, in the future, from the 
"anarchy" section o f  the Swarm site). 

A second advantage of using the ERA structure is its modularity, which allows 
model builders to modify only the Rule Master and Rule Maker modules or objects 
whenever one wants to switch from agents based on a classifier system, to alterna- 
tives such as neural networks, production systems or genetic algorithms. 

4.2. Checking the code for  errors 

As Axelrod (1997a, p. 211) notes, attention to the quality of  a simulation model is 
important throughout the research enterprise. 

In order to be able to achieve the goals of  validation, usability, and ex- 
tendibility, considerable care must be taken in the entire research enter- 
prise. This includes not just the programming, but also the documenta- 
tion and data analysis. (...) I have learned the hard way that haste does 
indeed make waste. Quick results are often unreliable. Good habits slow 
things down at first, but speed things up in the long run. 

Debugging a program is always a difficult task and we can never be sure of  
producing completely error free code. The difficulty is worse in the context of  
agent based models, where the results of  simulations can be unexpected and we 
cannot be sure whether they arise from features of the agents and their interaction, 
or from some hidden bug. It is therefore especially important to carefully check the 
code and to apply the simulation model to relatively well understood and predict- 
able situations before exploring new territories. 

As Axtell & Epstein (1994, p. 31) point out: 

Such software problems are difficult to discover due precisely to the 
highly distributed nature of  agent-based models. Indeed, the "robustness" 
of  macro-structures to perturbations in individual agent performance 
- "graceful degradation" to borrow a phrase from neural networks - is 
often a property of  agent based-models and exacerbates the problem of 
detecting "bugs". 

Nevertheless, we can look for some "alarm" signals that can alert us to the pres- 
ence of  bugs. For example, if the simulation model shows greatly varying results 
when we change a single parameter a priori believed to be not critical, the first 
thought should be that the observed behaviour is due to a bug, not to some exotic 
emergent phenomenon. The problem becomes more subtle if  the model is highly 
sensitive to initial conditions: unfortunately, this is frequently a highly desirable 
property especially if  there are time series containing chaotic sequences. The best 
strategy to identify bugs is to examine carefully the internal data of the agents, to 
verify their exact behaviour. This is very easy with a high-level development library 
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such as Swarm, where we can deploy probes pointing to any part of the code and 
examine values "on the fly". The design of Swarm programs involves two different 
levels. There is the model level, where we can have nested models (or swarms), 
and the observer level which considers the model (or the nested models) as a 
unique object from which to extract the results using probes and send them on to 
various display tools and widgets. 

4.3. Replicating simulated experiments 

The use of standard agent based modelling tools and the introduction of  general 
applications, which we can employ as "containers" based upon a specific shell, 
simplifies the task of replicating simulated experiments. There are several such 
tools available. The following are particularly suitable for building agent-based 
models, because they all implement object-oriented programming systems: 

Lisp-Stat, http://stat.umn.edu/-luke/xls/xlsmfo/xlsinfo.html, is a tool providing 
a Lisp environment, statistical functions and easy to use graphics, such as histo- 
grams, scatterplots and spin-plots. In this object oriented environment agent models 
can be developed and the native capabilities of the language used to observe them; 
see, as an example, Gilbert (1999). Lisp-Star is available for Macintosh, pc and 
Unix computers and works almost identically on each. 

Swarm, http://www.santafe.edu/projects/swarm/, is a set of function libraries, 
based upon Objective C. The swarm, a combination of a collection of objects and a 
schedule of activity over those objects, is the basic building block of Swarm simu- 
lations. With Swarm, general purpose applications can be constructed, based on 
specific techniques, but easy to adapt to any specific problem. An example is the 
BP-CT neural network based application mentioned in Section 4.1. 

MAML, Multi-Agent Modelling Language, at http://www.syslab.ceu.hu/maml. 
The goal of MAML is to provide the functionality of Swarm without the need to be 
familiar with Swarm's underlying low-level language, Objective-C. The current 
version of MAML defines a macro-language for Swarm. This introduces higher 
level concepts of modelling, and simplifies some constructs already included in 
Swarm by hiding the technical details needed to program them. However, the 
macro-language nature of MAML does not affect the user's access to the whole 
Swarm machinery. Its compiler (xmc) generates Swarm (vl.02 or vl.3) code that 
can be compiled again using the gcc compiler. 

SDML, StrictlyDeclarativeModellingLanguage, http://www.cpm.mmu.ac.uk/sdml, 
has the following features: knowledge is represented in rulebases and databases; all 
knowledge is declarative; models can be constructed using many interacting 
agents; complex agents can be composed of simpler ones; object-oriented facilities, 
such as multiple inheritance, are provided; temporal facilities are ,provided, in- 
cluding different levels of time; rules can be fired using forward and backward 
chaining. SDML is implemented in Smalltalk. 

LSD, Laboratory for Simulation Development, allows one to create, observe, edit 
and run micro-founded simulation models. It offers a set of tools that facilitate the 
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most common operations for building and using simulation models, and particu- 
larly models with many nested entities as agent based ones usually are. Version 1.1 
may be found at http://www.business.auc.dk/-mv/Lsd 1.1/Intro.html. 

SIM_AGENT, http://www.cs.bham.ac.uk/Naxs/cog_affect/sim_agent.html, is an 
"agent architecture" toolkit. It allows rapid prototyping and testing of  all kinds of  
agents, from very simple reactive agents to those that can plan and deliberate. It is 
written in Pop-11 and has been used for experimenting with different kinds of  
agent architectures that meet a requirement for real-time response in complex and 
dynamic domains. 

SimBioSys, is a general C++ class library for evolutionary simulation. Like 
Swarm, SimBioSys provides users with a general library aimed at building agent- 
based evolutionary models of  socio-economic and biological processes. It is de- 
scribed by Leigh Tesfatsion, at http://www.econ.iastate.edu/tesfatsi/platroot.ps. 

StarLogo, http://starlogo.www.media.mit.edu/people/starlogo/, is a programma- 
ble modelling environment for exploring the behaviour of  decentralised systems 
(systems that are organised without an organiser, and co-ordinated without a co- 
ordinator). StarLogo has been used to model phenomena such as bird flocks, traffic 
jams, ant colonies and market economies. StarLogo was created for the Macintosh, 
but a Java version and a PC version are under development (the PC version actually 
exists, but it is an alpha version). 

5. C o n c l u s i o n  

Computer simulation is set to become an important new method of  building and 
evaluating theories in the social sciences. Like all new methodologies, it will take 
some time to refine the techniques and to codify them so that a minimum of trial 
and error is needed. A t  present, experimenting with computer simulations is still an 
art best learnt through practice and by closely observing those more experienced. 
In this paper, we have begun to set down some hard-won lessons from our own re- 
search, but there is much more to say, some of which can be gleaned from recent, 
methodologically inclined publications (e.g., Axelrod, 1997b; Gilbert & Troitzsch, 
1999). Finally, good luck with your own creations! 
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