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Abstract

We report on a design of a Turing tournament and its initial implementation to learning in repeated 2-
person games. The principal objectives of the tournament, named after the original Turing Test, are (1) to
find learning algorithms (emulators) that most closely simulate human behavior, (2) to find algorithms (de-
tectors) that most accurately distinguish between humans and machines, and (3) to provide a demonstration
of how to implement this methodology for evaluating models of human behavior. In order to test our con-
cept, we developed the software and implemented a number of learning models well known in the literature
and developed a few detectors. This initial implementation found significant differences in data generated
by these learning models and humans, with the greatest ones in coordination games. Finally, we investigate
the stability of our result with respect to different evaluation approaches.
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1. Introduction

Studying the dynamic of human learning and adaptation is an area of social science that
has generated a lot of research interest. There are many models attempting to explain how
individuals learn in various game theoretic settings. We can begin with two of the classical
models—Fictitious Play and Cournot Best Reply (see Boylan and El-Gamal, 1993, for an ex-
perimental evaluation of these models). Crawford (1991, 1995) considers Evolutionary models.
Stahl (1996, 1999) explores boundedly rational rules. Roth and Erev (1995, 1998, 1999) and oth-
ers use a Reinforcement Learning model to explain learning in repeated stage games. Camerer
and Ho (1999a, 1999b) develop the Experience Weighted Attraction (EWA) models. All of the
above models have been evaluated by using standard econometric methods (maximum likelihood
or grid search) to fit the models to experimental data. Using these methods, one can get estimates
of the parameters of the models, test various hypotheses about these parameters and compare
models to each other.

Arifovic and McKelvey (2002) describe a methodology for evaluating models of human be-
havior in social sciences based on the idea of the Turing test (Turing, 1950).1 They propose
a two sided tournament, called a Turing Tournament, which would solicit machine algorithms,
called emulators, that mimic human behavior and machine algorithms, they call detectors, that
are designed to distinguish between human behavior and that generated by the emulators.

In the tournament, the emulators generate data sets with information on actions of computer
agents in a given environment. The human behavior is represented by data sets generated in the
experiments with human subjects in the same environment. The detectors are then presented with
all the data sets, both those generated by emulators and by experiments with human subjects, and
try to distinguish between machine and human data sets. They do so by assigning a probability
that a given data set is human rather than machine generated. Each detector gets a score based
on how close its decisions are to the true state. The detector that obtains the highest score is a
winner of the tournament. The winning emulator is a machine algorithm to which the winning
detector assigns the highest probability of being human.

The tournament is designed along the lines of the original Turing test. Both tests try to an-
swer the question “Man or machine?” However, the major difference in Arifovic and McKelvey’s
modification is in the evaluation stage. Researchers in the field of experimental economics and
(or) behavioral economics who deal both with human and machine generated data would proba-
bly acknowledge that they can often tell the difference between human and machine data when
they see the data charts. The way to implement this knowledge, and the real challenge of the
tournament, is to develop good performing detectors. That is why in the tournament’s design,
instead of humans trying directly to assess whether some output is generated by the machine or
human, this role is assigned to detectors.

Arifovic and McKelvey suggest a number of environments where the implementation of the
Turing tournament could be interesting. In this paper we describe an implementation of the Tu-
ring tournament to a class of repeated games with full information. Since this is a new concept

1 In a famous paper in 1950, Turing (1950) addressed the question of determining when machines can “think.” His
proposal was to replace this question with the more manageable question of when a machine can mimic human behavior.
Turing’s answer was the so-called Turing Test: a machine is sufficiently human when a third party can not distinguish
between the behavior of the machine and a human. In Turing’s version, the third party is a human interrogator who is
allowed to ask whatever questions he or she wants to both the machine and a human. Both the machines and humans
have their answers put on tape for the interrogator to read.
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of evaluation of models’ performance, we first test our design of the tournament. In this paper,
we report the initial results that we have obtained.

We submitted to the tournament the source code for the programs of several emulators (a num-
ber of well-known learning algorithms that have been extensively studied in the literature). We
also submitted the source code for several relatively simple detectors. These detectors compute
various measures using presented data sets, such as closeness to Nash equilibrium, closeness
to payoff dominant outcome, changes in players’ payoffs over time etc. Based on the values of
these measures, detectors assign a probability that a particular data set is human. For this initial
tournament, we used experimental data collected by McKelvey and Palfrey (2002) under vari-
ous information and matching conditions. For our purposes, we used the data generated in full
information, fixed matching treatment. We choose a fixed matching protocol in order to move
the research agenda a step further, towards development of the algorithms that behave well in
the repeated game theoretic framework. The development of the new algorithms better suited for
repeated games has taken place simultaneously with the initial implementation described in this
paper. Camerer et al. (2002) introduced Sophisticated EWA model. McKelvey and Palfrey (2002)
developed strategic learning models for repeated games and introduced Strategic EWA learning.
Hanaki et al. (2005) developed algorithm for learning in repeated games that was directly moti-
vated by results of this implementation of the Tournament.

The games we consider are: Ochs Game, Stag Hunt, Ultimatum Game, Centipede Game, Pris-
oner’s Dilemma, Battle of Sexes and the Game of Chicken. We then generated machine data sets
for the above games using the programs developed for various emulators. The main emulators
that we implemented include Fictitious Play, Cournot Best Reply, Adjusted Reinforcement, and
Experience Weighted Attraction Learning. We also had several variants of mixed models where
players were using different emulators to make their decisions. Our initial simulations (for spe-
cific parameter values of learning algorithms) show that there are often significant differences
between human and machine generated data. These results serve as further motivation to con-
duct the Tournament and invite submissions of sophisticated emulators and detectors.

When very accurate detectors are established through the Tournament, evaluation of the learn-
ing models would not require presence of human data under identical conditions as in statistical
evaluation. The performance of the models can be studied under various conditions prior to col-
lecting human data and, in fact, used in developing new experimental designs. In addition, since
many detectors use a particular logic in their decision (for example, the ability to coordinate),
results from a particular detector would allow evaluation of specific features of the model.

We would like to emphasize that this implementation of emulators and detectors was for
primarily for testing purposes. While we tried to implement a number of well-known learning
algorithms, we used the parameter sets reported in the literature, but did not try to get the optimal
sets for each of the games. In addition, our detectors represent just an initial attempt to tackle
the problem of developing those types of algorithms. The objective of the paper is to present
the methodology that can be used to test the models of human behavior in a setup of repeated
2-person games. The results that we present here are obtained based on a single run of the tour-
nament. In the subsequent stages, the tournament will run iteratively until, in statistical terms,
significant detector and emulator are identified.

We give a description of the Turing tournament design as we apply it to repeated games’
environments in Section 2. A description of an initial implementation of the Tournament is given
in Section 3. We report the results of the tournament and some comparison between human and
machine generated data in Section 4. Concluding remarks are given in Section 5.
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2. Details of the Turing tournament

In this section, we describe an implementation of the Turing tournament methodology to
repeated normal form games. We have two categories of entries, both of which are computer
programs. Emulators are computer programs that simulate human players’ behavior in a class of
repeated games. Detectors are programs that assign probabilities of whether a given data set that
they encounter is machine or human generated.

2.1. Definitions

Define a two person normal form game to be a file containing an S1 × S2 × 2 array of real
numbers umlp (m = 1, . . . , S1; l = 1, . . . , S2; p = 1,2). This represents the stage game in an
N round repeated 2-person game, where player p has Sp strategies, and umlp is the payoff to
player p if player 1 adopts strategy m and 2 adopts l.

Define a data set to be a file containing a Q × N matrix of integers. This represents the result
of running an N round repeated game experiment with Q subjects, matched in pairs (1 matched
with 2, 3 with 4, etc.). The (q,n)th entry in the data set is the strategy choice of player q in
round n.

2.2. Valid entries

An emulator is a computer program that takes as input a normal form game, and generates as
output a data set.

A detector is a computer program that takes as input a normal form game, together with a set
of D data sets, and gives as output a vector r of length D, r = (r1,, . . . , rd , . . . , rD), where each
component rd is between 0 and 1 and represents the probability that the detector assigns to a data
set d ∈ {1,D} being human.

2.3. Stages of the tournament

Stage 1. After all entries have been submitted, a set of J normal form games is selected.
For each normal form game, H data sets are generated based on human play (by running H

experiments with human subjects).

Stage 2a. For each normal form game, each of the submitted emulators generates one data set.
If there are E emulators, this gives a total of D = H + E data sets.

Stage 2b: For each selected normal form game, each detector k is run with input consisting of
the normal form game j , and the set of D data sets, one at the time. In other words, a detector
works with a single data set, assesses probability and is then presented with another data set.2

This yields an output vector rkj of length D for each detector k and normal form game j . For
1 � j � J define z

kj
d to be r

kj
d if the dth data set is human, and 1 − r

kj
d otherwise. The score for

detector k is

vk = 1

DJ

∑
d,j

log
(
z
kj
d

)
.

2 It does not work with a combination of data sets.
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The score of emulator e (which generates one of D data sets for each game) against detector k

is

ve
k = 1

J

∑
j

log
(
z
kj
e

)
.

Stage 3. We repeat Stage 2 (a and b) T times,3 obtaining average scores for each detector, vk ,
and emulator, ve

k :

vk = 1

T

∑
t

vkt ,

where vkt is the value of vk obtained on the t th trial, and

ve
k = 1

T

∑
t

ve
kt ,

where ve
kt is the value of ve

k on the t th trial. The value of T depends on the results reported at each
iteration t of the tournament. We stop the tournament at the iteration T when the best detector
and the best emulator are significantly different (at 95% confidence level) from the second placed
detector and the second placed emulator.

Stage 4. The detector k∗ with the highest score vk is declared to be the winning detector. The
winning emulator is defined to be the emulator e∗ that minimizes ve

k∗ .4

We chose the logarithmic scoring rule described above because it is a strictly proper scoring
rule, i.e. one in which a forecaster maximizes (optimizes) by forecasting/revealing exactly his or
her true beliefs about the situation.5 In addition, logarithmic scoring rule has increasing “punish-
ment” for marginal error, compared to scoring rules based on absolute deviations from the true
state. In the Tournament, if a detector makes a big error with one of the data sets, it received
a very large negative score (logarithm of almost zero) and therefore is unlikely to become the
winner. With scoring rules based on absolute deviations, a detector can perform poorly in one
case, but still receive a very high score by performing well with other data sets (for example other
types of games).

Prior to the beginning of the Tournament each entrant knows the details of the tournament as
described above, including scoring rules for detectors and emulators. Specifically, each entrant
knows that there will be a series of two person normal form games with given N and Q. Entrants
do not know how many human data sets, H (determined exogenously by the researcher), or
emulator generated data sets, E (determined endogenously based on submissions), there will be
in the Tournament. The complete instructions for submissions can be found in the Supplementary
Appendix.

3 In the initial implementation that is described in this paper, we ran the Tournament only once, i.e. T = 1.
4 In the unlikely event of a tie among two or more detectors, in terms of their expected scores, at 0.05 significance

level, the detectors will share the prize. Similarly, if there is a tie among two or more emulators in terms of their expected
scores against the winning detector, at 0.05 significance level, the prize will be shared among them. Detailed Tournament
instructions can be found as electronically available supplementary material.

5 For a thorough discussion and proofs of proper scoring rules we refer the reader to many articles in the literature like
Savage (1971), O’Carroll (1977), Winkler (1969) and others. There are also many examples of applications of proper
scoring rules in statistics, economics and meteorology, for example, Gneiting and Raftery (2004), Hanson (2002), Staël
von Holstein (1970) and others.
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2.4. Evaluation approaches

The purpose of the Tournament is to identify an emulator that most closely resembles human
behavior and find a detector that is most accurate in distinguishing humans from algorithms. We
next comment on different approaches for identifying the best detector and the best emulator
based on the scores they generate. While theorems in social choice theory argue that there is no
perfect aggregation rule, we find it instructive to report ranking of emulators and detectors using
a few different weighting rules.

2.4.1. Scoring of detectors
Our working scoring scheme, the baseline scoring scheme, described earlier is to assign each

detector an average score over all human and emulator entries (the emulator/human scores are in
turn averaged across games). The advantage of this approach is that no data on performance is
wasted. The disadvantage is that the score becomes sensitive to outliers. Given the logarithmic
score rule used, all scores have an upper bound of zero and a lower bound of minus infinity.6

Therefore when a detector makes one big error (e.g. assigns a probability 1 of being human to an
emulator), it is sufficient to significantly decrease the detector’s score even if it performed well
in other cases.

Depending on the objectives in selecting the best detector, the disadvantage described above
may serve as a rationale for another scoring scheme. Suppose that we are interested in the best
worst case detector, i.e. we adopt a minimax choice strategy. The best detector then is the one
that makes the minimum worst error across all data sets. In a way this scoring scheme ensures
against large deviations.

A third scoring scheme we consider to determine the best detector is based on a median game
performance. A median game rule finds the average score for each game for a detector and then
picks the median of the games’ average scores for a given detector to find its “median game
score.”7 This approach eliminates disadvantages of the first approach—sensitivity to outliers. It
also eliminates the effect of the particularly good score in situations when a detector performs ex-
ceptionally well in just one or two specific games. On the other hand, a drawback of this scoring
scheme is that most of data on performance is not utilized. Many other weighting schemes could
be applied. However, the above described when taken together should give a good characteriza-
tion of detectors’ performance as they allow us to identify sensitivity of detectors to outliers, as
well as their average and median game performance.

2.4.2. Scoring of emulators
Our working approach in evaluating the emulators in based on the scores they receive against

the best detector. The best emulator then is the one that the best detector assigns the highest prob-
ability of being human. An advantage of this scoring scheme is that the most accurate detector
is used. Note that since we know the true state of a data set (human or emulator generated), the
detectors are evaluated objectively based on the “true state of nature.” It therefore seems advan-
tageous to rank emulators based on the most accurate rule. However this scoring scheme may
have a disadvantage. If a detector uses a specific “logic” in deciding on the probability of being
human, then an emulator with a the same “logic” would be more likely to win.

6 In the computer implementation of our scoring rule, if z
kj
d

= 0, then we assign a large, in absolute terms, negative
constant as a score for a detector for a given data set.

7 In case of the even number of games the rule takes the average of two games.
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An alternative scoring scheme, unweighted mean, is to use all detectors equally, so that the
best emulator is the one that has the best average score across all detectors. However in this case
even “poor” detectors participate equally in assigning the winner, which biases the outcome.

An approach that decreases this problem, weighted mean, is weighting detectors according to
their performance. We implement weighting procedure in the following way. Suppose that each
detector k gets a score vk , where vmin is the score of the worst detector. Then each detector k is
assigned the following weight

wk = vk − vmin∑
k(vk − vmin)

.

The worst detector is assigned a weight of zero and all other detectors are assigned weights
proportional to their performance. Poor detectors still participate in the scoring, but their im-
pact is smaller than in the second scheme. Although the relation of this scoring scheme to our
working scheme is less trivial, there are cases when the working scheme is clearly superior to
this weighting. For example suppose that there are three categories of detectors. One detector
performs poorly and has a score vmin, the second category is a number of detectors C, each with
the score v2 (close to vmin) and the third category is one detector with the highest score v3. Then
emulator i is assigned a score

C(v2 − vmin)

C(v2 − vmin) + v3 − vmin
vi

2 + (v3 − vmin)

C(v2 − vmin) + v3 − vmin
vi

3.

For C > (v3 − vmin)/(v2 − vmin), greater weight is assigned to less accurate detectors which
decreases the accuracy of evaluation. Therefore, when the number of poor detectors is large, a
better evaluation method is to determine the winning emulator based on the best detector.

The fourth approach we study is the median game approach, which finds the mean score for
each game for an emulator and then picks the median of the game scores to determine the winner.
We provide empirical illustration of these evaluation approaches in Section 4 of the paper.

The design of the Tournament is such that evaluation of emulators relies on the detection
ability of detectors. Since detectors are evaluated objectively based on the “true state” (human or
machine) of all data sets, human data indirectly affects scores given to emulators. If all submitted
detectors are not accurate in distinguishing human and machine data, the scores of emulators
have little use for conclusions since emulators are evaluated against the best detector. To avoid
this situation we need to introduce a reference score that the best detector needs to exceed to be
the winner. In this implementation our reference is the score of a detector that assigns all data sets
probability 0.5 of being human. This detection is equivalent to “I do not know” conclusion and we
call this detector “Random.” If the best submitted detector receives a higher than this threshold
score, its detection ability is reasonably accurate and therefore emulators’ scores against the best
detector are insightful.

3. A preliminary version and test

We report the results of the initial implementation of the Turing Tournament conducted at
the California Institute of Technology. During the initial phase, we set up a tournament using
experimental data collected by McKelvey and Palfrey (2002) on repeated two-person games.
Eight two-person games were used. Table 1 gives a listing of the games, and Table 2 provides a
listing of the set of all Nash Equilibria for each game.
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Table 1
List of stage games used in the first phase test

Game 1
Ochs Game

L R

U 21 3 3 5
D 3 5 5 3

Game 2
2 × 2 Stag Hunt

L R

U 3 3 3 1
D 1 3 6 6

Game 3
3 × 3 Stag Hunt

L M R

U 3 3 3 2 3 1
M 2 3 4 4 4 3
D 1 3 3 4 5 5

Game 4
2 × 2 Ultimatum

L M R

U 3 3 3 3 3 3
M 4 2 4 2 0 0
D 5 1 0 0 0 0

Game 5
3 × 3 Centipede

L M R

U 4 1 4 1 4 1
M 2 8 16 4 16 4
D 2 8 8 32 64 16

Game 6
Prisoner’s Dilemma

L R

U 8 8 1 9
D 8 8 1 9

Game 7
Battle of Sexes

L R

U 18 6 3 3
D 3 3 6 18

Game 8
Chicken

L R

U 5 5 2 6
D 6 2 1 1

We used only the experiments corresponding to full information repeated games. This con-
sisted of two experiments with Pasadena City College (PCC1 and PCC2) subjects and one
experiment with California Institute of Technology (CIT) subjects. There were 16 subjects in
each experiment (except one with 14 subjects). Each experiment consisted of eight sessions, in
each of which subjects were matched in pairs and played one of the eight games above for 50
rounds with the same player (subjects made moves simultaneously). At the beginning of the ses-
sion, subjects were told the game matrix. After each round, subjects were told the choice of the
subject they were matched with, and the payoffs received by each subject. In each new session,
a different game was used, and subjects were re-matched using a zipper design, i.e. each subject
played with the same partner only once (except in the experiment with 14 subjects, in which it
was necessary to rematch once the players that had already played in one of the sessions.)

3.1. Emulators

We started the evaluation of the existing learning models by implementing the following algo-
rithms as emulators: Random, Cournot, Fictitious Play, Adjusted Reinforcement (Roth and Erev,
1998, 1999) EWA (Camerer and Ho, 1999a, 1999b). We also created a number of emulators
consisting of mixed models where different players made decisions according to different learn-
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Table 2
Nash equilibria of the games

Game Nash equilibria Payoffs

Row Column Row Column

1 Ochs ( 1
2 , 1

2 ) ( 1
10 , 9

10 ) 24
5 4

2 2 × 2 Stag Hunt (1,0) (1,0) 3 3
(0,1) (0,1) 6 6

( 6
10 , 4

10 ) ( 6
10 , 4

10 ) 3 3

3 3 × 3 Stag Hunt (1,0,0) (1,0,0) 3 3
(0,1,0) (0,1,0) 4 4
(0,0,1) (0,0,1) 5 5

( 1
2 , 1

2 ,0) ( 1
2 , 1

2 ,0) 3 3

( 1
2 ,0, 1

2 ) ( 1
2 ,0, 1

2 ) 3 3

(0, 1
2 , 1

2 ) (0, 1
2 , 1

2 ) 4 4

4 3 × 3 Ultimatum (1,0,0) (q1, q2, q3)a 3 3
(0,1,0) (q1, q2, q3)b 4 2
(0,0,1) (1,0,0) 5 1

5 3 × 3 Centipede (1,0,0) (q1, q2, q3)c 4 1

6 Prisoner’s Dilemma (0,1) (0,1) 2 2

7 Battle of Sexes (1,0) (1,0) 18 6
(0,1) (0,1) 6 18

( 5
6 , 1

6 ) ( 1
6 , 5

6 ) 11
2

11
2

8 Chicken (1,0) (1,0) 2 6
(0,1) (0,1) 6 2

( 1
2 , 1

2 ) ( 1
2 , 1

2 ) 7
2

7
2

a (q1, q2, q3) ∈ Co[(0,0,1), ( 3
5 , 3

20 , 1
4 ), ( 3

5 ,0, 2
5 ), (0, 3

4 , 1
4 )].

b (q1, q2, q3) ∈ Co[(0,1,0), ( 4
5 , 1

5 ,0)].
c (q1, q2, q3) ∈ Co[(1,0,0), ( 6

7 , 1
7 ,0), ( 30

31 ,0, 1
31 ), ( 6

7 , 6
49 , 1

49 )].

ing models. We included two new algorithms in the Tournament, Alg1—a coordination based
algorithm written by Svetlana Pevnitskaya, and Alg2—a Quantal Response Equilibrium, QRE
(McKelvey and Palfrey, 1995) based algorithm written by Brian Rogers.

We would like to emphasize that (with the exception of Alg1 and Alg2 that were written while
we were developing the tournament software) the learning models that we implemented were not
specifically developed for repeated games with full information. Camerer et al. (2002) Sophisti-
cated EWA model as well as models by McKelvey and Palfrey (2002) and Hanaki et al. (2005)
would be excellent entrants to the Tournament since they allow for repeated games. However,
these models were not available at the time of this initial implementation.

The emulators were implemented as follows:

Random Play: Each choice available to the player is assigned the same probability. For n × n

game, the probability of choosing j is pj = 1
n

for any j . There is no updating.

Fictitious Play: Players choose a best response to the historical average of past play of their
opponents. The first round choice is random.
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Cournot Best Reply: A player chooses best response to the previous move of the other player.
The first round choice is random.

Adjusted Reinforcement: Players adopt mixed strategies so that the probability that player i will
play strategy j at time t is

pi
j (t) = qi

j (t)∑
j qi

j (t)
,

where qi
j (t) is the attraction of strategy j to player i at time t . The updating rule for attractions

is

qi
j (t + 1) = (1 − ϕ)qi

j (t) + Ek(j, x − xmin),

where ϕ is the “forgetting” (or recency) parameter, x is received payoff, xmin is the smallest
possible payoff and

Ek(j, x − xmin) =
{

(x − xmin)(1 − ε) if j = k,

(x − xmin)ε
1

m−1 otherwise

is a function which determines how the experience of playing strategy k and receiving reward
x − xmin is generalized to update each strategy j . Here m is the number of pure strategies.

We defined initial attraction of strategy j , qj (1), to be the expected value of playing j assum-
ing that the other player chooses randomly. In the pure Adjustment Reinforcement algorithm, we
used ϕ = 0.1 and ε = 0.1. These values are based on Roth and Erev’s (1998) results where they
estimated ϕ = 0.1 and ε = 0.2 and the acceptable range of parameter values as 0 < ϕ < 0.2 and
0.02 < ε < 0.3.8

Experience Weighted Attraction: There are two main variables that are updated after each round
of experience: N(t)—the number of observation-equivalents of past experience; and A

j
i (t)—

player i’s attraction of strategy s
j
i after period t has taken place, N(t) and A

j
i (t) begin with

some prior values, N(0) and A
j
i (0). These prior values can be thought of as reflecting pre-game

experience. The experience weight starts at N(0) and is updated according to

N(t) = ρN(t − 1) + 1, for t � 1

where ρ is a depreciation rate or retrospective discount factor. The attraction of a strategy j for
player i at time t is updated according to

A
j
i (t) = {

φN(t − 1)A
j
i (t − 1) + [

δ + (1 − δ)I
(
s
j
i , si(t)

)]
πi

(
s
j
i , s−i (t)

)}/
N(t).

The factor φ is a discount factor or decay rate, which depreciates previous attraction and
πi(s

j
i , s−i (t)) is a payoff to player i of choosing j , given the choice of other player(opponent) at

time t . Finally, I (s
j
i , si(t)) is an indicator function that equals 1 when s

j
i = si(t) and 0 otherwise.

The probabilities are updated using the logistic form

p
j
i (t + 1) = exp

[
λA

j
i (t)

]/∑
k

exp
[
λAk

i (t)
]
.

8 The values of the parameters were not estimated for our class of games. Some data generated by this implemen-
tation of the Adjusted Reinforcement Learning model might not reflect the performance of the model with optimized
parameters.
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Besides the payoff matrix, the inputs of this emulator are: N(0), Aj(0), ρ, φ, δ, and λ. The
initial attractions Aj(0) are determined in the same way as in the Adjusted Reinforcement model.
For the “pure” version of the emulator we used N(0) = 10, ρ = 0.95, φ = 0.99, δ = 0.2, λ =
0.35. In mixed models we also used the following values of the parameters: ρ = 0.95, φ = 1,
δ = 0.6, λ = 0.2, N(0) = 15 and ρ = 0.94, φ = 1, δ = 0.4, λ = 0.4, N(0) = 16. These values
are based on Camerer and Ho (1999b) estimation results where they obtain for different games
ρ = {0.961,0.946,0.935,0.926}, φ = {1.040,1.005,0.986,0.991}, δ = {0,0.73,0.413,0.547},
λ = {0.508,0.182,0.646,0.218}, N(0) = {19.63, 18.391, 15.276, 9.937}.9
Alg1: 10The players first “identify” a game, analyzing the payoffs of the opponent as well as
their own. The main objective is to look for coordination games, and symmetric, Pareto superior
payoffs. Then players try to coordinate. If the opponent deviates, the player uses “punishment”
to try to enforce coordination.

Alg2: 11This algorithm works in the following way. If there is a unique Nash equilibrium in
mixed strategies, then play according to the Quantal Response Equilibrium (QRE).12 Otherwise,
if maximum payoffs for both players are in the same cell, they play this with probability, γ which
is chosen randomly, from the uniform distribution, in the interval [0.8,0.99].

We also implemented a number of emulators consisting of mixed models—i.e., emula-
tors where different players played according to decisions rules specified by different learn-
ing models. It is worthwhile pointing out that in the design of the Tournament, there is
no restriction on the parameter values that emulators are allowed to use for any particu-
lar setup. In other words, once they are presented with the game payoff matrix, emula-
tors are allowed to set (and change) the parameter values of the algorithms they are us-
ing.

We generated the emulators’ data sets in the following way. For each emulator, we gen-
erated 16 robots (this corresponds to the number of human subjects who participated in
the experiments) who used a particular emulator to play the game. The matching of robots
who played a repeated game and their re-matching after each game was performed follow-
ing the experimental zipper design described above. After each round of a given repeated
game, robots received the same information as the human subjects did, i.e. what the strategy
choice of the robot they were matched with was. A separate data file was generated for each
game.

3.2. Detectors

Detectors reported in this section serve only as an initial attempt to identify the differences in
human and emulator behavior. We implemented the following six detectors:

9 Again as in the case of the Adjusted Reinforcement Learning, the values of the parameters were not estimated for
our class of games. Some data generated by this implementation of EWA model might not reflect the performance of the
model with optimized parameters.
10 Due to S. Pevnitskaya.
11 Due to B. Rogers.
12 Gambit program (http://www.hss.caltech.edu/gambit/Gambit.htm) is used to solve a for QRE. The QRE parameter λ

is chosen randomly, from the log-normal distribution, with the distribution parameters chosen such that the mode of the
distribution is equal to 2.

http://www.hss.caltech.edu/gambit/Gambit.htm
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Random (Zero Information): Each data set is equally likely to be human or machine—i.e., as-
signed a probability 0.5.

Dates: Data sets are split in two groups according to the time-stamp they have. The smaller
groups are assigned to be human with high probability.13

Fast Convergence: This detector assumes that humans converge to a particular play faster that
emulators. It assigns a probability of ρ = 0.7 that a data set is human if both players choose the
same move more than 90% of the time. Otherwise, it assigns a probability of ρ = 0.3.

Payoff Change: This detector looks for payoff differences between the beginning and end of
playing the game: humans are more likely to have greater difference in payoffs in the beginning
and end of the game than machines. We find the average of pair i’s payoffs in the first and last 12
rounds and compute the difference di . Then compute average of di over all pairs for data set k,
Dk . The ranking of Dk’s is mapped into probability interval of being a human.

High Payoffs: This detector exploits the difference between human and machine generated data
in terms of the average payoffs earned during a given game. Humans are more likely to get
higher payoffs. The detector finds average subject’s payoff for each data set and ranks them. This
ranking is mapped into the probability interval.

Coordination Detector:14 This test identifies a coordination game and counts the number of
alternations between optimal cells, Count. If the total possible number of alternations is J , then
the probability that a data set is human is 1 − |Count−εJ |

J
.15

4. Results

In this section we first present the comparison between the human and emulator generated
behavior. We then report the results of the Initial Turing Tournament.

4.1. Overview of human and emulator behavior

Figures 1–8 compare the human to the machine data for four of the emulators: Cournot Best
Reply, Fictitious Play, Adjusted Reinforcement, and EWA. Polygons in these figures represent
the possible per stage average payoff space. The row player’s payoffs are on the horizontal axis,
and the column player’s payoffs are on the vertical axis. Each data point represents the average
payoff over the course of the 50 rounds for a pair of subjects who are matched together. The red
dots represent the human data, and the black dots represent the emulator data. In each figure,
pink circles represent Nash equilibria of a stage game.

13 This detector was added just for the purpose of testing how our software worked. In the current version of the
Tournament, this detector would not be successfully implemented as all the data sets, machine and human, that detectors
look at have the same data stamp.
14 Due to S. Pevnitskaya.
15 This test appears to be accurate in distinguishing humans from machines in coordination games. In the initial Tour-
nament, each file contained data for all eight games and this test was the winner of the Tournament with the score of 16.5
out of 18. However it looked primarily at coordination game and ignored the rest of the data (since the detectors were not
required to assign a probability for each game). This result motivated us to change the structure of the Tournament such
that a detector has to assign probability to data from each game.
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The figures reveal that the Cournot Best Response and the Fictitious Play usually get to one of
the equilibria of a given game. This rarely coincides with the data points generated by humans.
At the same time, Adjusted Reinforcement and EWA have scattered data points that are not close
in many cases to the clusters of human data observations. They also rarely get close to the region
of the payoff space where equilibrium points are located. In order to investigate this further,
we introduce a statistical measure that we call a center estimate. This is the point, (x̄, ȳ) in the
payoff space which minimizes the sum of Euclidean distances to all data points for the emulator
or human data

min
x̄,ȳ

∑
i

√
(xi − x̄)2 + (yi − ȳ)2

where xi and yi are payoffs to the row and the column players (who are matched together in a
pair i) respectively and (x̄, ȳ) is the center estimate. The center estimate is shown as a yellow
dot in each polygon. It indicates the center of the cluster of observations generated for speci-
fied emulator or human data. Figures 1–8 illustrate that data generated by some emulators have
practically no deviation and are clustered around a single point, while observations generated by
other emulators are scattered over the whole polygon. We obtain the Euclidean standard devia-
tion for each data set and illustrate them on the graphs as circles, red for human data and black for
emulators around the center estimates. The radius of a circle is equal to the standard deviation.16

Numerical values of the center estimates and standard deviations are shown in Table 3.
We find that the center estimate clearly illustrates information about the emulators and the

human data. In the Ochs game (Fig. 1), Cournot Best Reply has the center estimate almost coin-
ciding with the center estimate of the human data, but human data standard deviation is greater.
Fictitious Play does a relatively good job, as its center estimate is close to the human data, and its
standard deviation (although the circles do not overlap) is greater, and thus closer to the standard
deviation of the human data. Adjusted Reinforcement does really well in this game. Its center es-
timate is close to the human data center estimate, and the standard deviation, although smaller, is
within the circle depicting human data dispersion. EWA’s center estimate is fairly far away from
the human data center estimate. It also generates a standard deviation greater than the human
data one, with some overlap.

In the 2×2 Stag Hunt game (Fig. 2), all of the emulators’ data points and their center estimates
are concentrated around a Pareto inferior equilibrium. The center estimate of human data is close
to the Pareto superior equilibrium. We obtain a very similar result in 3 × 3 Stag Hunt (Fig. 3)
which has 3 equilibria that can be Pareto ranked. It is clear that the center estimate for the human
data is very close to the Pareto optimal equilibrium, while the same estimates for all of the four
emulators are very close to the equilibrium with the lowest stage-game payoff.

In the 3 × 3 Ultimatum game (Fig. 4), Cournot Best Reply and Fictitious Play are far away,
with their center estimates, from the human data. However, Adjusted Reinforcement does a much
better job. Its center estimate is very close to the human data center estimate, and its circle is
within the boundaries of the human data circle. EWA does not do as well as Adjusted Rein-
forcement, but still does a pretty good job. Its center estimate is closer to the human data center
estimate than are the center estimates for Cournot Best Reply and Fictitious Play.

16 Note that, for a given game, the human data presented in each figure are the same. Also, in each figure, two center
estimates for both emulator and human data are presented with yellow dots. However, the circles that indicate deviations
are presented in black for emulators, and with red for human data. The larger the circle, the more dispersed the data
points are.
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Table 3
Center estimates coordinates and standard deviations

Game Data x̄ ȳ σx̄,ȳ

Ochs Cournot 3 3 3.08
Fictitious 3.46 4.51 3.48
AdjReinf 3.73 3.62 2.41
EWA 3.79 3.78 2.18
human data 4.93 4.94 2.41

2 × 2 Stag Cournot 9.88 9.88 8.57
Fictitious 10.20 4.45 2.62
AdjReinf 7.44 7.98 5.01
EWA 6.07 3.91 2.96
human data 10.86 10.73 4.91

3 × 3 Stag Cournot 1.98 2.14 0.71
Fictitious 5.80 1.59 1.84
AdjReinf 5.10 4.60 3.67
EWA 3.15 4.38 2.66
human data 7.51 7.65 3.32

3 × 3 Ultimatum Cournot 4.10 1.23 2.39
Fictitious 21.83 17.80 5.24
AdjReinf 16.80 14.52 7.92
EWA 8.49 31.44 2.80
human data 11.53 11.69 7.11

Centipede Cournot 4.96 1.04 0.59
Fictitious 2.91 2.65 1.83
AdjReinf 3.84 2.74 1.96
EWA 2.75 1.20 1.32
human data 2.46 2.81 0.74

Prisoner’s Dilemma Cournot 2.89 2.90 2.52
Fictitious 3.24 3.27 1.22
AdjReinf 3.15 3.13 1.73
EWA 3.16 3.20 1.40
human data 4.96 4.97 1.01

Battle of Sexes Cournot 3 3 2.91
Fictitious 3.53 3.58789 2.10
AdjReinf 3.34 3.9 2.17
EWA 3.31 3.30733 1.90
human data 5.79 5.80 1.1

Chicken Cournot 7.84 4 0.8
Fictitious 8.84 4.34 3.31
AdjReinf 13.05 3.88 2.68
EWA 7.47 4.15 2.98
human data 6.90 4.04 1.04

For 3 × 3 Centipede game (Fig. 5), the Fictitious Play and the Adjusted Reinforcement center
estimates are the closest to the human data. However, Fictitious Play’s standard deviation is
very small compared to humans, while Adjusted Reinforcement standard deviation indicates
dispersion of the data more in line with the human data. Cournot Best Reply’s data points are
all concentrated around the Nash equilibria, while EWA’s points are in a different corner of the
payoff polygon.
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(a) Cournot best replay (b) Fictitious play

(c) Adjusted reinforcement (d) EWA

Fig. 1. Ochs Game (each token gives the payoffs to a matched pair of subjects). Note: Must be viewed in color. Red =
Human, Black = Machine. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

In case of Prisoner’s Dilemma (Fig. 6), the center estimate for human data is close to the
cooperative outcome with a fairly large standard deviation. However, center estimates of all of
the emulators are far away from the human data one.

When it comes to Battle of Sexes game (Fig. 7), Cournot Best Reply has its center estimate
relatively close to the human data, but the standard deviation is a lot larger as some of its data
points are concentrated in pure strategy, stage game equilibria. The center estimates of the re-
maining three emulators are far away from the human data center estimate.

Finally, in case of the Game of Chicken (Fig. 8), the center estimates of all of the emulators
are far away from the human data center estimate.
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(a) Cournot best replay (b) Fictitious play

(c) Adjusted reinforcement (d) EWA

Fig. 2. 2 × 2 Stag Hunt (each token gives the payoffs to a matched pair of subjects). Note: Must be viewed in color. Red
= Human, Black = Machine. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Two features observed in the figures representing the Prisoner’s Dilemma and Battle of the
Sexes games are worth pointing out. First, in the Prisoner’s Dilemma game (Fig. 6), all the data
points generated by Cournot Best Response and Fictitious Play are close to the Nash equilibrium.
The data points generated by RL and EWA are scattered mostly in the lower left side of the
payoff polygon, not reaching either the Nash equilibrium or Pareto optimal cooperative outcome.
However, most of the data points that resulted from human interactions are concentrated close to
the cooperative outcome (although there is some noticeable dispersion).

Secondly, in the Battle of the Sexes Game (Fig. 7), none of the four presented emulators were
able to pick up the coordination that occurred in the human data. In the human data, subjects
would frequently achieve more than could be achieved by independent randomization by alter-
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(a) Cournot best replay (b) Fictitious play

(c) Adjusted reinforcement (d) EWA

Fig. 3. 3 × 3 Stag Hunt (each token gives the payoffs to a matched pair of subjects). Note: Must be viewed in color. Red
= Human, Black = Machine. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

nating back and forth between the pure strategy equilibria. Thus, on odd moves, they would go to
the equilibrium preferred by one of the players, and on even moves to the equilibrium preferred
by the other. At the same time, Cournot Best Responses and Fictitious Play generated points
very close to one of the pure strategy Nash equilibria, and RL and EWA generated data points
scattered around, without getting close to the point (5,5) of the polygon’s payoff space.

Next, in Tables 4–11 we report mean values and standard deviations of the payoffs of row
and column players as well as the total average payoff per each of the eight games for the above
discussed emulators (plus Alg1 and Alg2). A number of observations regarding game specific
results are worth pointing out.
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(a) Cournot best replay (b) Fictitious play

(c) Adjusted reinforcement (d) EWA

Fig. 4. 3 × 3 Ultimatum (each token gives the payoffs to a matched pair of subjects). Note: Must be viewed in color. Red
= Human, Black = Machine. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

The data recorded in the 2 × 2 Stag Hunt game show that there is not much difference in
terms of average payoffs of row and column players in the observations generated by humans
and the observations generated by our emulators. Relatively high payoffs reflect the fact that
both humans and emulators frequently played the payoff dominant equilibrium.

However, in the 3 × 3 Stag Hunt, humans get payoffs significantly higher than most of the
emulators. The difference is that humans continue to frequently play the payoff dominant Nash
equilibrium while the emulators frequently choose the equilibrium with the lowest payoffs for
both players. The exceptions are emulators Alg1 and Alg2. Alg1 achieved a highest possible
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(a) Cournot best replay (b) Fictitious play

(c) Adjusted reinforcement (d) EWA

Fig. 5. 3 × 3 Centipede (each token gives the payoffs to a matched pair of subjects). Note: Must be viewed in color. Red
= Human, Black = Machine. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

average payoff for both column and row players (5,5). This means that Alg1 players always
played the payoff dominant equilibrium.

In the Centipede game, Alg1 again gets the higher payoff than human subjects or any other
emulator by alternating between two cells with the highest payoff for each player.

Finally, in the Prisoner’s Dilemma game, human data reveals on average higher payoffs for
both row and column players than the emulator generated data. The exception is Alg1 which
has a higher average payoff for each player as well as a higher total average score than any of
the human data sets. This score reveals cooperation outcome for each round of the games, as
the standard deviation for both the row and the column player is 0. This is a higher level of
cooperation than any of the ones exhibited by human data. The CIT data set does have values
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(a) Cournot best replay (b) Fictitious play

(c) Adjusted reinforcement (d) EWA

Fig. 6. Prisoner’s Dilemma (each token gives the payoffs to a matched pair of subjects). Note: Must be viewed in color.
Red = Human, Black = Machine. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

close to the cooperative outcome, 7.46 (1.27 standard deviation) for row player and 7.60 (0.79
standard deviation) for the column player.

In the 3×3 Ultimatum game, human row players get lower payoffs than machine row players,
while the reverse is true of the column players. Human subjects tend to divide the pie more evenly
than the emulators.

4.2. Results of the initial tournament

The overview of the human and emulator behavior provides insight to the scores of individ-
ual emulators and detectors that we obtained in the initial implementation of the Tournament.
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(a) Cournot best replay (b) Fictitious play

(c) Adjusted reinforcement (d) EWA

Fig. 7. Battle of the Sexes (each token gives the payoffs to a matched pair of subjects). Note: Must be viewed in color.
Red = Human, Black = Machine. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 12 gives the results of a run of the tournament. The first column lists the detectors that
were implemented and the second column gives their overall scores against all of the data sets
(using baseline scoring scheme). The following three columns give the scores of the detectors for
each of the human data sets, followed by columns presenting the scores of the detectors against
each of the emulators that were implemented. In this run of the tournament, the Coordination
detector won with the lowest negative score of −0.684 and the emulator that had the best score
against this detector is Alg1. The detector that comes in the second place is the Random detec-
tor. Tables 13 and 14 show, respectively, how the detectors performed across the games, and how
they performed on each data set for the Battle of the Sexes game.



114 J. Arifovic et al. / Games and Economic Behavior 57 (2006) 93–122
(a) Cournot best replay (b) Fictitious play

(c) Adjusted reinforcement (d) EWA

Fig. 8. Chicken (each token gives the payoffs to a matched pair of subjects). Note: Must be viewed in color. Red =
Human, Black = Machine. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 13 reveals that the Coordination detector gets the highest score, −0.28, in the data
related to the Battle of the Sexes (Coordination) game. This detector was mainly designed to
detect coordination in the Battle of Sexes game that occurs in the human data where subjects
alternated between the two Nash equilibria. Looking back at Table 12, we see that Alg1, again
designed to emulate this type of coordination has the best score against the winning detector.
This is largely due to its good performance in the Battle of the Sexes game where it was hard for
the coordination detector to detect that it was facing machine generated data.

Another notable observation is that the High payoff detector gets the best score in the Chicken
game and the worst in the Ultimatum game. This means that human subjects are able to realize
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Table 4
Ochs Game

Data Set n Row Column Total
payoffMean Std. Dev. Mean Std. Dev.

CIT 16 8.85 5.06 3.88 0.37 12.72
PCC1 14 6.51 1.41 3.96 0.18 10.47
PCC2 16 8.08 0.83 4.01 0.19 12.08

Random 14 8.14 0.84 4.02 0.15 12.16
Cournot 16 7.96 0.15 4.00 0.00 11.96
Fictitious 16 4.53 0.13 4.39 0.13 8.92
AdjReinf 14 6.76 1.21 4.26 0.16 11.02
EWA 16 8.49 3.27 4.36 0.34 12.84
Alg1 16 12.00 0.00 4.00 0.00 16.00
Alg2 12 4.87 0.80 4.31 0.11 9.17

Table 5
2 × 2 Stag Hunt

Data Set n Row Column Total
payoffMean Std. Dev. Mean Std. Dev.

CIT 16 5.95 0.10 5.94 0.12 11.88
PCC1 14 5.12 1.08 5.07 1.19 10.19
PCC2 16 4.75 1.17 4.94 1.10 9.68

Random 14 3.24 0.35 3.13 0.25 6.37
Cournot 16 4.63 1.80 4.63 1.80 9.25
Fictitious 16 5.59 0.98 5.59 0.98 11.17
AdjReinf 14 4.04 0.84 4.01 0.85 8.05
EWA 16 4.00 0.73 4.03 0.58 8.03
Alg1 16 6.00 0.00 6.00 0.00 12.00
Alg2 16 5.23 0.17 5.24 0.20 10.47

Table 6
3 × 3 Stag Hunt

Data Set n Row Column Total
payoffMean Std. Dev. Mean Std. Dev.

CIT 16 4.98 0.03 4.98 0.03 9.96
PCC1 14 4.07 0.79 4.03 0.87 8.10
PCC2 16 4.64 0.43 4.64 0.63 9.28

Random 14 3.01 0.19 3.08 0.20 6.09
Cournot 16 2.69 0.83 2.69 0.83 5.38
Fictitious 16 3.23 0.45 3.23 0.45 6.46
AdjReinf 14 3.37 0.50 3.49 0.34 6.86
EWA 16 3.23 0.29 3.26 0.16 6.49
Alg1 16 5.00 0.00 5.00 0.00 10.00
Alg2 16 4.57 0.09 4.58 0.12 9.15
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Table 7
3 × 3 Ultimatum

Data Set n Row Column Total
payoffMean Std. Dev. Mean Std. Dev.

CIT 16 2.28 1.02 1.88 0.84 4.16
PCC1 14 2.63 0.69 2.27 0.72 4.90
PCC2 16 2.55 0.43 2.12 0.75 4.67

Random 14 2.62 0.29 1.61 0.20 4.23
Cournot 16 4.96 0.03 1.04 0.03 6.00
Fictitious 16 4.92 0.05 1.08 0.05 6.00
AdjReinf 14 3.33 0.35 1.93 0.25 5.26
EWA 16 2.73 0.28 1.80 0.18 4.53
Alg1 16 4.00 0.00 2.00 0.00 6.00
Alg2 16 2.80 0.28 1.79 0.18 4.59

Table 8
3 × 3 Centipede

Data Set n Row Column Total
payoffMean Std. Dev. Mean Std. Dev.

CIT 16 19.63 9.73 17.06 5.38 36.69
PCC1 14 13.04 9.79 9.73 7.54 22.77
PCC2 16 10.75 4.73 12.38 4.68 23.13

Random 14 12.31 3.33 8.54 1.11 20.86
Cournot 16 4.01 0.11 1.21 0.09 5.21
Fictitious 16 6.54 4.61 4.49 2.84 11.03
AdjReinf 14 17.20 9.71 18.96 6.00 36.16
EWA 16 8.22 0.36 31.68 0.38 39.90
Alg1 16 36.00 0.00 24.00 0.00 60.00
Alg2 16 19.48 3.54 16.14 1.81 35.61

Table 9
Prisoners Dilemma

Data Set n Row Column Total
payoffMean Std. Dev. Mean Std. Dev.

CIT 16 7.46 1.27 7.60 0.79 15.05
PCC1 14 5.17 2.21 5.60 2.08 10.77
PCC2 16 6.03 1.97 6.17 2.05 12.20

Random 14 4.88 0.74 5.29 0.59 10.17
Cournot 16 2.05 0.06 2.01 0.04 4.06
Fictitious 16 2.05 0.06 2.01 0.04 4.06
AdjReinf 14 4.22 1.23 4.45 1.78 8.66
EWA 16 3.97 1.49 4.03 1.25 8.01
Alg1 16 8.00 0.00 8.00 0.00 16.00
Alg2 16 5.53 0.64 5.39 0.64 10.92
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Table 10
Battle of the Sexes

Data Set n Row Column Total
payoffMean Std. Dev. Mean Std. Dev.

CIT 16 11.28 0.64 10.38 2.31 21.66
PCC1 14 7.91 2.91 9.66 2.49 17.57
PCC2 16 9.71 2.93 8.66 3.17 18.38

Random 14 7.59 0.71 7.25 0.99 14.85
Cournot 16 6.75 4.44 12.75 6.83 19.50
Fictitious 16 10.05 5.25 13.41 5.93 17.21
AdjReinf 14 8.16 3.43 9.05 3.88 23.46
EWA 16 4.82 0.95 5.60 2.34 10.41
Alg1 16 12.00 0.00 12.00 0.00 24.00
Alg2 16 7.24 0.97 7.09 1.10 14.33

Table 11
Chicken

Data Set n Row Column Total
payoffMean Std. Dev. Mean Std. Dev.

CIT 16 4.70 0.69 4.69 0.75 9.40
PCC1 14 4.49 0.59 4.46 0.61 8.95
PCC2 16 4.27 0.82 4.07 1.16 8.34

Random 14 3.46 0.43 3.67 0.30 7.13
Cournot 16 3.75 1.30 2.75 0.43 6.50
Fictitious 16 3.75 1.30 2.75 0.43 6.50
AdjReinf 14 3.71 1.01 3.95 0.84 7.65
EWA 16 3.60 0.65 3.40 0.62 7.00
Alg1 16 5.49 0.05 3.52 0.18 9.02
Alg2 16 3.80 0.42 3.73 0.42 7.54

Table 12
The results of a run of the tournament (entries in cells are scores)

Detectors Score CIT PCC 1 PCC 2 Random Cournot Fictitious AdjReinf. EWA Alg1 Alg2

Random −.693 −0.69 −0.69 −0.69 −0.69 −0.69 −0.69 −0.69 −0.69 −0.69 −0.69
Dates −.969 −0.57 −0.57 −0.57 −0.92 −0.92 −1.26 −1.09 −1.26 −0.92 −0.92
NE and PO −.830 −1.61 −1.44 −1.26 −1.61 −0.40 −0.22 −0.92 −0.92 −0.40 −1.09
Payoff change −.742 −1.15 −0.77 −0.46 −0.62 −0.02 −0.33 −0.67 −0.50 −0.02 −1.81
High payoffs −.908 −0.57 −0.85 −0.75 −0.31 −0.87 −1.44 −0.60 −0.36 −4.40 −0.81
Coordination −.684 −0.36 −0.37 −0.35 −0.50 −0.77 −0.77 −0.67 −0.56 −1.96 −1.10

Note: Scores do not add up because only 10 of 20 data sets are displayed.

that playing symmetric payoff cell (5,5) gives greater payoffs than alternating between Nash
equilibria. This behavior is hard to capture with the existing learning models. On the other hand,
in the Ultimatum game, humans do not receive as high payoffs as many emulators do. All human
data sets show significantly lower difference in the payoffs between column and row players (for
human data sets, the range is between 0.36 and 0.43 while for emulator data sets, the range is
between 0.93 and 3.92).
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Table 13
Detectors’ scores in games

Detectors Average Ochs Stag 2 Stag 3 Ult Cent PD Coord. Chicken

Random −0.693 −0.69 −0.69 −0.69 −0.69 −0.69 −0.69 −0.69 −0.69
Dates −0.969 −0.43 −1.40 −1.40 −0.50 −0.85 −0.36 −1.40 −1.40
Closeness to NE and PO −0.830 −0.85 −0.78 −0.92 −0.92 −0.78 −0.85 −0.78 −0.78
Payoff change −0.742 −1.07 −1.03 −0.63 −0.44 −0.71 −0.70 −0.65 −0.70
High payoffs −0.908 −0.86 −0.83 −0.56 −2.06 −0.91 −0.68 −1.13 −0.25
Coordination −0.683 −0.69 −1.45 −0.57 −0.69 −0.69 −0.39 −0.28 −0.69

Table 14
Turing test scores in Battle of the Sexes

Tests Score CIT PCC 1 PCC 2 Random Cournot Fictitious AdjReinf. EWA Alg1 Alg2

Dates −1.401 −0.22 −0.22 −0.22 −1.61 −1.61 −1.61 −1.61 −1.61 −1.61 −1.61
Random −0.693 −0.69 −0.69 −0.69 −0.69 −0.69 −0.69 −0.69 −0.69 −0.69 −0.69
Fast convergence −0.777 −1.61 −1.61 −1.61 −1.61 −0.22 −0.22 −0.22 −0.22 −1.61 −1.61
Payoff change −0.652 −0.32 −0.22 −0.32 −0.70 −0.01 −0.35 −0.22 −0.38 −0.01 −1.28
High payoffs −1.127 −0.11 −0.87 −0.81 −0.37 −1.62 −3.43 −0.52 −0.01 −4.61 −0.33
Coordination −0.279 −0.01 −0.06 −0.02 −0.21 −0.04 −0.04 −0.12 −0.06 −3.22 −0.78

4.3. Stability of results to different evaluation approaches

We next investigate the impact of the alternative ways of scoring the detectors and emulators.
Our baseline scoring is sensitive to outliers. Note however, that the actual tournament includes a
large number of iterations that should take care of this problem. We report below the scores and
the ranking of the detectors and emulators, using additional scoring rules as described earlier in
Section 2.4.

4.3.1. Detectors
Table 15 reports detectors’ scores for different scoring rules, the mean value (our baseline

average rule), the highest worst score obtained (minimax), and the median game score. The mean
column shows the tournament results according to our baseline rule that have been discussed in
the previous section. Table 16 reports the detectors’ ranking according to these different scoring
rules.

When we use the worst score rule, the Random detector comes in first. This is due to the
fact that each of the other 5 detectors had some of their scores lower than those generated by
the Random detector. The Random detector always assigns probability 0.5 and therefore always
makes a 0.5 deviation from the true state. That is why it always receives a score of −0.693.
However, every other detector may make a worse error by assigning a probability greater than
0.5 to the emulator generated data or lower than 0.5 to human data. Payoff Change, High Payoffs
and Coordination detectors made relatively large mistakes at least once.

Looking at the scores according to the median game scoring rule, Coordination detector and
Random detector have exactly the same score and are both assigned the same place, 2, in the
table. Coordination detector was mainly designed to detect coordination games and games with
Pareto dominant payoffs and distinguish between human and emulator data based on the level
of coordination observed in the players’ decisions. However, this detector does not include a
sophisticated response to games that do not contain a coordination element or Pareto dominant
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Table 15
Detector scores

Mean Minimax Median game

Random −0.693 −0.693 −0.693
Dates −0.968 −1.609 −1.124
Ninety % −0.830 −1.609 −0.812
Payoff change −0.742 −4.605 −0.670
High payoffs −0.908 −4.60 −0.843
Coordination −0.684 −3.219 −0.693

Table 16
Detector ranking

Mean Minimax Median game

Random 2 1 2
Dates 6 2 6
Ninety % 4 2 4
Payoff change 3 5 1
High payoffs 5 5 5
Coordination 1 4 2

outcome. Thus, when this detector is uncertain about the type of the game, it just assigns a prob-
ability 0.5 that the data file is human. This feature lowered the score of this detector, and resulted
in a median game score of −0.693, which is the score of the Random detector. The fact that its
median score is equal to the Random median score comes from the number of such unidenti-
fied games presented to Coordination detector in the Tournament. This can be seen in Table 13
that reports the scores that detectors received for each individual game. Coordination receives a
score of −0.69 (which is the score received for giving a probability of 0.5) for Ochs, Ultimatum,
Centipede, and Chicken games; the games that do not contain the coordination element that this
detector was designed for. We could have increased the score for this detector if, for example, we
combined it with the elements of the Payoff Change detector, which performed relatively well
in a median game. However, our efforts were primarily focused on developing the methodology
and the tournament itself, rather than designing the best detector.

Two alternative scoring schemes are based on specific single scores (minimum or median)
generated by the detectors. We find that detector that performs best using the baseline approach
still shows good performance based on the alternative scoring schemes. The baseline rule also has
advantages as described in Section 2.4.1 and illustrated empirically in this section. For example,
Random detector that always makes a fixed error comes best using minimax rule. Payoff Change
detector comes first using Median game scoring scheme, however performs worst based on the
Minimax scoring scheme, since it makes large mistakes in some data sets.

4.3.2. Emulators
In the Tournament design, we have scores of each emulator against each detector. The winning

emulator is chosen based on scores against the most accurate detector. In this section, we present
results of several other scoring schemes (as described in Section 2.4.2) and report the results in
Table 17.

We investigate the impact of four scoring schemes. The first is the Winning detector scor-
ing scheme used in the Tournament implementation. The reported scores are those that each
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Table 17
Emulators’ scores

Rand. Cournot Fict. Reinf. EWA Alg1 Alg2

Winning detector −0.50 −0.76 −0.76 −0.66 −0.56 −1.956 −1.100
Unweighted mean −0.77 −0.61 −0.79 −0.77 −0.72 −1.40 −1.070
Weighted mean −0.72 −0.51 −0.64 −0.75 −0.69 −0.79 −1.18
Median game −0.78 −0.56 −0.67 −0.76 −0.76 −1.28 −1.14

Table 18
Emulators’ ranking

Rand. Cournot Fict. Reinf. EWA Alg1 Alg2

Winning detector 7 3 3 5 6 1 2
Unweighted mean 4 7 3 5 6 1 2
Weighted mean 4 7 6 3 5 2 1
Median game 3 7 6 5 4 1 2

emulator obtained versus the winning detector. The second scoring scheme is the Unweighted
mean that uses scores generated by all detectors for all emulators and finds average by assigning
equal weight to all detectors. The emulator’s score is thus a simple average of its scores against
each one of the detectors. The third scoring scheme is the Weighted mean where the emulator’s
score is given as a weighted average of the scores against each of the detectors as described in
Section 2.4.2. The fourth is the median game scoring scheme in which each emulator’s median
game score against the detector is reported. Table 18 reports emulators’ ranking when the above
evaluation schemes are used.

The Random emulator that assigns the same probability to each choice available to the player
is ranked 7th according to our Baseline scoring scheme. However, it has a 3rd rank using the
Median game scoring scheme. Cournot’s performance is better with the Winning detector scoring
scheme (the Baseline) than any other. In fact, while it scores 3rd place with this method, it takes
low 6th or 7th place with other scoring schemes. The ranking of Fictitious is similar to that
of Cournot, i.e. relatively high ranking with the Winning detector scoring scheme, 3rd place
again, while 6th place with all the other schemes. Despite changes in ranks of some emulators as
described above, the performance of these emulators does not change significantly for different
scoring rules. All these emulators have scores relatively similar to each other and changes in
ranks are caused by small deviations. The scores of the winning emulators (Alg1 and Alg2) on
the other hand are consistently larger than the rest and are sometimes twice as large as the scores
of the rest of the emulators (for example Unweighted mean scores in Table 17).

The winning emulator based on the Winning detector scoring scheme, Alg1, comes consis-
tently first using all but one scoring scheme (where it comes second). Alg1 and Alg2 which were
designed for the repeated game setting using the features observed in the experimental data, take
first or second place when either one of the scoring schemes is used. The results of the Tour-
nament are robust to different scoring schemes. The above considerations and analysis that we
conducted provide support for the use of our baseline scoring approach in the Tournament.

5. Conclusion

We presented the design and an initial implementation of the Turing Tournament to learning
in two person repeated games. We developed a program that implements the tournament. In
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addition, we used a number of emulators (mainly, well known algorithms from the literature on
learning) and developed a few detectors in order to test how the tournament performs. These
emulators and detectors were then treated as submissions to the tournament. For human data, we
used the experimental results from McKelvey and Palfrey (2002) and created human data sets
that were then shuffled with data sets generated by emulators. Finally, our detectors evaluated
the data sets. We studied and illustrated results of different scoring schemes for determining the
winning emulator and detector. Based on theoretical considerations and empirical evidence of
stability of results, we find support for the baseline approach of the current design.

The analysis of our results shows that there are often significant differences between data sets
generated by humans and those generated by emulators, at least for the versions of the emulators
we implemented and parameter values that we used. Our results show that there is room for
improvement in developing new emulators or more appropriate and better implemented versions
of the existing emulators. In addition, the differences between human and machine behavior
demonstrate that there is room for development of good detectors, which is a new and complex
task. Once the best detector(s) has been objectively established in the Tournament, it can be
used to test performance of learning models prior to collecting human data. Future research
can address performance of detectors and emulators under different matching and information
conditions.
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