
Games and Economic Behavior 57 (2006) 347–360
www.elsevier.com/locate/geb

Behavioral conformity in games with many players

Myrna Wooders a,b,∗,1, Edward Cartwright c, Reinhard Selten d

a Vanderbilt University, Nashville, TN, 37235, USA
b University of Warwick, Coventry CV4 7AL, UK

c University of Kent, Department of Economics, Canterbury, Kent CT2 7NP, UK
d University of Bonn, Department of Economics, Adenauerallee 24-26, 53113 Bonn, Germany

Received 15 November 2002

Available online 27 January 2006

Abstract

In the literature of psychology and economics it is frequently observed that individuals tend to conform
in their behavior to that of similar individuals. A fundamental question is whether the outcome of such
conformity can be consistent with self-interest. We propose that this consistency requires the existence of a
Nash or approximate Nash equilibrium that induces a partition of the player set into relatively few societies,
each consisting of similar individuals playing similar strategies. In this paper we characterize a family of
games admitting the existence of such equilibrium. We also introduce the concept of ‘crowding types’ into
our description of players and distinguish between the crowding type of a player—those characteristics
of a player that have direct effects on others—and his tastes. With assumptions of ‘within crowding type
anonymity’ and ‘linearity of taste-types’ we show that the number of societies can be uniformly bounded.
© 2005 Elsevier Inc. All rights reserved.

1. Behavioral conformity

Individuals belonging to the same society typically have commonalities of language, social
and behavioral norms, and customs. A fundamental question is whether behavioral conformity
can be consistent with self-interested behavior. From the perspective of game theory, we propose
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that this consistency requires the existence of a Nash equilibrium or an approximate Nash equi-
librium that induces a partition of players into societies where all individuals within the same
society are similar and play the same or similar strategies and where most or all societies are
nontrivial in size. The Nash equilibrium captures a notion of self-interested behavior while the
existence of large societies facilitates conformity within societies. In this paper we introduce a
notion of a society consisting of similar individuals and describe a family of games where an
equilibrium with the desired properties exists. Two conformity results are established, one for
approximate Nash equilibrium and another, with stronger conditions on the model, for exact
equilibrium.

To address the question of whether conformity can be individually rational we introduce a
structure generating games with the property that, if there are many players, for most players
there are many similar players. It may seem intuitive that continuity properties, ensuring that
players who have similar attributes are similar, would lead to the existence of Nash equilibrium
where all players who are similar choose similar or the same strategies. In fact, in general this
is false. (See also Example 1.) To obtain behavioral conformity within societies, these must be
carefully defined; in particular, players on the ‘boundaries’ of a society need not conform to the
behavior of members of that society. Further, since it is difficult to motivate the use of mixed
strategies if players imitate or conform, we require that all players belonging to a society play
the same pure strategy.

To obtain our results, we make two assumptions. The first ensures that players with similar
attributes are indeed similar as players in induced games. The second ensures that the strategy
choices of individual players have near-negligible impacts on other players. Our main result can
be summarized:

Conformity. Given any ε > 0 there are integers η(ε) and A(ε) such that any game with at least
η(ε) players has a Nash ε-equilibrium in pure strategies that induces a partition of the population
into at most A(ε) societies.

Note that the bound on the number of societies A is independent of the size of the population.
Thus, if there are ‘many’ players then most societies must be large. Moreover, the smaller the
number of societies, the greater the possible difference between players in the same society and
the stronger the conformity. Generally, however, the bound A is not independent of ε. With an
additional assumption, we also demonstrate:

Uniform boundedness of the number of societies. With ‘linearity in taste types,’ the bound on
the number of societies A is independent of ε.

We proceed as follows: Section 2 introduces notation and definitions. In Section 3 we treat
conformity beginning with some simple examples before providing our two main results and a
discussion on normative influence. In Section 4 we conclude, and Appendix A contains remain-
ing proofs.

2. Notation and definitions

A game Γ is given by a triple (N,S, {ui}i∈N) consisting of a finite player set N , a finite set of
K pure strategies S = {s1, . . . , sK }, and a set of payoff functions {ui}i∈N . A pure strategy vector
for game Γ is given by m = (m1, . . . ,m|N |) where mi ∈ S denotes the pure strategy of player i.
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The set of pure strategy vectors is given by SN . We note that for each i ∈ N the payoff function
ui maps SN into the real line.

Let Ω be a compact metric space, called an attribute space, let S be a finite set of strategies,
and let W be the set of all mappings from Ω ×S into R+ with finite support, that is, w ∈ W takes
on nonzero values for at most a finite number of points in its domain.2 A member of W is called
a weight function. A non-cooperative pregame is a triple G = (Ω,S,h) consisting of an attribute
space Ω , a set of pure strategies S and a function h :Ω × S ×W → R+. As we formalize below,
the function h determines a payoff function for each player in any game induced by a pregame;
the payoff to a player depends on the attributes of that player, his strategy choice, and the weight
function induced by the strategy choices of the other players.

Take as given a pregame G = (Ω,S,h). Let N = {1, . . . , |N |} be a finite set and let α be a
mapping from N to Ω , called an attribute function. The pair (N,α) is a population. In interpret-
ation, N will be a set of players and α provides a description of the players in terms of their at-
tributes. A pure strategy vector for the population (N,α) is given by a vector m = (m1, . . . ,m|N |)
where mi ∈ S ascribes a pure strategy to i ∈ N .

Given a population (N,α) and a pure strategy vector m ∈ SN we say that weight function
wα,m ∈ W is relative to m if,

wα,m(ω, sk) = ∣∣{i ∈ N : α(i) = ω and mi = sk}
∣∣

for all sk ∈ S and all ω ∈ Ω . Thus, wα,m(ω, sk) denotes the number of players with attribute ω

who play strategy sk . An induced game Γ (N,α) can now be defined:

Γ (N,α) = (
N,S, {uα

i :SN −→ R+}i∈N

)

where

uα
i (m)

def= h(ω,mi,wα,m)

for all ω ∈ α(N) and m. We note that players who are ascribed the same attribute have the same
payoff function.

Other than finiteness of the strategy set, a pregame need not imply any assumptions on the
induced games. A pregame, however, provides a useful framework in which (a) to treat a family
of games all induced from a common strategic situation as given by the attribute space Ω and
pure strategy set S, and (b) to be able, relatively simply, to impose assumptions on that family of
games through the function h. We demonstrate this later point in Section 3.

We will assume throughout that players play pure strategies. We invoke, however, the standard
von Neumann–Morgenstern assumptions with regard to expected utility of (mixed) strategies.
The standard definition of a Nash equilibrium applies. Given ε � 0, a strategy vector m is a
Nash ε-equilibrium in pure strategies or, informally, an approximate Nash equilibrium in pure
strategies, only if

uα
i (mi,m−i ) � uα

i (sk,m−i ) − ε (1)

for all i ∈ N and sk ∈ S.

2 Where R+ denotes the non-negative real numbers.
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2.1. Societies

Throughout we assume, for convenience, a particular form of attribute space. Let C =
{1,2, . . . ,C} be a finite set of crowding types.3 We assume that Ω is given by C × [0,1]F for
some finite integer F � 1.4 We will typically denote an attribute by ω = (c, t) where c ∈ C and
t ∈ [0,1]F . We use the metric on Ω whereby the distance between two attributes ω = (c, t) and
ω′ = (c′, t ′) is 2 if c �= c′ and equals the maxf |tf − t ′f | otherwise. In interpretation, therefore, two
players i and j with the same crowding type are always seen as ‘more similar’ than two players
with different crowding types. The attribute space will be treated in more detail in Sections 3.3
and 3.4.

Given an attribute function α we define function τ :N → [0,1]F by τ(i) = t if and only if
α(i) = (c, t) for some c. Thus, τ is the projection of α onto [0,1]F . Given a set A we denote by
con(A) the convex hull of A and by int(A) the interior of A.

A society. Given population (N,α) and strategy vector m a set of players D ⊂ N is a society
(relative to α and m) if, for some crowding type c the following three conditions are satisfied:

(1) for all players i, j ∈ D, mi = mj (all players in D choose the same pure strategy),
(2) for every player i ∈ D, α(i) = (c, t) for some t (all players in D have crowding type c),
(3) for any player i ∈ N , if α(i) = (c, t) and t ∈ int(con(τ (D)) then i ∈ D.

We say that a pure strategy vector m induces a partition of the population (N,α) into a set of
societies S = {N1, . . . ,NQ} if each player i ∈ N belongs to a unique society Nq ∈ S and if each
society Nq ∈ S is relative to α and m. Note that if m induces a partition of the population (N,α)

into Q societies then there exists a partition of [0,1]F into Q convex subsets {Tq}Qq=1 such that,
for any two players i, j ∈ N and any Tq , if α(i) = (c, t), α(j) = (c, t ′) and τ(i), τ (j) ∈ int(Tq)

then mi = mj .
The definition of a society captures two key features. First, players in the same society play

the same strategy; this is clearly motivated by the observation that ‘social conformity’ may lead
to common behavior. Second, players in the same society have similar attributes; this is moti-
vated by the observation that a player may only conform to those with whom he identifies. The
second feature is captured by the requirement that all players in a society have the same crowd-
ing type and that all members of a society have attributes in the same convex subset of attribute
space. Note also that there may well be ‘marginal players’, individuals with taste attributes on
the boundary of a society who play the same or a different strategy than the society members.
Allowing such marginal players is essential for our conformity results,

We note that any strategy vector induces a partition of a population (N,α) into |N | societies
where each society consists of one player.5 A crucial aspect of our main results will thus be to
bound the number of societies independently of the size of the player set. In games with many

3 The term ‘crowding type’ is taken from Conley and Wooders (2001) and their earlier papers. Crowding types are
described further in the next section, where they play a significant role.

4 This appears more than general enough to cover many potential applications. Results for a more general form of
attribute space are obtained by Wooders et al. (2001).

5 That a society could have just one member is not unreasonable as this may represent a player who chooses not to
conform to the actions of similar players (Bernheim, 1994).
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players, this will ensure that some societies contain many players. We treat other implications of
the definition of a society after stating our main result in Section 3.3.

3. Conformity

Before introducing our results we provide two simple examples to show why an equilibrium
with the desired properties may not exist.

Example 1. Players have to choose between two locations A and B . The attribute space is given
by {X,P } where a player with crowding type X is a celebrity and a player with crowding type P

an ‘ordinary’ member of the public. We suppose that there is only one celebrity. Members of
the public like living in the same location as the celebrity. Thus, the payoff of a player with
attribute P is equal to 1 if he matches the choice of the celebrity and 0 otherwise. The celebrity,
in contrast, prefers to avoid the public and thus his payoff is equal to the proportion of members
of the public whose choice of location he mismatches. In any Nash equilibrium the celebrity
must have probability 1/2 of living in both locations. Thus, arbitrarily large games induced from
this pregame need not have an approximate Nash equilibrium in pure strategies consistent with
conformity since there may not exist an approximate Nash equilibrium in pure strategies.

Example 1 illustrates that some conditions will be required to guarantee the existence of an
approximate Nash equilibrium in pure strategies. Our second example demonstrates that even if
there exists an approximate Nash equilibrium in pure strategies there need not exist one that is
consistent with conformity.

Example 2. Players choose between locations A and B . The attribute space is [0,1]. A player’s
attribute determines whether he prefers location A or B . Whether a player prefers A or B can,
however, be seen as essentially a random event. More formally, assume that if a player has at-
tribute ω where ω is a rational number then he is assigned a payoff of 1 for choosing A and 0
for choosing B . If a player has attribute ω where ω is an irrational number then he is assigned
a payoff of 1 for choosing B and 0 for choosing A. Games induced from this pregame clearly
have a Nash equilibrium in pure strategies. For arbitrarily large games, however, it is clear that
no bound can be put on the number of societies that a Nash equilibrium would induce. For ex-
ample, in a game where alternate players (in terms of the size of their attribute) have rational and
irrational attributes the number of societies is as large as the player set.

Example 2 illustrates that some continuity assumption on attributes is necessary. In particular,
we require that players with close attributes are similar. It would appear that a simple redefinition
of an attribute would solve the observed problem with conformity in Example 2; for example,
we could state that there are two attributes to represent those who like location A and those who
like location B . Note, however, that the attribute ω may signify an observable characteristic of
a player that is irrelevant in terms of his payoff but does influence whether or not other players
will identify with him; for example, ω may represent age and a player conforms to those with a
similar age to himself. This suggests that conformity on the basis of ω may be observed, implying
that [0,1] is a relevant attribute space to consider.
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3.1. Large games

To derive our main result we make two assumptions on pregames—continuity in attributes
and global interaction. We introduce each in turn.

Continuity in Attributes. The pregame G = (Ω,S,h) satisfies continuity in attributes if for any
ε > 0 there exists a real number δc(ε) > 0 such that, for any two games Γ (N,α) and Γ (N,α),
if for all i ∈ N it holds that

dist
(
α(i), α(i)

)
< δc(ε)

then for any j ∈ N and for any pure strategy vector m,∣∣uα
j (m) − uα

j (m)
∣∣ < ε.

Continuity in attributes dictates that, given strategy choices, if the attribute function changes
only slightly, then payoffs change only slightly. Note that Example 2 does not satisfy continuity
in attributes.

To define global interaction we introduce a metric ρα on pure strategy vectors for a given
game Γ (N,α). Consider two arbitrary pure strategy vectors m,s ∈ SN and denote by wm and
ws the respective induced weight functions. Define ρα by

ρα(m, s)
def= 1

|N |
∑
sk∈S

∑
ω∈α(N)

∣∣wm(ω, sk) − ws(ω, sk)
∣∣.

Thus, pure strategy vectors m and s are seen as ‘close’ if the proportion of players with each
attribute playing each strategy is approximately the same.

Global Interaction. The pregame G = (Ω,S,h) satisfies global interaction when for any ε > 0
there exists a real number δg(ε) > 0 such that, for any game Γ (N,α) and any two pure strategy
vectors m and s, if

ρα(m, s) < δg(ε)

then for any j ∈ N where mj = sj∣∣uα
j (m) − uα

j (s)
∣∣ < ε. (2)

The assumption of global interaction states that a player is nearly indifferent to small changes
in the proportion, relative to the total population, of players of each attribute playing each strat-
egy.6 Thus, the actions of any one player have little influence on the payoffs of others. We note
that the pregame of Example 1 does not satisfy global interaction; when the number of ordinary
people becomes large a change in the strategy of the celebrity has almost no effect on the metric
ρα(m, s) but may have a large effect on the utility of ordinary people.

The pregame G = (Ω,S,h) is said to satisfy the large game property if it satisfies both con-
tinuity in attributes and global interaction. The large game property implies a form of continuity

6 With somewhat more restrictions on the model, the conditions of global interaction and continuity in attributes could
be merged into one continuity condition. We prefer not to do this since we see global interaction as an important feature
of the model. Also, the assumption of global interaction was motivated by assumptions on cooperative pregames that
small groups of players have negligible impacts on large populations (cf. Wooders, 1994 and references therein).
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of h with respect to changes in the weight function and attribute. Indeed, to summarize: conti-
nuity in attributes is a bound on the payoff difference when the attributes of players change but
their strategies do not. By contrast, global interaction is a bound on the payoff difference when
the strategies of players change but their attributes do not. The pregame of Example 1, for in-
stance, satisfies continuity in attributes but not global interaction. The pregame of Example 2, by
contrast, satisfies global interaction but not continuity in attributes.

3.2. Purification

The following result demonstrates that in sufficiently large games induced from a pregame sat-
isfying the large game property there exists an approximate Nash equilibrium in pure strategies.
This result is most easily obtained using a purification theorem due to Kalai (2004).7

Theorem 1. Consider a pregame G = (Ω,S,h) that satisfies the large game property. Given any
real number ε > 0 there exists a real number η(ε) such that for any population (N,α) where
|N | > η(ε) the induced game Γ (N,α) has a Nash ε-equilibrium in pure strategies.8

Proof. Suppose not. Then there exists an ε > 0 and, for every integer ν, a game Γ (Nν,αν) such
that |Nν | > ν and game Γ (Nν,αν) has no Nash ε-equilibrium. Let δ = δc(

ε
3 ) be the real number

implied by continuity in attributes for a payoff bound of ε
3 . Partition Ω into a finite number of

subsets Ω1, . . . ,ΩQ each of diameter less than δ. For each Ωq pick a point ωq ∈ Ωq . For each ν

consider a population (Nν,αν) satisfying, for all i ∈ Nν , the property that αν(i) = ωq if and only
if αν(i) ∈ Ωq . We note that, by the well known Nash existence theorem, each Γ (Nν,αν) has a
Nash equilibrium. Consider the set of games G = {Γ (Nν,α)}ν . Given that the set of attributes
for G is finite, G is a subset of a family of semi-anonymous Bayesian games as defined by
Kalai (2004). From this, global interaction and the existence of Nash equilibrium, Theorem 1 of
Kalai (2004) implies there exists ν∗ such that any game Γ (Nν,αν) where ν > ν∗ has a Nash
ε
3 -equilibrium in pure strategies mν . By continuity in attributes and the choice of δ

∣∣uα
i (sk,m

ν−i ) − uα
i (sk,m

ν−i )
∣∣ <

ε

3
for all sk ∈ S. Thus, for ν > ν∗, mν is a Nash ε-equilibrium in pure strategies of game
Γ (Nν,αν). �
3.3. Main result: behavioral conformity

Theorem 2 demonstrates that in sufficiently large games there exists an approximate Nash
equilibrium in pure strategies that partitions the population into a bounded number of societies.
A fundamental aspect of Theorem 2 is that the bound is independent of population size. Note
that the smaller is the bound the more dissimilar players in the same society may be. Theorem 2
is proved in Appendix A.

7 The purification result of Kalai (2004) is sufficient for the purposes of the current paper. A general purification
theorem, with countable action and type sets is presented in Cartwright and Wooders (2003b). Some early well-known
results on purification by large numbers of players (an atomless continuum) are Dvoretsky et al. (1950), Schmeidler
(1973) and Mas-Colell (1984). See Khan and Sun (2002) for a recent survey.

8 It can easily be verified that η(ε) is a function of ε,K, δg(ε) and δc(ε). Further, η(ε) is non-increasing in ε, δg(ε)

and δc(ε). This is also the case for the population bound in Theorems 2 and 3.
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Theorem 2. Let G = (Ω,S,h) be a pregame satisfying the large game property. Given any real
number ε > 0 there exists real number η(ε) and integer A(ε) such that for any population (N,α)

where |N | > η(ε) the induced game Γ (N,α) has a Nash ε-equilibrium in pure strategies that
induces a partition of the population (N,α) into Q � A(ε)K societies.9

Theorem 2 suggests that in sufficiently large games conformity can be individually rational.
We highlight that the result applies to games in which all players have different attributes.

Note how the definitions of a society and of a partition of the population into societies leaves
open the possibility that two players i, j ∈ N with the same attributes could belong to different
societies and play different strategies. A result such as Theorem 2 cannot be obtained unless this
is permitted.10 To see this, consider a game Γ (N,α) where all players have the same attribute
and any Nash equilibrium has the property that a positive fraction of the players choose one
strategy and a positive fraction choose another strategy.

Another important feature of Theorem 2 is the convexity aspect of societies. For some attribute
spaces, for example, Ω = C × [0,1], Theorem 2 implies the existence of an approximate Nash
equilibria in pure strategies with the property that most players are playing the same strategy
as their nearest neighbors in attribute space. This, however, is a special case; see Wooders et al.
(2001) for further discussion.

3.4. Bounding the number of societies independently of ε

In some cases it is possible to bound the number of societies independently of ε. We provide
one such example.

For simplicity we shall assume that F = 1 and the attribute space is thus Ω = C × [0,1].
Further, we shall assume that if a player has attribute (c, t) the value c characterizes his external
influence on others—his crowding type—while t characterizes his payoff function—his taste
type. We think of the crowding type of a player as such characteristics as gender, educational
level, height, ability to salsa, and so on, that are observable to other players and may have direct
effects on them. In contrast, we think of a player’s taste type as of direct relevance only to himself,
for example, whether he enjoys school or whether he likes to dance.

Two assumptions on crowding and taste types encapsulate these ideas. The first assumption,
within type anonymity, implies that two players of the same crowding type, playing the same
strategy, have the same influence on the payoffs of others.

Within (crowding) type anonymity. Pregame G = (Ω,S,h) satisfies within type anonymity
when for any induced game Γ (N,α) and for any two pure strategy vectors m and s if∑

ω:ω=(c,·)
wm(ω, sk) =

∑
ω:ω=(c,·)

ws(ω, sk)

9 In fact a somewhat stronger result can be obtained: for any population (N,α) where |N | > η(ε) and for any Nash
equilibrium σ of the induced game Γ (N,α), there exists a Nash ε-equilibrium in pure strategies m where σ and m ‘are
close’ and m induces a partition of the population (N,α) into Q � A(ε)K societies.
10 Wooders et al. (2001) obtain a complementary result to Theorem 1 in which players with the same attribute do
belong to the same society. This is possible by treating populations in which the number of players with any one attribute
is bounded. Similarly the literature on non-atomic games demonstrates the existence of a symmetric Nash equilibrium in
pure strategies in games with a continuum of players if the distribution of players over attributes is atomless (see Pascoa,
1993).
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for all c ∈ C then for any i ∈ N where mi = si

uα
i (mi,m−i ) = uα

i (si , s−i ).

That is, if any two strategy vectors have the property that, from the perspective of player i,
the weight functions induced by these strategy vectors assign the same weight to each strategy
chosen by players of each crowding type, then player i is indifferent between the two situations.

Our second assumption is in the nature of Grandmont’s (1978) ‘intermediate preferences.’ An
explanation follows the definition.

Linearity in taste types. Pregame G = (Ω,S,h) satisfies linearity in taste types if there exists a
function y :C × S × W → R and a function x :C × S × W → R such that for any induced game
Γ (N,α) and any pure strategy vector m the payoff of player i ∈ N where α(i) = (c, t) is given
by

uα
i (mi,m−i ) = y(c,mi,wm) + t · x(c,mi,wm).

We recall that a player’s taste type is determined by t ∈ [0,1]. All else equal, if a player’s
taste type is a convex combination of the taste types of two other players (and all three players
have the same crowding type), then his payoff is the same convex combination of the payoffs
of the other two players. Intuitively, we could think of there being a ‘representative player’ for
each crowding type with, say, taste type 0.5. The payoff of a player with taste type t can then be
thought of as a linear function of how much his taste type differs from that of the representative
for his crowding type.

Our second main result, Theorem 3, places a bound that is independent of ε on the number of
societies. For simplicity we state and prove Theorem 3 for K = 2 and F = 1; in two footnotes in
the proof we indicate how these two restrictions can be relaxed.

Theorem 3. Let G = (Ω,S,h) be a pregame satisfying the large game property, within type
anonymity and linearity in taste types. Let K = 2 and F = 1. Given any real number ε > 0 there
exists real number η(ε) such that for any population (N,α) where |N | > η(ε) the induced game
Γ (N,α) has a Nash ε-equilibrium in pure strategies that induces a partition of the population
(N,α) into Q � 2C societies.

Proof. By Theorem 1 for any sufficiently large population (N,α) the induced game Γ (N,α)

has a Nash ε-equilibrium in pure strategies m∗. Let M denote the set of pure strategy vectors
such that m ∈ M if and only if m is a Nash ε-equilibrium and∑

ω:ω=(c,·)
wm∗(ω, sk) =

∑
ω:ω=(c,·)

wm(ω, sk)

for all c and sk . We note that m∗ ∈ M and so M is non-empty.
Consider a pure strategy vector m ∈ M . For each c and sk let Tck ⊂ [0,1] be such that t ∈ Tck

if and only if there exists a player i ∈ N satisfying α(i) = (c, t) and mi = sk . Let Xck ⊂ N

be such that j ∈ Xck if and only if α(j) = (c, t) where t ∈ int(con(Tck)) and mj �= sk .11 Let
X = ⋃

c,k Xck . If |X| = 0 then m induces a partition of the population into 2C societies. Suppose

11 Note that Xck may be the empty set. For example, if every player of crowding type c has the same taste type t then
Xck will be empty for all sk .
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|X| > 0. We will construct from m a pure strategy vector mi ∈ M that diminishes |X| by one.
Iterating this argument one obtains an m ∈ M giving |X| = 0 thus proving the result.

Given that |X| > 0, we can select a nonempty set Xck for some c and sk and a player j ∈ Xck .
Thus, α(j) = (c, t) and t ∈ int(con(Tck)) yet mj �= sk . Assume that mj = sk . Let Ack ⊂ N

be such that i ∈ Ack where α(i) = (c, t) if and only if mi = sk and t belongs to the bound-
ary of con(Tck).12 For each i ∈ Ack let mi be the pure strategy vector with the properties that
mi

i = sk,m
i
j = sk and mi

l = ml for all other l ∈ N ; thus players i and j have ‘exchanged’ pure

strategies. We conjecture (*) that for some i∗ ∈ Ack the pure strategy vector mi∗ is a Nash
ε-equilibrium. Provided this conjecture holds, given that i∗ belongs to the boundary of con(Tck)

and K = 2 the value of |X| is one less for mi∗ then for m.13

To prove the conjecture (∗) observe that within type anonymity and linearity in taste types
implies that for some β1, β2, . . . , β|Ack | [where 1 � βi � 0 and

∑
βi = 1]

uα
j (z,m−j ) =

∑
i∈Ack

βiu
α
i

(
z,mi

−i

)

for all z ∈ S. Given that m is a Nash ε-equilibrium

uα
j (sk,m−j ) � uα

j (sk,m−j ) − ε.

Thus, there exists some i∗ ∈ Ack and corresponding mi∗ where14

uα
i∗

(
mi∗

−i∗ ,m
i∗
−i∗

)
� uα

i∗
(
sk,m

i∗
−i∗

) − ε. (3a)

It is clear, by within type anonymity, that

uα
l

(
mi∗

l ,mi∗
−l

)
� uα

l

(
z,mi∗

−l

) − ε

for all z ∈ S and l ∈ N , l �= i∗, j . It thus remains to consider player j . Let l ∈ Ack and l �= i∗.
Within type anonymity and linearity of taste types implies that

uα
j

(
z,mi∗

−j

) =
∑

i∈Ack\i∗
βiu

α
i

(
z,mi∗

−i

) + βi∗u
α
i∗

(
z,ml

−i∗
)

for all z ∈ S. Thus,

uα
j

(
mi∗

j ,mi∗
−j

)
� uα

j

(
sk,m

i∗
−j

) − ε

and mi∗ is a Nash ε-equilibrium. �
4. Conclusions

If individuals tend to conform and to be influenced by the actions of others then this poses
a challenge to the individual rationality assumption of game theory. This challenge leads us to

12 There must be some such player since the convex hull int(con(Tck))is determined by players in Ack and
int(con(Tck)) �= ∅.
13 If K = 2 and F > 1 then this argument no longer suffices. Further ‘exchanges’ of strategies may be necessary to
reduce |X| by one.
14 If K > 2, while this inequality holds, it would no longer be sufficient to demonstrate that playing mi∗

−i∗ is an ε-best

response for player i∗. In particular, if z is a third strategy then we may have, uα
i∗ (mi∗

−i∗ ,mi∗
−i∗ ) < uα

i∗ (z,mi∗
−i∗ )− ε. For

the case of K = 3 this can be overcome by commencing with a Nash ε
2 -equilibrium.
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question the possible existence of an approximate Nash equilibrium consistent with conformity.
In this paper we introduce a notion of societies that allows us to demonstrate the existence of
such an equilibrium in games with many players.

Issues that still remain include: (i) We only demonstrate the existence of an approximate Nash
equilibrium with conformity; we do not address directly, the question of whether players actually
learn to play that equilibrium. This is discussed by Cartwright (2003) where sufficient conditions
are provided under which play will indeed converge to the desired equilibrium. (ii) Conformity
in mixed strategy equilibrium is not treated. To treat conformity in mixed strategies may seem
unmotivated given our insistence on pure strategy equilibria. Note, however, that while it may
seem unnatural that a player would use a mixed strategy it need not be unnatural that a society
would ‘play a mixed strategy’. In Cartwright and Wooders (2003a) we consider this possibility
by formulating conformity in terms of mixed strategies and incomplete information.
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Appendix A

Lemma 1. Let G = (Ω,S,h) be a pregame satisfying the large game property. For any induced
game Γ (N,α), for any partition of Ω into a finite number of subsets Ω1, . . . ,ΩA, each of diam-
eter less than δc(

ε
3 ), and for any two pure strategy vectors m and m where∑

ω∈Ωa

wα,m(ω, sk) =
∑

ω∈Ωa

wα,m(ω, sk), (4)

if m is a Nash ε
3 -equilibrium in pure strategies then m is a Nash ε-equilibrium in pure strat-

egies.15

Proof. Given an induced game (N,α) and two pure strategy vectors m and m satisfying (4), it
is immediate that there exists a one-to-one mapping R(i) :N → N such that,

mi = mR(i) (5)

for all i ∈ N and,

dist
(
α(i),α

(
R(i)

))
< δc

(ε

3

)
. (6)

Informally, we can treat equivalently: (a) player i having attribute ω = α(i) and playing strategy
mR(i) and (b) player R(i) playing strategy mR(i) and having attribute ω = α(i). Thus, consider
the population (N,α) where,

α
(
R(i)

) = α(i) (7)

for all i ∈ N . Our method of proof is to (i) demonstrate that m is a Nash ε-equilibrium in
pure strategies of game Γ (N,α) before (ii) demonstrating how this implies that m is a Nash
ε-equilibrium in pure strategies of game Γ (N,α).

15 Where δc(
ε
3 ) is the real number implied by continuity in attributes for a payoff bound of ε

3 .
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The assumption of continuity in attributes and (6) implies,∣∣uα
i (sk,m−i ) − uα

i (sk,m−i )
∣∣ <

ε

3
(8)

for all sk ∈ S and all i ∈ N . Given that m is a Nash ε
3 -equilibrium in pure strategies for Γ (N,α),

it follows that

uα
i (mi,m−i ) � uα

i (sk,m−i ) − ε

3
.

The above two inequalities yield

uα
i (mi,m−i ) � uα

i (mi,m−i ) − ε

3
� uα

i (sk,m−i ) − 2ε

3
� uα

i (sk,m−i ) − ε (9)

for all i ∈ N and sk ∈ S. Thus, m is a Nash ε-equilibrium in pure strategies of game Γ (N,α).
By (5) and (7)(

α
(
R(i)

)
,mR(i)

) = (
α(i),mR(i)

) = (
α(i),mi

)
(10)

for all i ∈ N . It follows that

uα
R(i)(sk,m−R(i)) = uα

i (sk,m−i ) (11)

for all i ∈ N and all sk ∈ S. It is immediate from (9) and (11) that m is a Nash ε-equilibrium in
pure strategies of game Γ (N,α). �

We recall that Ω = {1,2, . . . ,C} × [0,1]F for some finite integers C and F . We make use
of a lexicographic ordering on elements of [0,1]F . Formally, we define the binary relations <L

and =L as follows: Take any two points t = (t1, . . . , tF ), τ = (τ1, . . . , τF ) ∈ [0,1]F . We say that
t =L τ if and only if tf = τf for all f = 1, . . . ,F . We say that t <L τ if either:

(1)
∑

f tf <
∑

f τf , or
(2)

∑
f tf = ∑

f τf and for some f ∗we have tf ∗ < τf ∗ and tf = τf for all f < f ∗.

We say that t �L τ if either t <L τ or t =L τ .

Lemma 2. Given any two finite sets of points ΩJ = {t1, . . . , tJ } and ΩQ = {τ 1, . . . , τQ} (where
t1, . . . , tJ , τ 1, . . . , τQ ∈ [0,1]F ) if tj �L τq for all j and q then the interior of the convex hulls
of ΩJ and ΩQ are either distinct or both empty.

Proof. Suppose the claim is false. Then there exists a point ω ∈ Ω such that ω ∈ I (Co(ΩJ )) and
ω ∈ I (Co(ΩQ)). Thus, for non-negative numbers γ1, . . . , γJ and β1, . . . , βQ∑

q

βq =
∑
j

γj = 1 (12)

and, for each f = 1, . . . ,F ,

ωf =
∑
j

γj t
j
f =

∑
q

βqτ
q
f . (13)

This implies that
∑[

γj

∑
t
j
f

]
=

∑
q

[
βq

∑
τ

q
f

]
. (14)
j f f
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By assumption, for each tj ∈ ΩJ and tq ∈ ΩQ it holds that
∑

f t
j
f �

∑
f t

q
f . Suppose, for

some tj ∈ ΩJ and τq ∈ ΩQ, that
∑

f t
j
f <

∑
f τ

q
f . Given (14) it must be that either γj = 0 or

βq = 0. Let Ω+
J denote the set of tj ∈ ΩJ given positive weight γj > 0 and Ω+

Q the set of all

τq ∈ ΩQ given positive weight βq > 0. It is immediate that
∑

f t
j
f = ∑

f τ
q
f for each tj ∈ Ω+

J

and τq ∈ Ω+
Q .

If Ω+
J = Ω+

Q then we easily obtain the desired contradiction. When Ω+
J = Ω+

Q and for each

element tj in Ω+
J it holds that tj �L tq then the sets must each contain only one element and, in

this case, the interiors of the convex hulls are both empty.

Let Ω++
J = Ω+

J \Ω+
Q and Ω++

Q = Ω+
Q\Ω+

J . Either Ω++
J or Ω++

Q is non-empty. Suppose that

Ω++
J is non-empty. For every tj ∈ Ω++

J and τq ∈ Ω+
Q there is some f ∗ ∈ {1, . . . ,F − 1} for

which t
j
f ∗ < τ

q
f ∗ and t

j
f = τ

q
f for all f < f ∗. Take the minimum of these f ∗ over all points

tj ∈ Ω++
J and τq ∈ Ω+

Q . By choice of f ∗ it holds that t
j
f ∗ � τ

q
f ∗ for all j ∈ Ω+

J and q ∈ Ω+
Q

and t
j
f ∗ < τ

q
f ∗ for some j ∈ Ω++

J and q ∈ Ω+
Q . This must contradict either (12) or (13). The case

where Ω++
Q is non-empty can be treated in an analogous manner. �

Proof of Theorem 2. Consider some ε > 0 and set δ = δc(
ε0
3 ) > 0, where δc(

ε0
3 ) is the real

number implied by continuity in attributes for a payoff bound of ε0
3 . Use compactness of Ω to

write Ω as the disjoint union of a finite number A of convex non-empty subsets Ω1, . . . ,ΩA, each
of diameter less than δ.16 We claim that A satisfies the conditions required by the theorem. By
Theorem 1 there exists real number η( ε

3 ) such that every game Γ (N,α) satisfying |N | > η(ε
3 )

has a Nash ε
3 equilibrium in pure strategies.

Let Γ (N,α) be any game where |N | > η(ε
3 ) and let m denote a Nash ε

3 equilibrium in pure
strategies. Consider a change of pure strategy vector from m to m where m satisfies:

(1) for all Ωa and sk ∈ S,
∑

ω∈Ωa

wα,m(ω, sk) =
∑

ω∈Ωa

wα,m(ω, sk),

(2) for any i, j ∈ N where α(i),α(j) ∈ Ωa for some a, if mi = sk and mj = sk where k < k

then α(i) � α(j).

Given that the finite set of points α(N) is well ordered, it is always possible to construct such
a pure strategy vector m by a simple ‘reassignment’ of pure strategies. Given the choice of δ and
that m is a Nash ε

3 -equilibrium in pure strategies it is immediate from Lemma 1 that m is a Nash
ε-equilibrium in pure strategies. By applying Lemma 2 and recalling that each Ωa is convex it is
clear that m is a Nash ε-equilibrium in pure strategies that induces a partition of the population
into at most AK societies. �
16 Note that A depends on ε through its dependence on δ.
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