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The potential utility of agent-based models of adaptive, spatially aware, and

mobile entities in geographic and ecological research is considerable. Developing

this potential, however, presents significant challenges to geographic information

science. Modelling the spatio-temporal behaviour of individuals requires new

representational forms that capture how organisms store and use spatial

information. New procedures must be developed that simulate how individuals

produce bounded knowledge of geographical space through experiential learning,

adapt this knowledge to continually changing environments, and apply it to

spatial decision-making processes. In this paper, we present a framework for the

representation of adaptive, spatially aware, and mobile agents. To provide

context to this research, a multiagent model is constructed to simulate the

migratory behaviour of elk (Cervus elaphus) on Yellowstone’s northern range. In

this simulated environment, intelligent agents learn in ways that enable them to

mimic real-world behaviours and adapt to changing landscapes.

Keywords: Agent-based modelling; Mobile agents; Spatial cognition; Machine

learning; Elk migration

1. Introduction

Geographic information science was originally focused on the digital representation

of two-dimensional spatial phenomena (Goodchild 1992). Over the past two

decades, progress has been made on the representation of spatio-temporal dynamics

(Langran 1992, Yuan 2001) and the design of data structures that capture the space–
time paths of mobile, geographically situated objects (Koubarakis et al. 2003). With

the emergence of agent-based technologies, there is growing interest in modelling the

spatial decision-making processes of the individuals who interact in these dynamic

spaces and produce these paths. Agent-based models that represent the spatio-

temporal behaviour of individuals can provide unique insight into, for example, the

spread of disease (Barrett et al. 2005), the flow of people through built environments

(Batty et al. 2003), and the movement of people or animals over large spaces

(Ahearn et al. 2001, Bennett and Tang 2005). The representation of spatio-temporal
behaviour, however, presents unique challenges to geographic information science.

Motivation, decision-making processes, navigation, spatial awareness, adaptation,

agent–agent interaction, and agent–environment interaction all must be considered

in a representational framework that is designed to model cogent, purpose-driven,

spatially aware mobile agents. In this paper, we present a framework for such
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agents, describe unique schemes for the representation of spatial memory and

learning, and report proof-of-concept results that illustrate the utility of our

approach.

1.1 Context

To provide context to our work, we consider the spatio-temporal behaviour of elk

(Cervus elaphus) on Yellowstone National Park’s (USA) northern range. Over the

past 150 years, this area has experienced significant change as shifting ownership

patterns, and management strategies were overlain onto what was once a highly

integrated ecosystem. Changes in the past 10 years have been particularly evident;

wolves were reintroduced, the northern range elk herd population rapidly declined

from its mid-1990s high, riparian vegetation began to sprout to heights not seen for

100 years, and the number of northern range elk using private and public land to the

north of the park (Paradise Valley) increased significantly (Lemke unpublished

data).

Throughout this time, elk had to adapt to survive, and these adaptations have led

to fundamental changes in the way these animals use their environment (Houston

1982, Boyce 1989, Ripple et al. 2001, Fortin et al. 2005). If we can understand how

landscape-level changes affect the spatial and temporal behaviour of elk, we can

better manage this regionally important resource (Forman 1995, Houston and

McNamara 1999, Owen-Smith 2002, Kondoh 2003). Gaining this understanding,

however, through the direct manipulation of the landscape is not feasible (Bailey

et al. 1996). Experimentation through simulation provides a plausible alternative,

but models of the spatial behaviour of elk require sophisticated techniques for the

representation of: (1) bioenergetics; (2) resource selection; (3) threat avoidance; (4)

navigation and spatial memory; and (5) spatial learning. Most existing ecological

models of ungulate behaviour focus on the simulation of bioenergetics and resource

selection (Turner et al. 1994, Bian 2003, Noonburg et al. submitted). Less attention

has been given to those behaviours that drive adaptation, such as threat avoidance,

spatial memory, and spatial learning (Kamil and Roitblat 1985, Giske et al. 1998).

The work presented here is part of an interdisciplinary effort designed to better

understand how changes in land use/land cover (e.g. conversion of working ranches

to amenity homes) and wildlife management (e.g. changes in hunting patterns and

the reintroduction of wolves) have affected the spatial behaviour of elk. Our focus is

on migratory behaviour because this behaviour places elk in direct conflict with

humans. Elk migration is a complex behaviour adapted to changing environments

(Baker 1978, O’Kelly 1980) and, thus, can be viewed as an adaptive, self-organized,

spatial response to ecosystem dynamics (Levin 1998, Malanson 1999). Furthermore,

given evidence that migratory patterns change in response to short-term manage-

ment decisions (Lemke 1995) and that some herds choose not to migrate at all

(Boyce 1989), we can assume that spatial learning is integral to migratory behaviour.

These properties of spatial adaptation and spatial cognition provide an appropriate

test for our framework.

Our approach draws upon several different research domains, including elk

ecology, multi-agent system (MAS) simulation, machine learning, and spatial

cognition. Relevant literature is reviewed in section 2. In section 3, we present our

model framework, and in section 4, we discuss how spatial learning can be

simulated. Model results are presented in section 5. We conclude with a discussion of
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the general utility of spatially aware agent-based modelling techniques and the need

for future work on this topic.

2. Relevant literature

Agents, at a minimum, sense, respond to, and interact with their environment and

with each other. The design of spatially aware mobile agents must also include a

representation of motivation (why an individual moves) and decision-making

(processes that determine where an individual moves to). Movement requires energy

and exposes the traveller to potential threats (e.g. predation), and thus a failure to

move efficaciously across the landscape can have serious consequences; firms can go

out of business, humans can get lost, and animals can starve. The drive to move may

be completely reactive (e.g. the phototactic response of a moth toward light) or

purposeful (e.g. a planned route across dangerous territory). Purposeful movement

is facilitated by spatial memory and navigational skills (Trullier et al. 1997). Spatial

memory implies spatial learning, and the ability to learn suggests that an organism

can adapt to changing environmental conditions. Learning and adaptation are self-

modifying behaviours that take experience as input and, if successful, transform it

into improved decision-making (McFarland and Houston 1981). Motivation, spatial

memory, spatial learning, navigation, and adaptation present unique challenges for

the representation of spatially aware agents that have not been fully explored in the

geographic or ecologic literature.

Agent-based technologies have been used extensively in geographic research

on land-use/land-cover change (e.g. Bennett et al. 1999, Janssen et al. 2000, Etienne

et al. 2003, Parker et al. 2003, Sengupta and Bennett 2003, Brown et al. 2005).

Mobility and spatial cognition, however, have not been developed in the context of

these models, although an argument could be made that spatial perception is

important to land-use/land-change dynamics. Westervelt and Hopkins (1999) and

Bian (2003) describe spatially explicit frameworks for modelling mobile animals,

and Batty et al. (2003) model the movement of people through an urban landscape.

These examples provide valuable insight into the representation of mobile

interacting agents but do not address spatial learning. Agent-based technologies

(often referred to as individual-based models (IBM)) have an even longer history in

the ecological sciences (Huston et al. 1988, DeAngelis and Gross 1992, Huse et al.

1999, Janssen et al. 2000, Ahearn et al. 2001, Dumont and Hill 2004). Grimm (1999)

provides a useful review of the earlier work in this area, and Railsback (2001)

provides insight into the future of IBMs. IBMs, as a product of computational

ecology, are often focused on trophic relationships and reproduction. Railsback

(2001) and Recknagel (2003) note that agent interaction, learning, and adaptation

are often key to the representation of complex ecological processes characterized by

nonlinear feedback and emergent behaviour. However, learning in general, and

spatial learning in particular, has not been fully explored in the context of ecological

simulation.

2.1 Elk models

Existing models of elk migration can be placed into context by considering what

agents know about the spatial and temporal pattern of resource availability and the

manner in which they transform this knowledge into decisions about movement and

resource selection (figure 1). In mechanistic models, it is assumed that an agent’s
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spatial knowledge is limited to its perceptual range and that it has limited ability to

remember past experiences or predict future states. Decision-making becomes a

reactive response to local stimuli and agent state (Russell and Norvig 1995). Since

experiences are not stored, learning does not occur. Mechanistic models provide a

useful illustration of what agents are capable of given minimal assumptions about

their cognitive abilities. While the principle of parsimony is often appropriate,

assumptions about what elk know about their environment in this approach are

overly conservative. There is evidence, for example, that elk often exhibit

considerable fidelity to winter and summer ranges, and this suggests large-scale,

long-term memory (Boyce 1989). The elk model presented by Turner et al. (1994) is

most representative of this approach.

As an alternative, it can be assumed that agents are omniscient; they know the

state of a system at all locations and at all times. Furthermore, they possess the

cognitive ability to transform this knowledge into rational decisions. Learning is not

relevant in this approach, as it is assumed that agents have all the information

needed to make optimal migratory decisions. The elk model produced by Noonburg

et al. (submitted) based on stochastic dynamical programming is illustrative of this

approach. Optimizing models provide useful benchmarks by documenting what elk

would do under ideal conditions, but the underlying assumptions about the

cognitive ability of elk are unrealistically high. While an argument can be made that

evolution has led to near-optimal behaviour, the assumption that elk can perceive

the spatial pattern of forage and risk at distant locations and at all times is not

supportable. Furthermore, these models tell us little about how the spatial

behaviour of elk adapts to changing environmental conditions.

Common sense, field studies, and work in the cognitive sciences all suggest that

reality falls somewhere between these two modelling extremes. Models based on

bounded rational behaviour are characterized by limited knowledge about resources

and threats, and limited ability to process this knowledge into effective decisions

(Conlisk 1996). Learning and adaptation are crucial to the success of boundedly

rational agents.

Figure 1. Existing models of adaptive mobile agents can be placed into context by
considering what agents know about the spatial and temporal pattern of other agents and
available resources and their ability to transform this knowledge into useful decision.
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2.2 Motivation and decision-making in agent-based elk models

As elk migrate, they must balance the cost of travel and exposure to threats against

the possibility of finding needed resources. Quality forage acts as an attractive force

that pulls elk across the landscape (Arkin 1998), while areas with deep snow or high

predation rates are associated with reduced survival rates and, thus, act to repel elk.

The spatial distribution of resources and threats can be conceptualized as a field of

attractive and repulsive forces (Arkin 1998) that can dynamically affect the

movement pattern of mobile agents. Through repeated interaction with the

environment, elk can learn these patterns and adapt to associated changes.

Needed resources can be tangible objects to be consumed, or they can fulfil

behavioural or social needs (e.g. security or reproduction). Most researchers agree

that elk migration is motivated by bioenergetic needs, which are relatively well

studied and documented (Boyce 1989). Turner et al. (1994) review this literature and

incorporate salient elements into their model. Elk fitness can be defined in terms of

body mass, which affects survival and reproductive success (Turner et al. 1994), and

a daily energy budget can be calculated to estimate the change in mass over time.

Energy is gained by foraging and expended to maintain existing body mass and to

travel. The spatial distribution of snow affects elk bioenergetics by reducing access

to forage and increasing energy expenditures.

2.3 Spatial memory and navigation

Evidence suggests that spatial memory guides the foraging and migratory behaviour

of many animals (Bailey et al. 1996, Giske et al. 1998, Dumont and Hill 2001), and

research in neurobiology has shown that this memory is deeply rooted in the

hippocampus of the brain (O’Keefe and Nadel 1978, Poucet 1993, Schmajuk 1997).

Neurons in the hippocampus (i.e. place cells) fire when animals enter familiar

geographic spaces (i.e. place fields) (Muller 1996, Shapiro et al. 1997, Eichenbaum

et al. 1999). Repeated interactions at particular places, both positive and negative,

reinforce these cells and increase the magnitude of the response produced by

subsequent visits. A cognitive map, therefore, can be conceptualized as a set of place

cells linked by synapses to form a physiological analogue of a physical environment

(O’Keefe and Nadel 1978, Eichenbaum et al. 1999). While the exact mechanism is

not yet fully understood, research has shown that place cells are used by animals

(from rats to humans) to navigate through heterogeneous landscapes (O’Keefe and

Nadel 1978, Muller et al. 1996, Eichenbaum et al. 1999, Jacobs 2003). Two forms of

spatial memory, episodic and reference, are thought to lead to spatial knowledge

(Bailey et al. 1996, Conway 2002). Episodic memory stores previously visited places

for relatively short time periods and provides the conceptual foundation on which

many studies in optimal foraging theory are built (Giske et al. 1998, Houston and

McNamara 1999). Reference memory is thought to provide long-term navigational

information (Bailey et al. 1996).

2.4 Learning and adaptation

The process of spatial learning ties spatial memory, location, and context to

successful decision-making strategies. Muller et al. (1996) and Trullier and Meyer

(2000) illustrate how a network of hippocampal place cells can be encoded as a

weighted bidirectional cognitive graph (a digital cognitive map) to model spatial

memory and behaviour. Machine-learning algorithms provide a way to make these
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cognitive maps meaningful in specific environments. Four forms of machine

learning are commonly used in agent-based simulation: evolutionary algorithms

(Holland 1975), artificial neural networks (Bishop 1995), reinforcement learning

(Sutton and Barto 1998), and Hebbian learning (Hebb 1949, Wasserman 1993).

Each of these forms is biologically plausible, domain-independent, flexible, and

robust, and thus can be used to represent adaptive spatially aware organisms. We

experimented with each of these learning strategies as we produced this model. The

model version presented in this paper relies on evolutionary algorithms, neural

networks, and Hebbian learning processes.

2.4.1 Evolutionary algorithms. Evolutionary algorithms (EA) are based, at least

metaphorically, on the concept of natural selection (Holland 1975). A population of

solutions is created through selective pressures and the manipulation of ‘genetic

material’, and individuals in this population evolve over successive generations

toward optimal solutions. The genetic material of individuals (their genotype) is

defined by a set of distinguishing characteristics and is often implemented as a one-

dimensional array of values. These characteristics can be physical (e.g. height) or

behavioural (e.g. the probability that an animal will migrate when snow depth

exceeds a certain threshold). The state of this array directly or indirectly affects an

individual’s fitness (e.g. body mass at time t), which is a measure of how well an

individual responds to selective pressures (Bäck 1996, Bäck et al. 1997). The overall

objective of an EA is to evolve a population of individuals that possess those

characteristics that maximize fitness. EAs have been used in a number of animal

studies. Dagorn et al. (1995) develop a model to capture the adaptive behaviour of

tuna using an EA. Giske et al. (1998) present a review of behavioural models that

were designed to help study the spatial dynamics of fish and emphasized the utility

of EAs for the representation of evolutionary adaptation. Huse (2001) uses an EA to

represent the habitat preferences of fish.

There are many excellent sources for detailed descriptions of EAs (Holland 1975,

Goldberg 1989, Bäck 1996, Bäck et al. 1997, Deb 2001) and their geographical

applications (Chambers and Taylor 1996, Krzanowski and Raper 1999, Xiao et al.

2002, Brookes 2001, Bennett et al. 2004). The reader is referred to these sources for

in-depth discussions on this approach.

2.4.2 Artificial neural networks and Hebbian learning. Artificial neural networks

(ANN) were originally designed to simulate brain activity (Hertz et al. 1991, Bishop

1995). Virtual neurons are organized into layers connected through weighted links

that are representative of synapses. These links map stimuli to responses, and

successful responses are reinforced by adjusting link weights. Hertz et al. (1991)

discuss the alternative methods by which link weights can be learned. Some of these

methods are unique to ANN; others rely on related methods, such as EA and

Hebbian learning processes, to perform this important role.

Hebbian learning is a simple yet effective algorithm that is well suited to the

representation of spatial knowledge (Trullier et al. 1997). According to Hebb’s

(1949) postulate, when two neurons are activated simultaneously, the association

between these neurons is enhanced. These associations are, again, representative of

the synaptic connections among neurons and modelled as weighted links. The

Hebbian learning rule by itself is not sufficient to solve problems since it only allows

positive feedback on the change in link weights, which may cause an unbounded

increase in these values (O’Reilly 2001). This problem can be remedied by
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introducing inhibition mechanisms (O’Reilly 2001, Gerstner and Kistler 2002,

Milner 2003). Inhibition mechanisms decrease link weights given an absence of

stimuli, modelling the loss of memory, or negative stimuli. Hebbian learning has

been shown to be biologically plausible (Muller et al. 1996, Trullier et al. 1997) and

computationally efficient (Grzywacy 1998). Furthermore, it is structurally

compatible with graph-based representations of cognitive maps (O’Reilly 2001,

Milner 2003). Place cells linked together via synapses can represent paths across the

landscape. Successful paths (e.g. those that lead to high survival rates or minimize

winter body mass loss) are reinforced, and unsuccessful paths (e.g. those that lead to

death) are penalized.

The integration of complementary learning approaches proves particularly useful

in ecological studies because complex natural environments generate large sets of

stimuli that often possess significant levels of noise and uncertainty. This produces a

large solution space that renders the problem intractable when traditional ANN

methods are used. In such situations, EAs can be used as heuristic problem solvers

that efficiently estimate link weights. Dagorn et al. (1997) apply a similar approach

to simulate the adaptation of tuna to environmental gradients. Huse et al. (1999)

developed an individual-based simulation framework, based on feed-forward neural

networks and genetic algorithms, to support models of animal behaviour. Strand

et al. (2002) use this approach to simulate the behavioural decisions of Muller’s

pearlside (a marine planktivorous fish). Morales et al. (2005) apply evolutionary

neural networks to simulate the foraging behaviour of elk.

3. Model framework

Yellowstone’s northern range elk population is represented as a multi-agent system

(Ferber 1999, Janssen 2002, Bousquet and Le Page 2004) comprised of autonomous

intentional agents interacting on and with a digital representation of the associated

landscape (figure 2). This model was created using the Visual C + + programming

environment. In this section, we discuss the structure of elk agents and the

environment within which they operate.

3.1 A multi-scale representation of the environment

Field observations suggest that elk respond to large-scale landscape patterns when

migrating (Pearson et al. 1995). The fine-scale spatial patterns of snow, available

vegetation biomass, and topography, however, affect an elk’s ability to meet

bioenergetic requirements and, thus, movement at the local scale (Rudd et al. 1983,

Sweeney and Sweeney 1984, Turner et al. 1994). This suggests a multiscale

representation of the environment (figure 3). In our model, landscape-scale patches

are linked together to form a graph over which coarse-grain (direction and

destination) elk movement decisions are made. Attributes associated with each

patch act to attract (e.g. forage) and repel (e.g. risk of predation by wolves or

humans) elk. We use a 1 km2 grid to represent patch structure. Mean biomass and

snow characteristics are computed for each patch. The fine-grain pattern of snow

and forage is captured using 1 ha grid cells. Snow data are routinely collected at only

a small number of sparsely distributed points, and statistical models are often used

to produce snow maps with sufficient detail to study elk behaviour. Fortin et al.

(2005), for example, used the Yellowstone Snow Model produced by Farnes et al.

(1999) to study wolf/elk/vegetation dynamics in Yellowstone National Park. This is
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a regression model that estimates snow water equivalency (SWE) from elevation and

then adjusts this estimate for differences in solar radiation (a function of gradient,

aspect, and vegetation cover). Following Fortin et al. (2005), the Yellowstone Snow

Model is used to produce snow cover datasets for this research.

3.2 Elk agents

Each elk is represented as an aggregation of state variables (e.g. lean body mass),

bioenergetic functions (e.g. foraging, metabolism), spatial memory, and learned

decision-making processes (e.g. path selection). Elk are aggregated into cow/calf

herds, and Yellowstone’s northern range elk population is represented as the set of

all such herds. Movement decisions are driven by the collective influences of an elk’s

current state, environmental variables (e.g. available forage and snow depth),

episodic memory, and long-term reference memory (Kitchin and Blades 2002).

The rate of movement is assumed to be 5 m min21 while foraging and 10 m min21

while travelling (Wickstrom et al. 1984, Turner et al. 1994). While reported

movement rates vary significantly in the literature, the rates used in this study are

representative of commonly reported values. Following Turner et al. (1994), elk stop

moving when one of two conditions is met: (1) the maximal daily intake threshold is

reached; or (2) the maximal daily travelling distance is reached. Maximal daily

intake is a function of initial body mass and gender (Turner et al. 1994), and

maximal daily travel distance is adjusted by snow depth according to the procedures

documented in Turner et al. (1994).

Figure 2. Class diagram of our multi-agent simulation model.
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The bioenergetic functions used to calculate changes in elk state are taken from

Turner et al. (1994) essentially without modification. What differs is the temporal

resolution at which these processes are simulated. The model of Turner et al. was

based on a raster representation with a spatial resolution of 1 ha and a time step of 1

day. They assumed that elk can travel up to 4 km day21 (40 grid cells). We, however,

are interested in how cow/calf herds compete with one another for forage as they

merge together along common migration routes. To model the impact of this

conspecific competition, however, an accounting of where and when forage is

removed from the landscape must be maintained. Given a temporal resolution of

one day, a spatial resolution of 1 ha, and a travel speed of 4 km day21, it is not

possible to determine the amount of forage an elk removes from each cell, and thus

we cannot accurately calculate the change in biomass across space—the spatial and

temporal resolution of the simulation are not well balanced, given the movement

capabilities of elk. An appropriate balance between the temporal and spatial

resolution of the model can be determined by using the Courant–Friedrichs–Lewy

(CFL) criterion (Martin 1993):

Dtƒ
Dxc

c
ð1Þ

where Dt is the smallest time step; Dxc is the spatial resolution; and c is the fastest

speed of the phenomenon of interest.

This relationship ensures that information does not travel faster through space

than it does through time (e.g. we do not lose information about resource-utilization

patterns because of an imbalance between the temporal and spatial resolution of the

simulation). Given a typical migratory movement rate of 10 m min21 (c) and a 1 ha

Figure 3. Multiscale representation used to represent the environment. Large-scale move-
ment decisions are based on patch-level information (a) stored as a graph (b). Small-scale
movements driven by resources available within a local window (c) embedded in a raster
representation of space.
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spatial resolution (Dxc), a 10 min (100 m/10 m min21) temporal resolution (Dt) is

required.

3.2.1 Representing spatial memory. The primary differences between our model

and previous models concern the assumptions made about what elk know, how they

gain this knowledge, and how they use it to guide movement decisions. Here, we

assume that elk store spatial information gathered from direct experience and can

use this information to make informed decisions. Their knowledge about the

environment in which they live is incomplete, and uncertainty exists concerning the

current state of those regions beyond their perceptual range. While elk may be able

to generalize this knowledge to similar environments, we do not assume that they

are omniscient or capable of deductive thought. We model spatial knowledge at the

cow/calf herd level. Modelling at this level of aggregation is considered appropriate

because of the close relationships that exist among members of these herds and their

tendency to follow a lead elk.

Following Muller et al. (1996), the patch structure is represented as a bidirected

graph that captures the spatial memory of the elk. This graph is of the form:

G~ V , E, Wð Þ ð2Þ

where G is a directed graph; V is the vertices of graph G; E is the edges of graph G;

and W is the weights on edges E in G.

Patch centroids representing place cells are linked to first-order patch neighbours.

Since each vertex in V corresponds to a real-world landscape patch, the resulting

cognitive maps of elk are isomorphic to graphs of landscape structure (Diestel 2000).

Each edge eij in the resulting graph represents a directed movement from vertex vi to

vertex vj and thus corresponds to a movement from one place field to another. The

weight wij of edge eij represents the relative attractive force from vertex i to vertex j

and is used to guide large-scale movement decisions of elk. We use Vi95{v91, v92, …,

v9p|v9i g V, 1(i(p} to denote the set of vertices associated with the outwardly

directed edges of vertex vi.

3.2.2 Decisions regarding when to migrate. Conceptually, migration decisions

balance the possibility of better forage at a distant location against the energy

required to travel to that location. This decision is modelled as a stochastic response

to SWE at times t and t21 and an elk’s current patch location; migration is

conditioned on SWE and the rate at which SWE is changing through time. The

relationship between snow characteristics and the desire to migrate is a learned

behaviour that balances local foraging opportunities (wfor) against the benefits of

migration (wmig) (section 4.1):

Pmig tj ~
nwmig if wmigwwfor

otherwise, 0

�
ð3Þ

where Pmig|t is the probability that an elk will initiate a migratory movement at time

t, and nwmig is the normalized value of wmig.

At each time step, elk determine whether or not to make a migratory movement.

If the decision is to migrate, then a destination patch is selected and acts as an

attractive force on elk movement. Otherwise, local resources and threats guide elk

movement decisions.
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3.2.3 Selecting a destination patch. A migratory movement begins with the

selection of a destination vertex (vd) from the set of all vertices adjacent to an

elk’s current location (vc). The probability that vertex i (vi g Vc9) will become the

destination vertex is calculated as:

P vi tjð Þ~ aciPnp

j~1

acj

ð4Þ

where: P(vi|t) is the probability that vertex i is chosen as the destination given time t;

acj is the attraction of vertex j relative to vertex c; and np is the the number of

adjacent patches.

The attraction of vertex j to an elk at vertex c can be calculated as:

acj~ 1{wmig vc,tj
� �

� hj ’zwmig vc,tj � wcj ’ ð5Þ

where: hj9 is the accessible vegetation of vj, normalized to the range of accessible

biomass associated with vertices in Vc9; wcj9 is the edge weight wcj, normalized to the

range of weights associated with vertices in Vc9; and wmig|vc,t is the relative

importance of migration compared with accessible forage at vertex c and time t.

The value associated with each wij is learned through repeated interaction with the

environment (section 4.2). Currently, wmig|vc,t is set to 1 when learning spatial

memory. In future work, agents will attempt to learn the appropriate value of

wmig|vc,t given the state of the elk and the environment.

3.2.4 Selecting the next cell. The path an elk takes as it moves through the

landscape from one patch to the next depends on the utility of cells found within a

moving 363 cell window. This utility is calculated by considering the pull of vertex

vd as a destination along a migratory path and the pull of cell i as a foraging site (i.e.

short-term vs. long-term reward). More specifically, the probability that a cell i will

become the destination cell cd for a movement at time t (Pi(ci|t)), is calculated as:

Pi ci tjð Þ~
ui tjPm

k~1

uk tj

ð6Þ

where ui|t is the utility value for cell i at time t; and m is the number of cells in the

local window (m59 for a 363 window). 1,5i,5m.

The utility of cell i at time t is, therefore, calculated as:

ui tj ~wmig � ui tj ’zwfor � ui tj ’’ ð7Þ

where: wmig is the weight on migration to the next patch ,f(whab|t,whab|t21) (a

learned value, see section 4.1); wfor is the weight on foraging at the local level; ui|t9 is

the normalized utility of cell i as a link in the path to vertex vd at time t; and ui|t0 is

the normalized utility of cell i as a foraging site at time t, based on accessible

biomass in cell i.

The value of ui|t9 is assumed to be inversely proportional to the distance between

cell i and vertex vd:

ui tj ’~
1

d
b
id

ð8Þ
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where did is the distance from the destination vertex d to cell i; and b is constant

(b52).

We do not allow an elk to go directly back to those cells stored in its episodic

memory (currently set to the previously visited cell).

4. Learning movement decisions

As a proof-of-concept, we produce digital elk that learn to migrate in a way that

mimics real elk behaviour. The learning process is divided into two tasks, decisions

on when to migrate and decisions on where to migrate. These decisions will be based

on stimulus–response relationships learned through repeated interactions with the

simulated environment. All decisions require bounded knowledge about a changing

environment, the elk’s condition, and the expected consequences of alternative

actions. While the intent is to replicate real-world behaviour, the specific objective of

the implemented learning algorithms is to produce cognitive maps and movement

rules that maximize elk fitness given incomplete knowledge about the environment.

4.1 Learning when to migrate (the value of wmig)

The literature suggests that elk migration begins when snow depth exceeds a

threshold value. The magnitude of reported values varies from 20 to 46 cm; most,

however, are toward the upper end of this range (Rudd et al. 1983, Parker et al.

1984, Sweeney and Sweeney 1984). The learning objective is, therefore, to infer the

value of migratory behaviour compared with local foraging (i.e. the value of wmig

and wfor) given snow depth at times t and t21. Since we are concerned only with the

relative values of wmig and wfor, we can set wfor51 and learn those values of

wmig|sdepth, t,t21 that optimize elk fitness at the end of the migratory season. If the

weight on inter-patch movements (wmig) is greater than one (i.e. wfor), given the snow

depth in an elk’s current patch at times t and t21, it will tend to migrate; otherwise,

local movement is preferred.

Snow depth is normalized to the maximum depth through which elk typically

move (i.e. snow depth up to the bottom of an animal’s chest, also referred to as

brisket height). These normalized values are used to calculate an index of habitat

quality:

hqi~
max SWE{SWEi

max SWE
ð9Þ

where hqi is the habitat quality index for vertex i; max SWE is the brisket height of

adult elk; and SWEi is the SWE at vertex i.

The habitat quality index is classed into 10 bins to simplify the decision space.

This produces a 100-element decision matrix, the snow depth at time t21

represented by row-wise headers, and the snow depth at time t represented by

column-wise headers (figure 4). Each element in this matrix stores a state specific

value of wmig|sdepth, t,t21). The two-dimensional decision matrix is transformed into a

one-dimensional vector based on row-wise ordering to represent the chromosome

operated on by the EA. The initial values of wmig are randomly selected from

U[0,10]. Two-point crossover is implemented with a probability of 0.9, and

mutations occur at a rate of 0.05. Elitism with a gap size of 0.9 and rank-based

roulette style selection are used. The genetic algorithm ran for 300 generations.
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The objective function to be optimized is:

Max
Xnh

i~1

Fitness Herd ið Þð Þ
 !

ð10Þ

where:

Fitness Herd ið Þð Þ~
Xni

i~1

Fitness Elk jð Þð Þ;

Fitness Elk jð Þð Þ~Body Mass Elk jð Þð Þ;

nh~number of herds; and

ni~number of individuals in a herd herd sizeð Þ:

Changes in body mass are calculated from the bioenergetic requirements of

elk and available forage (Turner et al. 1994). Bioenergetic requirements are based

on the need to support existing body mass (a function of age, gender and size)

and the energy needed for travel (a function of distance traveled, topography,

and snow conditions). Available forage is a function of biomass at the beginning

of the simulation (estimated from satellite imagery), consumption by elk agents,

and snow cover. Elk agents were subjected to the snow conditions associated

with the 1996/1997 winter, a particularly harsh winter. As these agents interact

with the landscape, they make decisions about whether to forage or migrate based

on the change in habitat quality, their current location, and their decision

matrices. Movement decisions were based on the rules documented in sections 3.2.3

and 3.2.4.

Figure 4. Decision matrix for when to migrate. Row-wise and column-wise headers
represent normalized habitat quality (from snow depth) at time t–1 and t. The value of
each cell is randomly drawn from a uniform distribution U[0,10].
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4.2 Learning migratory paths (the value of wij)

Spatial knowledge, stored in cognitive maps represented as directed weighted graphs

(section 3.2.1), is learned by mimicking the behaviour of successful elk (e.g. the lead

elk in a cow/calf herd), the reinforcement of successful paths, and exploration. At

the beginning of the simulation, it is assumed that elk have no spatial knowledge

(e.g. they are relocated to a new region); the weights on all edges in a cognitive map

are initialized to 0. The goal is to maximize elk fitness by learning an optimal set of

edge weights (wij).

4.2.1 Learning paths through observation and mimicry. Without observation and

mimicry, the knowledge-base of each elk would be limited to its own experiences.

Successful cognitive maps are communicated to and mimicked by simulated elk in

two ways. First, all elk in the same herd share a common cognitive map. This

replicates a process by which spatial knowledge is passed down through successive

generations as calves follow cows across the landscape. Second, an EA is used to

identify and evolve migratory paths that lead to high end-of-winter fitness. Selection

and recombination within this EA act as a form of communication and mimicry by

distributing knowledge of successful paths throughout the population. The

chromosome to be operated on comprises the set of edge weights that represents

the cognitive maps of cow/calf herds (i.e. each allele represents an edge that connects

landscape patches). During each generation in the EA, simulated elk attempt to

migrate from summer to winter range over the time frame of November to April.

The objective was to maximize end-of-winter body mass at the population level. At

each time step, elk use spatial memory, environmental information, and the decision

rules described in section 4.1 to make movement and foraging decisions.

We use intermediate recombination to produce the next generation of solutions.

Intermediate recombination, also referred to as weighted crossover, is implemented

as follows:

Let W(G1) and W(G2) be two selected chromosomes and W(G3) the new

chromosome to be generated. According to intermediate recombination:

W G3ð Þ~r �W G1ð Þz 1{rð Þ �W G2ð Þ ð11Þ

where r (r g [0, 1]) is a constant used to adjust the contribution of parent

chromosomes W(G1) and W(G2) to the offspring chromosome W(G3).

The value of r is set at 0.5 in our model, and so the value of each allele in the child

solution is the mean of the two parent solutions. Rank-based selection and elitism

(gap size equals 0.9) are used to determine the set of solutions that is used to produce

offspring. The algorithm was allowed to run for 100 generations.

Unlike most implementations of EAs, each allele in our model can have value

both as an independent connection between two patches and as an element in a set

of alleles that represents a successful path. The weights associated with a set of

connected edges that forms a path should, therefore, be strongly correlated.

Traditional EA implementations will have difficulty evolving this kind of structure

in chromosomes. Mutation, in particular, is problematic because it introduces noise

that would disconnect useful edges and inhibit convergence toward a solution. To

address this issue we introduce Hebbian learning into the EA algorithm and

implement mutation as a phenotypic (rather than genotypic) response to system

state.
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4.2.2 Reinforcing successful paths through Hebbian learning. We apply Hebbian

learning to reinforce (or penalize) all edges in a given path proportionately to the

fitness of the associated elk at the end of the winter migration (i.e. after each

generation in the EA). Recall that each vertex vi in an elk’s cognitive map can be

viewed as a place cell, and each edge eij the synapse that links place cell i to place cell

j. Now, let path Pk be defined as the set of all vertices Vp and edges Ep traversed by

elk k during one generation. Given place cells vi and vj, and synapse eij, we can

formulate the learning process as follows:

dwij tj ~

g1 � ai tj � aj tj if vi[Vp and vj[Vp

{g2 � ai tj � aj tj if vi[Vp and vj 6[Vp

0 if vi 6[Vp and vj 6[Vp

8><
>: ð12Þ

where dwij|t is the change in the weight of edge eij at time t; g1 is a learning rate that

determines how quickly dwij increases in response to positive (Hebbian) reinforce-

ment (0,5g1,51); g2 is a discount rate that determines how quickly dwij decreases

in response to negative (inhibition) reinforcement (21,5g2,50); and ai|t and aj|t

are the activity states of neurons vi and vj at time t.

The activity state of a neuron is a function of elk fitness:

ai tj ~aj tj ~f Fitness Elkk tj
� �� �a ð13Þ

This process rewards edges that comprise paths that are associated with high end-of-

winter fitness values and penalizes those associated with low fitness values. We

assume that the relation between synaptic weight and elk fitness should be

approximately linear and, thus, set a to 0.5 (equation (12)).

4.2.3 Exploration through stochastic phenotypic response. Adaptation cannot occur

without exploration. The traditional EA method to promote exploration in the

solution space is to randomly mutate the values of alleles in chromosomes. As

suggested above, this introduces noise that disconnects useful edges that form

migratory paths. Without mutation, however, EAs are likely to converge

prematurely to local optima. To encourage exploration without the deleterious

effects of random mutation, we perturb the phenotypic expression of the genotype,

rather than the genotype itself. This is accomplished by allowing elk to respond

stochastically to environmental stimuli (equations (4) and (5)). If these perturbations

from more established paths prove to be successful, they will be reinforced through

selection and Hebbian learning. By adding a stochastic component to movement

behaviour, we also account for the imperfect perceptual abilities of elk,

environmental factors that are not explicitly modelled, and decision-making error.

5. Results and discussion

We simulated elk migratory behaviour using snow and vegetation data for 1996/

1997. Vegetation biomass was estimated using an empirical model that regressed

field data against data derived from Landsat imagery (Crabtree unpublished data),

and snow cover was estimated using the Yellowstone Snow Model (Farnes et al.

1999). The results of the when-to-migrate model are presented in figures 5 and 6.

From these graphs, we see that simulated elk behaviour changes abruptly as habitat

quality drops from 0.7 to 0.6; the weight on migration (wmig) quickly rises above one,

indicating a sudden and strong migratory response. A habitat quality of zero is
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associated with the most SWE elk tolerate—about 40 cm (Turner et al. 1994).

Therefore, a habitat quality index of 0.6 is equal to 16 cm SWE (120.6) * 40).

Assuming a snow density of 0.4, the simulated elk learned to migrate when snow

depth exceeded 40 cm (results suggest that the model is relatively insensitive to

assumptions about snow density). Sweeney and Sweeney (1984) noted that 40 cm

produced migration movement in Colorado. Turner et al. (1994: 482) working in

YNP, and citing Parker et al. (1984) and Sweeney and Sweeney (1984), stated that:

‘… free ranging herds are generally restricted in distribution by snow depths

.46 cm’. While these results look promising, it should be noted that there is

variability in the reported snow depths associated with migration. Rudd et al.

(1983), for example, stated that some elk in YNP began to migrate at 20 cm.

Furthermore, there is uncertainty in our estimates of many model parameters. Even

Figure 5. Learned weights for migration (wmig) given habitat quality over generations. The
EA converges in approximately 75 generations. As weights rise above 1, migration becomes
increasingly probable. This graph suggests that agents learn to respond very differently to
environmental change as habitat quality drops below 0.7.

Figure 6. Profile of learned weights for migration (wmig) over habitat quality. Elk learn to
migrate when habitat quality drops to 0.6.
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so, these results suggest that intentional agents can learn a realistic response to

changing environmental conditions.

5.1 Where to migrate

We investigated the relationship between spatial behaviour and bounded spatial

knowledge by altering the way the initial elk population is distributed across the

landscape. We began by distributing 500 elk randomly across the landscape

parameterized to reflect the 1996/1997 winter conditions. The results of this

experiment are presented in figure 7. Edges in this cognitive map represent the

maximally weighted outwardly directed edge (i.e. the outwardly directed edge

associated the maximum mean weight) from each vertex. We see clearly defined

routes in logical locations. Biomass consumed, represented in blue, provides a useful

visualization of the cumulative effect of migratory decisions. In figure 8, we see that

the final positions of elk match the available 1995 elk count data reasonably well.

Note that this comparison between observed and simulated patterns is preliminary

because we are not simulating the entire migratory range, and we do not know the

initial locations of elk. As a proof-of-concept, however, we find these results

promising. The winter kill rate for cows for the harsh winter of 1996/1997 was 20%,

and 30% of the calves died. Winter kill rates reported in the literature for nearby

herds compare favourably with these simulated values (Turner et al. 1994, Garrott

et al. 2003). While these published data are not directly comparable with our

simulated results, the fact that they do compare well provides us with some level of

confidence that our model is performing well.

5.2 Evaluation

The stated objective of this paper is to present an approach for the representation of

spatially aware mobile agents. To provide context to this work, we applied our ideas

to the simulation of elk migratory behaviour. It is beyond the scope of this paper to

fully investigate the ability of the resulting model to replicate real-world processes. It

is important, however, to evaluate the degree to which the simulation model

produces consistent and logical results. To conduct this evaluation, we ran three

experiments.

5.2.1 Experiment 1: Model stability. The first experiment was designed to assess the

effect of stochastic behaviour on simulation results. The ‘where to migrate’ simulation

was run 100 times without changing model parameters or input data. Two outcomes

were expected. First, model results would be stable at the aggregate level (i.e. there

would be little difference in general migratory patterns). Second, variability in model

results would be greatest in those portions of the landscape that were explored least by

elk agents (e.g. higher elevations and areas with low biomass). A composite cognitive

map was produced by calculating the mean weight for all edges in 100 runs. Figure 9

illustrates maximal outwardly directed edges of the composite map. The overall

structure of the resulting migratory paths is very similar to the paths illustrated in

figure 7. For each vertex in the graph, we calculated the number of times that the

maximal edge of an individual run was the same as the maximal edge of the composite

map. The results of this calculation were mapped to visualize variability in path

selection across space (figure 10(a)); high values suggest that elk tend to travel in

exactly the same direction from one vertex to the next, low values suggest significant

variability in edge selection. In figure 10(b), we present the results of a similar analysis,
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but in this case we look for a tendency for elk to travel the same general direction by

including in the calculation edges that are adjacent to the maximal edge of the

composite map (e.g. if the edge from the composite map runs north, the edges from

individual maps that run north, northeast, or northwest will also be included). As

expected, figures 7, 9, and 10 suggest that the overall structure of migratory paths

remains relatively stable, and stability increases in those areas most travelled.

Figure 7. Results of a single simulated migration. The spatial distribution of elk at time to

was random. The top map represents total biomass foraged (in blue) from November to April
and is representative of cumulative migration patterns. The bottom map represents the
cognitive map that produced these results. Edges represent the maximally weighted outwardly
directed edge from each vertex. The background layer (green) is initial biomass.
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5.2.2 Experiment 2. Bounded knowledge. The simulation results presented in

section 5.1 were based on an assumption of complete communication among elk

cow/calves herds (i.e. knowledge is shared among all herds). In reality, this level of

communication, and the resulting knowledgebase of elk, is likely to be more limited.

We would assume, for example, that an elk’s spatial memory would become less

accurate and more uncertain the farther it gets from its summer range and from

well-travelled migratory paths. Bounded spatial knowledge leads to uncertainty as

organisms move away from core areas. To investigate this assumption, we reran the

simulation presented in section 5.1 with the initial distribution of elk constrained to

a single patch (location A). Elk spread out in search of forage until heavy snowfalls

begin, then they start their migration. Figure 11 illustrates the results of this

Figure 8. Simulated pattern of elk compared with 1995/1996 elk count data (1996/1997 data
were unavailable).
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simulation. We see from this map that the paths taken by elk who start their

migration near to their home patch (i.e. in well-explored territory near location A in

figure 11) are more direct and, thus, efficient than those taken by elk who begin their

migration farther away (i.e. in less well-explored territory, location B in figure 11).

The utility of frequently explored routes near an elk’s summer range was better

known than equally good (compare with figure 7) but more distant routes. Bounded

knowledge and adaptation to spatial heterogeneity helps explain the diversity of

migratory behaviour exhibited by real elk herds. Furthermore, the reuse of known

winter and summer ranges, behaviour that may be deemed sub-optimal given

rational choice theory, may be appropriate given uncertainty and bounded

knowledge.

5.2.3 Experiment 3. Stimulus. We hypothesized that cognitive maps would become

more highly structured as the strength of stimuli increased. To test this hypothesis,

we executed a series of five simulations where snow depth was systematically

reduced to 50% of the 1996/1997 winter depth in 10% steps. According to our

hypothesis, lower snow depths (lower stimuli) should produce cognitive maps with

less structure than higher snow depths. The results of the original 1996/97 run and

the 50% run are presented side by side in figure 12. A comparison of these two

cognitive maps illustrates that there is, in fact, less spatial structure at the 50% level;

this is particularly apparent in the two circular zones indicated on the map. The low

snow cognitive map is also associated with significantly lower edge weights

suggesting greater variance in the movement decisions of individual elk agents. A

comparison of all maps suggests that the cognitive maps of elk begin to show

significant organizational structure at around the 80% level. While these results are

Figure 9. Composite cognitive map produced by calculating the mean edge weight of 100
simulations. A comparison between this map and that depicted in Figure 7 suggests that at the
macro-scale, stochastic behavior has little impact on results (the learning algorithms are
stable).
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(a)

(b)

Figure 10. These maps depicts the stability of edge-specific results. In (a), edges are
symbolized by the number of times that the maximal edge of an individual run, in the 100 run
series, is exactly the same as the maximal edge of the composite map (animals will tend to
move in exactly the same direction). In (b), adjacent edges are included (animals will tend to
move in the same general direction).
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qualitative, they do suggest a nonlinear behavioural response to environmental

stimuli.

6. Future research

Our work to date has explored alternative ways of representing spatial memory,

learning, and behaviour in mobile virtual agents. Although additional validation

Figure 11. Results of simulated migration—elk initially located in a single patch. The top
map represents total biomass foraged (in blue) from November to April and is representative
of cumulative migration patterns. The bottom map represents the cognitive map that
produced these results. The background layer (green) is initial biomass. Elk migrate more
efficiently from well-explored areas near their ‘home’ patch.
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work is needed, the initial results suggest that such agents can, in fact, learn realistic

spatial behaviour. Current and future work will focus on refining this model and

using it to help study ecosystem dynamics in Yellowstone’s northern elk winter

range. Two issues are of particular interest.

(a)

(b)

Figure 12. Learned patterns become more highly structured as the stimulus becomes
stronger. The migratory paths produced by elk agents exposed to low snowfall levels (a) are
less well developed than those produced by elk exposed to high snowfall levels (b).
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First, we began by suggesting that existing agent-based models of mobile entities

can be placed into context by considering what agents know about the spatial and

temporal patterns of resources and threats. A continuum exists with mechanistic

(stimulus/response) models on one end and omniscient models at the other. Our

work is placed somewhere in the middle of this continuum, which we believe

represents reality. Exactly where reality exists in this middle range is difficult,

perhaps even impossible, to know. We can, however, begin to simulate the response

of elk to different assumptions about the ‘boundedness’ of their knowledge and

cognitive abilities, and compare these results with real-world data. These kinds of

sensitivity tests are currently under way.

Second, the model results presented in this paper represent a pre-wolf, park-

interior state (i.e. no predation by wolves and humans). Current work is focused on

building a realistic representation of predation. Once this component is added, we

hope to use the model to help extend ongoing discussions about trophic cascades by

including considerations of human impacts on land use and management.

7. Conclusions

Over the past decade, spatially explicit agent-based models have been the focus of

considerable research, and significant progress has been made in a few key areas (e.g.

resource utilization and land-use/land-cover change). These models are often built to

help scientists understand how systems adapt to changing environmental systems.

However, relatively little attention has been paid to how agents learn, store, and use

spatial knowledge to make decisions. We argue that the simulation of such processes is

crucial to the representation of adaptive agents that respond to changing environment

conditions, or to other agents, in realistic ways. In this paper, we address this issue by

constructing a model of adaptive, spatially aware, and mobile agents. To motivate this

work, we consider how the migratory behaviour of elk in Yellowstone’s northern elk

range adapts to changes in land cover and resource-management strategies. Elk agents

are designed to learn about and adapt to changing environments through repeated

interaction with a digital representation of the northern range. They gain knowledge

about the spatial location of resources and threats and develop migratory behaviours

that help them survive the winter season. The learning procedures used here are based

on evolutionary algorithms and Hebbian learning.

Learned behaviour is used to simulate elk migratory behaviour. To evaluate the

ability of the MAS to mimic real-world patterns we compared the conditions under

which migration began, location of elk at the end of the simulation, and winter

mortality rates with published data. The simulated results compared favourably

with these data. While much work remains to be done in the representation of

spatially cognizant agents, these promising results suggest that MAS, built from

adaptive, spatially aware, and mobile agents, can be used to help explore complex

responses to changing environmental conditions.

References
AHEARN, S.C., SMITH, J.L.D., JOSHI, A.R. and DING, J., 2001, TIGMOD: an individual-

based spatially explicit model for simulating tiger/human interaction in multiple use

forests. Ecological Modelling, 140, pp. 81–97.

ARKIN, R.C., 1998, Behavior-Based Robotics (Cambridge, MA: The MIT Press).
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