
Research Article

A probe mechanism to couple spatially explicit agents and landscape
models in an integrated modelling framework

PHIL A. GRANIERO*{ and VINCENT B. ROBINSON{
{Department of Earth Sciences, University of Windsor, 401 Sunset Avenue, Windsor,

Ontario N9B 3P4, Canada

{Department of Geography, University of Toronto at Mississauga, 3359 Mississauga

Road North, Mississauga, Ontario L5L 1C6, Canada

(Received 3 October 2005; in final form 1 May 2006 )

Many environmental, ecological, and social problems require investigation using

a mixture of landscape models, individual-based models, and some level of

interaction between them. Few simulation-modelling frameworks are structured

to handle both styles of model in an integrated fashion. ECO-COSM is a

framework that is capable of handling complex models with both landscape and

agent components. Its Probe-based architecture allows model components to

have controlled access to the state of other components. The ProbeWrapper is a

modification of this common design approach which allows alterations to the

state retrieved from the model and is a critical component of ECO-COSM’s

broad modelling capability. It allows agents to apply perceptual filters or

measurement errors to their observations of the landscape, or apply decision-

making strategies in the face of incomplete or uncertain observations. ECO-

COSM is demonstrated with a landscape model of metapopulation dynamics, an

agent model of squirrel dispersal, and a coupled landscape-agent model to

evaluate field-data-acquisition strategies for identifying nutrient or contaminant

hotspots.

Keywords: Object oriented; Agent; Landscape model; Individual-based model;

Simulation framework

1. Introduction

Parker et al. (2002) review a large body of research that uses models of multiple

autonomous agents making land-use decisions by using information about the

landscape, its relation to the agents, and interaction among the agents themselves.

Their decisions in turn influence the evolution of the underlying landscape. The

agents themselves do not necessarily have a spatially explicit representation. As

land-use managers, the agents’ decisions regarding land-cover change are not

usually dependent upon their respective locations on the landscape when they make

their decisions.

Knowledge of the agents’ locations upon the landscape is essential in other

modelling domains, such as in studies of animal or human movement (e.g. Batty et

al. 1998, South 1999, Westervelt and Hopkins 1999, Kukla et al. 2001). Typically,

these agents are not primary drivers of landscape evolution; rather, the landscape

*Corresponding author. Email: graniero@uwindsor.ca

International Journal of Geographical Information Science

Vol. 20, No. 9, October 2006, 965–990

International Journal of Geographical Information Science
ISSN 1365-8816 print/ISSN 1362-3087 online # 2006 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/13658810600830541



drives the agents’ future states and spatial arrangement. Although the landscape is

slowly evolving under the influence of larger scale forces, the landscape is treated as

a static pattern during the short modelled time frame. These models are generally

constructed using an agent-based modelling framework that can access GIS data.

Brown et al. (2005) outline methods and alternative architectures for coupling agent

model development platforms and GIS along with several examples. Using more

illustrative examples, Westervelt (2002) discusses several theoretical and technical

issues involved in coupling agent models with GIS.

There are problem domains where the temporal scale of landscape change is

similar to the scale of agent movement and decision-making, for example reaction

and emergency response during a natural hazard such as a fire or flood. In these

cases independent, complex agent models and landscape models may operate

simultaneously, with mutual influence on the other’s future state. Holt et al. (1995)

and Westervelt and Hopkins (1995) are early, problem-specific examples of linked

agent-landscape models. The ATLSS system (DeAngelis et al. 2000, Gross and

DeAngelis 2001) is one of the largest projects coupling individual-based models,

landscape and process models, and GIS data.

A modelling framework is a reusable, ‘semi-complete’ application that can be

extended or specialized to produce custom applications (Johnson and Foote 1988),

speeding the development process but not necessarily removing programming or the

need to understand programming (Inchiosa and Parker 2002). Swarm (Minar et al.

1996) is one of the earliest and best-known general-purpose agent-based modelling

frameworks where, in the original version, the landscape was a sub-swarm of

‘landscape cell agents’. More recent versions include grid components, and GIS

connections are being considered. Echo (Holland 1992, 1994) uses a schematic

representation of grid ‘sites’ to model species abundance (Forrest and Jones 1994)

and community structures (Hraber and Milne 1997) under different interaction

behaviours. Gecko (Booth 1997), which is now incorporated into Swarm, extended

Echo’s spatial structure in a more geometric sense and incorporated more explicit

spatial constraints into agents’ movement to model species at multiple trophic levels

within the landscape (Schmitz and Booth 1996).

ASCAPE (Parker 2001) is one of the first in a new generation of powerful agent-

based modelling frameworks. It has a highly interactive environment that allows a

user to control the model dynamics while the model executes. It requires some

programming skill, and its more abstract range of world topologies tend to be less

suited to spatially explicit landscapes. MASON (Luke et al. 2005) is a framework

that can support millions of agents with a rich range of visualization components for

a variety of topological spaces. It supports a range of 2D and 3D spaces, but none

are explicitly matched to GIS data models. Repast (Collier et al. 2003) has emerged

as one of the more powerful and popular frameworks for constructing agent-based

models to explore highly complex social interactions. It directly imports GIS data,

including ESRI shapefiles and ASCII raster files. However, its agent feature set can

generate a steeper learning curve for developers who only require simple agent

structures in their modelled environment.

Object-oriented design (OOD) forms the basis of most modelling frameworks that

are noted above. This process of decomposing a system of interest by hierarchical

abstraction (Booch, 1994) has become quite familiar and is a mainstay of the agent-

based ecological modelling community. The OOD community’s collective experi-

ence has identified several design principles that help a designer choose between

966 P. A. Graniero and V. B. Robinson



alternative decompositions of a problem (Martin 2003). Similarly, certain common

abstraction structures emerge across problem domains and systems. Design patterns

are meta-abstractions that formally document problem scope, general solution

structure, alternative forms, and common implementation issues (Gamma et al.

1995). They form both a toolbox of solutions for common design problems and a

vocabulary that helps object-oriented designers to discuss design alternatives. The

common design pattern vocabulary is used wherever possible in this paper to

describe general design principles or software structure.

This paper illustrates how the range and flexibility of a simulation modelling

framework may be augmented by specifically exploiting the Principle of Indirection

and the associated Delegation and Decorator design patterns (Gamma et al. 1995).

This is illustrated using ECO-COSM as an example of a framework which can

accommodate general landscape models, spatially explicit agent-based models, and

coupled agent-landscape models within a GIS framework using a small class library.

In section 2, ECO-COSM’s motivation and goals are outlined and compared with

other common frameworks. Its architecture and subsystems are described with a

focus on the Probe structure. An example model illustrates a dynamic landscape

with static observers. Section 3 describes how the Probe structure was exploited to

create support for mobile, spatially explicit agents on a static landscape. Section 4

demonstrates the early steps of developing a simple dynamic landscape coupled with

dynamic observers. Section 5 concludes with some summary discussion.

2. ECO-COSM framework

ECO-COSM (Extensible Component Objects for Constructing Observable

Simulation Models) provides a library of modular software objects that manage

the structure of space and time within a simulation, including mechanisms to handle

concurrent activity among objects within the simulation. The framework is freely

available for download at http://matrix.memf.uwindsor.ca/projects/eco-cosm. This

section provides a conceptual overview of the basic components in the modelling

subsystem. Full details of the ECO-COSM structure are described in Graniero

(2001) and in the reference documentation available on the website.

ECO-COSM was originally conceived to explore the interaction between field

sampling strategies (such as spatial pattern, density, and measurement accuracy)

and our ability to characterize complex ecological systems (Graniero 2001). It

focuses on simulation experiments where the simulation trials are executed as

independent programs and parameterized with command-line arguments, or as

parameterized system objects in a larger simulation experiment program. A

simulation may take only seconds or minutes to execute, but in an experiment

several thousand trials may be executed across varying landscapes, with hundreds of

alternative data sets drawn from each trial. The design therefore was motivated by

data extraction and analysis rather than real-time visualization and interaction.

Several design goals guided ECO-COSM development:

N highly flexible in extracting and manipulating localized state;

N easily interchangeable spatial structures and spatial interactions;

N usable by students and scientists with minimal formal training in program-

ming;

N a small, simple core which can be extended for specific applications;

N access to spatial data stored in various GIS formats;

Spatially explicit agents and landscape models 967



N easily embedded into simulation control programs or scripts; and

N visualization tools separated from simulation tools.

It was originally designed to support coupled lattice landscape models, but as we

will demonstrate in section 3, its architecture allowed the addition of a basic agent

subsystem with about 2 weeks’ worth of development effort.

We first examined the possibility of extending Swarm, one of the better-known

simulation frameworks at the time. However, the use of an uncommon language

(Objective-C) available only on limited platforms was felt to be too large a barrier to

general portability, and an impediment to effective use by less experienced

programmers. ECO-COSM was written in Java using its most general language

features and to date has been robust on a range of computer platforms and virtual

machines. Java was selected as the implementation language for the same reasons

commonly described by others (e.g. Wood 2002, Tobias and Hofmann 2004,

Weidmann and Girardin 2005). It is commonly understood that Java is slower than

fully compiled languages, but we contend this is less of an issue than in the past.

Newer Java Development Kits (JDKs) are faster than their recent predecessors by a

factor of two (Weidmann and Girardin 2005), and processing speeds have increased

dramatically even in inexpensive computers. Execution time is traded off against the

ease of developing and testing the model, and human time is generally more valuable

than computing time.

2.1 System structure

At the highest level, ECO-COSM has five main subsystems: Scheduling, Modelling,

Instrumentation, I/O, and Utility. The simulation model proper is constructed using

components from the Modelling subsystem, which control the spatial and temporal

structure of the model. During execution, components from the Scheduling

subsystem trigger events within the model. Optionally, components from the

Instrumentation subsystem may be used to extract data from the operating model.

The instrumentation is also triggered by the Scheduling subsystem. Components in

the Utility subsystem include parameter sets, random distribution generators, and

statistics collectors which are used throughout the framework to assist with many

tasks. The I/O subsystem includes components for model management, data file

manipulation, and formatted data streams including GIS sources.

Each simulation program has one instance of the Clock and the Schedule from the

Scheduling system. Any object may access the Clock’s time. The Schedule keeps

track of all pending actions (ScheduleItems) and triggers items based on scheduled

time and a Precedence code, which may be used to enforce order on types of actions

scheduled for the same time. The Scheduling subsystem is an event-driven structure

(Banks and Carson II 1984). The Schedule advances the Clock time to the next

pending ScheduleItem and executes that action by invoking the execute() method of

the embedded Command object. The pattern is repeated until a termination action is

encountered or nothing remains to be done on the Schedule. A ScheduleItem may be

configured so that once it is executed, it reschedules itself a set time interval into the

future. Iterative time-step models like cellular automata or coupled lattices use this

repetition feature to continually reschedule their calculation actions for the next

time step.

The abstract Simulation class is the central component of any modelling exercise

(figure 1). The programmer extends the class and writes a setup() method that

968 P. A. Graniero and V. B. Robinson



structures the simulation for the desired model, attaches instrumentation, and

acquires memory or file resources required for the model. The run() method is very

simple and is the same for all concrete Simulations: until the Schedule is finished (no

more pending items or a terminate command was triggered), trigger the next

pending item on the Schedule. The programmer extends the teardown() method to

finish any data collection, release resources, and get ready for program termination.

A Simulation object is composed of many other objects: references to the Clock

and Schedule to control the model execution; a ParameterSet (described below) to

set up the particular run-time conditions for the model; a World (section 2.2) which

is the simulation model proper; and possibly one or more Instruments (section 2.3)

to collect data from the operating simulation.

A Simulation class can invoke a model in two ways: as a stand-alone program

invoked by the user from the command line via the main() method; or as an object

within a larger model management application. The main() method generally

executes the following steps: (1) create a ParameterSet from the command line; (2)

create an instance of itself using the ParameterSet for argument values; (3) call

setup(), run(), and teardown() in order; and (4) terminate the program. A model

management application would generally: (1) create a ParameterSet using its own

internal functions; (2) create an instance of the Simulation object using the

ParameterSet for argument values; (3) call setup(), run(), and teardown() in order;

and (4) carry on with its own functions. A ParameterSet is a collection of key/value

pairs used to configure the model. Some convenience methods determine if values

are present for a specified list of keys, and construct key/value pairs from a

collection of ‘name5value’ strings from the command line, a configuration file, or

other source.

2.2 Modelling subsystem

An ECO-COSM simulation contains a single World object, which manages the

overall spatial structure and mediates communication between components of the

simulated world (figure 2). The World is composed of one or more Layers, each

identified by a keyword and representing some attribute or collection of features

that are of interest in the simulation. This structure matches the conceptual structure

of most GIS packages. Specification of processes and behaviour in the modelled

Figure 1. Simplified UML diagram showing the main subsystems and objects of the ECO-
COSM simulation framework. Complete, detailed UML diagrams are available at http://
matrix.memf.uwindsor.ca/projects/eco-cosm.

Spatially explicit agents and landscape models 969



world is done at the high level of ‘resource layer’, ‘land cover layer’, or ‘disturbance

zone’ without the distraction of how the state is extracted from the GIS.

When a Layer is instantiated, it is associated with a StepRule object. The

StepRule structure follows Martin’s (1996) Dependency Inversion Principle (i.e. do

not depend on concrete classes; depend on abstractions), which is a fundamental

design principle in most frameworks. The StepRule is a Java interface, a purely

abstract declaration of method signatures, preferably with documentation describ-

ing the intended purpose of each method. StepRule declares a single method called

step() which calculates the next state of an object within the simulation model. A

class can declare that it implements an interface if it has a concrete implementation

of all methods declared in the interface; a step() method in the case of a StepRule.

Instances of the implementing class may be used anywhere a StepRule type is

expected. When a StepRule object is instantiated, a target Layer is named as an

argument. When a Layer is expected to calculate its next state, it calls its StepRule’s

step() method, and the calculations are carried out. In the case of a grid

representation, the StepRule will establish the next state of each grid cell. The

binding gives the StepRule private access to the Layer’s state through methods such

as getCurrentState() and setPendingState(). If the Layer is static, a NullStepRule is

used, which carries out no actions in its step() method. In order to change the

dynamics of a Layer, a different kind of StepRule is assigned to it. Additional

complexity is added to a basic model by creating new, more sophisticated concrete

StepRule implementations. This is where the bulk of ECO-COSM model design and

code development takes place.

Referring to Layers by using keywords is an application of the Principle of

Indirection (i.e. reference something using a name, reference, or container instead of

the value itself). If the next state depends in part on another Layer, the StepRule

may send a request to the World in the form getState(layername, location) where

layername is a keyword associated with a Layer, and location is a Location object

containing (x, y) coordinates. The StepRule is not concerned about the

representation or structure of the Layer. As long as the conceptual model specifies

that such a Layer will exist in the World, the StepRule may be designed to consider

the state in that Layer when making its calculations.

Figure 2. Simplified UML diagram of the main objects comprising a simulated world within
the modeling subsystem. Note that the levels of abstraction in the design match with the
conceptual model, spatial data model, and spatial data structure in GIS design.

970 P. A. Graniero and V. B. Robinson



The Layer is an abstract representation, aligning with the developer’s conceptual

model of the landscape. It must be associated with an implementation of the

DataModel interface to manage the general mechanism for accessing the correct

value at the specified location. For example, if an object queries the World for the

‘resource’ state at a given location, it ultimately is not concerned whether the value is

stored in a grid cell at that location (i.e. a GridModel is used), or stored as the

attribute value in a polygon containing that location (i.e. a VectorModel is used).

Although the DataModel object manages the mechanism, it does not access the

actual data. A DataModel must specify a DataStructure, which has the code to

query a particular spatial database format and return a value. The DataStructure is

also an interface; concrete implementations of the grid data model include

GRASSGrid, ESRIGrid, and ECOCOSMGrid. The modeller may choose to

change an input layer from a GRASS raster to an ESRI shapefile, and the StepRule

representing the modelled system’s dynamics will not have to change. Of course, the

modeller must still consider the implications of changing the underlying spatial

structure of a reference Layer.

The World must be associated with a BoundaryTopology implementation, which

sets the policy that describes how edges will be handled within the simulation, and

therefore how the (x, y) coordinates in a Location object map to the ‘physical’ extent

of the World (with respect to the spatial database). This is done by invoking another

aspect of the Principle of Indirection via the Delegation design pattern: that is, one

class ‘hands off’ responsibility for a task to another class, possibly augmenting the

request as it is forwarded. When a simulation object makes a request for the state of

a Layer at a particular Location, it is done at the conceptual level of the model. The

location is chosen with regard to the general logic that makes sense within

the modelled world, and not with regard to the particular data set underlying the

executing model. Before querying a target Layer, the World passes the Location to

the BoundaryTopology which returns a new Location or indicates an error if the

logical value violates the rules which govern the mapping to the World’s ‘physical’

extent. The World actually queries the Layer with the transformed Location. Under

normal conditions, the original and transformed Locations are identical. At the edge

of the World’s ‘physical’ extent, the transformed Location depends upon the specific

BoundaryTopology implementation.

Consider an implementation of the well-known model Conway’s Game of Life

(Gardner, 1971). The World’s edges are at (0,0) in the southwest and (99,99) in the

northeast. The World is composed of one Species Layer using the Grid

DataModel, 100 by 100 cells in size. The state of a cell is either 1 (alive) or 0

(dead). The next state of each cell in the Species Layer depends on the current

state plus the state of all immediately neighbouring locations. The next state for

location (50,99) must be evaluated: what is the value at (50,100)? A HardBoundary

implementation would report an ‘out of bounds’ error, and the StepRule would

react in the manner that the modeller specified for such cases (in this case, ignore

the cell). A WrappingBoundary implementation would do a modular transforma-

tion of the location, and the World would actually return the state at (50,0),

effectively creating a torus. By substituting different BoundaryTopology imple-

mentations and executing the otherwise unchanged model, the modeller can

explicitly examine the effect of edges on model results (figure 3). The model’s

behavioural specification has not changed, so any difference in result is solely

caused by the way edges are treated.

Spatially explicit agents and landscape models 971



Abstraction of the conceptual model—data model—data structure chain,

abstraction of locations within the world, and abstraction of the boundary topology

are very powerful from the standpoint of model development. However, the

presence of multiple levels of abstraction, the potential for heterogeneous data

sources, and a variable policy for coordinate transformation that is unknown a

priori mean that the mechanism to access state within the operating model must also

be abstract. ECO-COSM therefore has an instrumentation subsystem that provides

abstracted data access.

2.3 Instrumentation subsystem and Probes

The instrumentation subsystem has few classes but is conceptually the most complex

and most versatile in the entire framework (figure 4). It allows the modeller to create

very sophisticated data-collection tools, connecting them to a working simulation

model with no impacts or side effects on the model calculations. A basic model will

execute successfully from start to finish and terminate with none of the results

observed or captured. The model, representing the formalized behaviour of some

ecological system, remains completely separate from any results data that are

gathered for later analysis. Get/set methods are a common idiom used by several

frameworks, including ASCAPE, to control access to state within model elements.

This is good practice in general OO programming for automatic, extensible access

via introspection which reduces the need for explicit coding. However, one can

Figure 3. Edge effects on Conway’s Game of Life (Gardner 1971). 50 by 50 cell grids at time
0, 10, 20, 30, and 40. The same ConwayLife StepRule and initial grid configuration was used
in each example, only the BoundaryTopology differs. All changes in pattern can be attributed
to the change in handling references to cell locations outside of the grid’s physical extent.

972 P. A. Graniero and V. B. Robinson



accidentally expose too much access (especially editing access) to elements of a

simulation model, which increases the risk that instrumentation and user controls

may incorrectly affect model state.

In ECO-COSM, access to any get/set methods is restricted to low-level objects

belonging to the modelling subsystem. Instead, model objects such as StepRules

must obtain Probes from Probeable model components, providing access to a

component’s state but keeping the mechanics opaque. A Probe must be explicitly

written to give read-only access to particular state. Instruments must request a

Probe, and the model results are insulated from potential programming side effects

due to changes in monitoring or data-collection code. This common Observer design

pattern (Gamma et al. 1995) forms the basis for the Model-View-Controller (MVC)

approach to graphical user interface design (Krasner and Pope 1988), and is used by

Swarm Probes, ASCAPE Views, and MASON Inspectors to access and graphically

display model state during execution. ECO-COSM Probes may also be used in this

way, but to date, our priority has focused on data extraction and analysis, and there

are few Probes for visualization. New Probes for graphical views may be created

when needed.

The primary differentiating feature of the instrumentation subsystem lies in the

ProbeWrapper, a specialization of the Probe interface and an implementation of the

Decorator design pattern (Gamma et al. 1995). Every ProbeWrapper instance has

another Probe (possibly a ProbeWrapper itself) embedded within it. When the

ProbeWrapper is queried, it in turn queries the embedded Probe. When it receives

the embedded Probe’s result, the ProbeWrapper may perform any kind of operation

on it before passing it on as its own result. In this manner, the ‘pure’ state returned

by a Probe may be modified: the modeller may work with data that are derived from

the model’s current state but do not necessarily match the exact state. The power of

this approach is illustrated in the example below.

2.4 Landscape model example

ECO-COSM was used to construct a spatially explicit, patch-occupancy metapo-

pulation model that extends the original model developed by Caswell and Cohen

(1991), integrating resource heterogeneity into the system’s colonization, extinction,

and competitive pressure processes (figure 5). Local resource availability depends

upon a static substrate Layer b and a global climate signal time series M(t). The

value of each cell n in the resource Layer r at a given time t is calculated over a range

Figure 4. Simplified UML diagram of the Probe, Probeable, ProbeWrapper relationship
(from Robinson and Graniero 2005a).

Spatially explicit agents and landscape models 973



[0–1] as:

rnt~M tð Þ|bn ð1Þ

The model includes two interacting species: a ‘fugitive’ species which can easily

colonize new areas, and a ‘superior’ species which is not as resilient but can eliminate

the fugitive species via competitive exclusion. In species Layer f, each cell n indicates

which of the species, s1, s2, or both, occupy the cell. At a given time t, the probability

Di that species si will be disturbed out of an occupied cell n is

Di~prn

di ð2Þ

where pdi is a resiliency coefficient for species i. The probability Ci that species si will

colonize an unoccupied cell n is

Ci~1{e{fidirn ð3Þ

where di is the dispersal coefficient, and fi is the frequency or proportion of local

cells (examined over a specified kernel) occupied by species si. The probability of

competitive exclusion of species 2 by species 1 is pc. These probabilities were

combined to form a probabilistic state transition matrix (table 1). The state

Figure 5. Spatially explicit patch occupancy model incorporating stochastic CA-style
species interactions. Local colonization, extinction and competition parameters depend upon
local resource levels, which in turn are dependent upon a static substrate, a global climate
signal, and regional disturbances (from Graniero 2001).

Table 1. Probabilistic state transition matrix for the patch occupancy modela.

From state

0 (2) 1 (s1) 2 (s2) 3 (s1, s2)

To
state

0 (2) (12C1)(12C2) D1 D2(12C1) D1D2

1 (s1) C1(12C2) (12D1) C1D2 (12D1)(12D2)pc + (12D1)D2

2 (s2) (12C1)C2 0 (12C1)(12D2) D1(12D2)
3 (s1, s2) C1C2 0 C1(12D2) (12D1)(12D2)(12pc)

asi within the parentheses associated with a state indicates that species i is present in that state.

974 P. A. Graniero and V. B. Robinson



transitions were embedded into StepRules which are associated with their respective

Layers; at each time step, each Layer’s StepRule is invoked to calculate the next

state for each cell. As the model is being set up, a Command object that invokes a

target Layer’s StepRule is placed on the Schedule for each Layer and configured to

automatically reschedule itself for the next time unit.

The patch occupancy model was used as a surrogate landscape to investigate the

influence of spatial sampling strategies on the accuracy of characterizing an

ecosystem (Graniero 2001). A subset of the grid cell ‘patches’ were sampled at set

time intervals with respect to their resource level and the species occupying the

patch, and the results were written to a data file. For each sample patch, a Probe

targeted at the patch’s Location was obtained from each Layer. This simulated a

network of sensor stations measuring resource level, or a field worker revisiting

sample sites to take a measurement and identify species sighted during the visit. The

value recorded at each location was not necessarily identical to the model state:

random Gaussian noise was added to the resource level to simulate instrument error,

and the species state was randomly changed for some proportion of locations to

simulate classification error. The ProbeWrapper mechanism to simulate this field-

data collection is presented in figure 6. The sample data were then used to estimate

macro-scale system characteristics at each sample time. A total resource inventory

was estimated using a representative area-weighted sum of the measurement values

across the entire study extent. A species census was estimated as the frequency of

sampled patches occupied by each species.

While sample data sets were being gathered at run time, other Probes captured the

state of the entire Layer without modification by ProbeWrappers. Utility classes

added up the resource Layer cells to produce the ‘true’ resource inventory and

calculated the ‘true’ frequencies of cells occupied by each species in the species

Layer. By examining how closely the estimates described the actual state of the

running model, it was possible to evaluate the performance effects of different

sampling design choices. For example, does the choice of spatial pattern (e.g.

random, uniform) matter? Given a choice between reducing measurement error or

increasing sampling density, which one generally reduces the magnitude of error or

degree of bias in the estimates?

In the experiment, the model was executed a large number of times using

randomly generated landscapes governed by different substrate patterns: (1)

uniform value, (2) gradients of varying degrees, and (3) patches with varying

Figure 6. Example of a nested Probe composition used by an Instrument. Names in
parentheses indicate ProbeWrappers. The state of two Layers, namely species and resource,
are probed for their current state at location (13,44). The values are degraded to simulate
instrument and classification error, and the results are combined together into a single time
stamped record.

Spatially explicit agents and landscape models 975



complexity and variability. For each model execution, 250 different field collection

campaigns were simultaneously conducted, with sampling strategies governed by (1)

Random or uniform (gridded) pattern; (2) spatial sampling density varying between

0.04% and 4% of grid cells; (3) instrument error varying between 0% and 30%; and

(4) species identification success rate varying between 100% and 60%. Once the

simulations were completed, the resource inventory and species census were

estimated for each time in each data set, and the estimates were compared with the

actual values calculated from the running model and logged to a file. The

comparisons from all of the model trials were aggregated for each sampling strategy.

The error and bias distributions were analysed for trends based on sampling

characteristics.

In general, the results showed that the choice of spatial pattern affected the

resource inventory but not species census, regardless of species rarity. For inventory,

when trend identification (e.g. increase, steady, decrease) is important, one should

use a gridded pattern to control magnitude of error, but when identifying health and

safety thresholds is important, one should use a random pattern to minimize bias.

With respect to density versus accuracy, the general results were the same for both

resource inventory and species census: at densities we can realistically achieve in the

field, increasing spatial density almost completely drives the improvement in macro-

scale estimates, and the accuracy of individual measurements has almost no

influence. From the standpoint of field planning, the results indicate that resources

should be chosen for rapid, dense coverage rather than nth decimal accuracy for

these macro-scale descriptions: mobile computers and GPS to speed up collection

and recording; equipping more field workers with inexpensive (but reliable) sensors

for resource inventory; and enlisting more field workers with basic training for

species census (e.g. the Breeding Bird Survey). It is important to note that these

results apply only to macro-scale characteristics like total inventory or total census

with patch-level observations. More simulation studies must be conducted to

evaluate the effect on estimating other ecosystem characteristics, or the effects in

other types of ecosystems.

In a real-world study represented by this simulation experiment, the data values

are typically gathered by a team of field workers moving through the environment.

This is similar to Grimm and Railsback’s (2005) notion of a ‘virtual ecologist’; that

is, the modeller programs an ecologist observer into an ABM framework that

samples the underlying landscape model in the same way that the real ecologist

would observe the natural system. However, in this study, the amount of change in

the environment during a particular survey session was assumed to be minimal, and

the order and timing of the individual measurements could be ignored. Therefore,

the extra overhead of using mobile agents was not necessary for the study, and as

such, static probes could simulate the ‘virtual ecologists’.

3. Agent-based models and ECO-COSM Probes

Any computing environment designed to support development of spatially explicit

individual-based models must allow the agent to evaluate and interact with other

individuals as well as to acquire and maintain knowledge about the surrounding

landscape (Westervelt 2002). From a GIS perspective, an animal agent must be able

to query the state of relevant GIS layers within its local perceptual range and use

that information to make decisions regarding its mobility, behaviour, and change of

internal state (figure 7). Within the ECO-COSM framework, this requirement is

976 P. A. Graniero and V. B. Robinson



directly handled by the Probe mechanism. By obtaining Probes from relevant

Probeable landscape layers (and possibly from other agents as well), an agent can

acquire a perceptual inventory of its world. This fits Bian’s (2003) hybrid approach

to representing the world in individual-based modelling, which incorporates a

traditional grid model of the environment and an object-oriented model of

individual organisms. More sophisticated field sampling simulation experiments

need mobile agents, and the Probe mechanism already provided the necessary

foundation for an agent to view its world and make movement decisions. Thus, the

Modelling subsystem was extended to include basic structures for constructing

agent-based models.

The Agent interface provides a purely abstract specification of the methods or

messages to which an implementation must respond. A particular Agent instance’s

movement and decision-making behaviour are defined by a StepRule instance

assigned upon initialization. The World can include zero, one, or more Population

objects, which are collections of Agents. Populations do not have hierarchical agent

behaviours of their own like in MASON, Swarm, or ASCAPE. The primary focus

for ECO-COSM is modelling the interaction of a small number of independent

mobile agents with their surrounding landscape. Some communication between

agents may happen, but hierarchical social structures are not prevalent in the

domain of interest. Populations are general collections with some convenience

methods much like a ScapeVector in ASCAPE. When a Population is told to step(),

it iterates through its Agents, invoking their respective step() methods. Agents can

be moved from one Population to another, for example when their state changes

from ‘active’ to ‘dead’. Broad model behaviour can be triggered based on

Figure 7. Conceptual illustration of the major components of a spatially explicit ecological
model that focuses on movement behavior of individual animals, e.g. natal dispersal. Note the
loosely coupled relationship with the geographic information system (from Robinson and
Graniero 2005b).

Spatially explicit agents and landscape models 977



Population conditions such as terminating the model when the ‘active’ Population’s

Agent count hits zero.

Agents perceive elements of their environment by obtaining Probes from the

Layers or Agents of interest. An important principle in individual-based modelling is

that each Agent may view and respond to the world in a different manner. This is

easily achieved by using ProbeWrappers, which in essence are used to somehow

modify the ‘pure’ result retrieved from a Probeable object. For example, the land

cover type observed at a distance may be subject to random misclassification due to

limits of perceptual range. Alternatively, the state’s description scheme may be

modified to suit the purpose of the observer: the grid cell may be described as ‘mature

oak’ in the land cover Layer, but the observing Agent may simply perceive it as ‘trees’.

By wrapping Probes in slightly different ways for different individual Agents of a

certain type, it is possible for the modeller to introduce variation in an individual’s

ability to perceive the world while using the same basic decision-making process.

3.1 Agent model example

ECO-COSM was used to explore the use of fuzzy logic in an individual-based model

of natal dispersal behaviour of eastern grey squirrels (Sciurus carolinensis) in an area

near the Land Between the Lakes National Recreation Area (Robinson and

Graniero 2005a). The motivation for this exploration derives from the problems of

uncertainty in both data and model parameters when using GIS-based spatially

explicit population models. A key component in most spatially explicit population

models is the process of dispersal, the mechanism by which species spread and

establish new sub-populations. However, uncertainties in the spatial data as well as

the model parameters can have an important effect on the performance of these

models. Robinson (2002) sketched out, in theory, how fuzzy logic may be useful in

addressing the persistent problem of uncertainty in such spatially explicit models.

Using a well-known species with strong natal dispersal behaviour, this modelling

exercise (1) explored issues related to the incorporation of fuzzy logic in the control

of individual object behaviour, (2) developed a plausible, prototypical fuzzy-logic-

based model of individual dispersal movement, and (3) compared the behaviour of

individual movements given three different fuzzy-based models and compared it

with an equivalent nonfuzzy, or crisp, model.

The dispersal model is described here and ecological interpretation of the results

appears in Robinson and Graniero (2005a, b). In this model, the dispersal

movement behaviour of an individual object consists of a movement decision and a

residence decision. When an object is to move from its current location, it must

decide on a destination location. Once at the new location, it assesses its

surroundings by gathering information used in the residence decision. In other

words, has the object found a suitable location, or does it continue to move on to

another location? The fuzzy-decision model is one where relevant goals and

constraints are expressed in terms of fuzzy sets. A decision is determined through an

aggregation of the fuzzy sets (Bellman and Zadeh 1970, Klir and Yuan 1995). The

goals and constraints for the movement and residence decisions are summarized in

tables 2 and 3, respectively. In the case of both decisions, information about the

surrounding landscape and conspecifics is of crucial importance. The spatial limits

on this information are often referred to as the individual’s perceptual range (Mech

and Zollner 2002). In this model, the perceptual range is tantamount to being a

spatial constraint on a query to the GIS database.

978 P. A. Graniero and V. B. Robinson



Table 2. Movement decision setsa.

Equation Description

CM5Y>F Constraint Set (CM) constrain-
ing the search to those locations
that are in the visible perceptual
range (Y) and far from
competing conspecifics (F).

Y5P>L Visible Perceptual Range (Y),
the degree to which a cell is both
visible and falls within the
perceptual range.

P~mp xð Þ~
1 if dc

xƒb
h b{dc

x

� �
z1 if bvdc

xvbz1=h
0 if bz1=hƒdc

x

8
<

:

The fuzzy set defining the ‘ideal’
perceptual range for a single
individual. X5{x} is a finite set
of locations bounded by the
limits of the study area. dc

x is the
Euclidean distance from the
location of the dispersing animal
object, c, to location x. The
point at which mp51 is
represented by b and the
parameter h controls the rate at
which mpR0.

L~mL xð Þ~max min
losc

x{a
b{a ,

c{losc
x

c{b

� �
, 0

� �
The fuzzy set describing the
degree to which location x is
visible from a particular squirrel.
The membership function for L
is defined by a closed-form
triangular function where losc

x is
the angle at which location x is
visible from location c. If the
local terrain creates a physical
obstruction to visibility between
c and x, then L50.

F xð Þ~mF xð Þ~1:0{
Sc

k~1

mk
NC xð Þ

� �
The fuzzy membership of each
location in the set of far_from_
conspecific where if a conspecific
is within the visible perceptual

range (i.e. k g 0 + Y), then dk
i is

the distance from conspecific k
to location i.

NCk x; a, bð Þ~mk
NC xð Þ~

b{dk
x

b{a aƒdk
xƒb

0 otherwise

�
The fuzzy set near_conspecific k

where mk
NC xð Þ is the degree to

which x is near conspecific k and

dk
x is the distance from

conspecific k to x.
GM5A>I Goal Set (GM) degree to which a

location is as near the edge of
the perceptual range as possible
and is forested.

Spatially explicit agents and landscape models 979



In the movement-decision model, constraints consist of locations within the

visible perceptual range and locations of conspecifics. The goal of an individual is to

find a location as near the edge of the perceptual range as possible that is considered

acceptable habitat and fits the set of constraints. Thus, the goal set is a function of

the spatial arrangement of habitat and what we call dispersal imperative (table 2).

Once the object has moved to a location, it decides whether or not it is in a

location suitable for stopping. In the residence-decision model (table 3), the object is

constrained by whether or not its current location is sufficiently spatially separated

from conspecifics that a home range can be established, while the goal is to have

Equation Description

A xð Þ~mA xð Þ~ 1 if forest
0 if non� forest

�
Habitat. In the case of this
species that habitat would be
forest. We use the crisp
classification because it is
unlikely, especially towards the
edge of the perceptual range,
that squirrels can evaluate
vegetation in any detailed
manner. Once an individual has
moved to a location, then
through exploratory movement,
an evaluation of the habitat
becomes more detailed.

I xð Þ~mI xð Þ~max min 1,
dc

x{a
b{a

� �
, 0

� �
Dispersal Imperative
membership function where
a50, and b is the distance of the
farthest location in Y that has a
non-zero membership value.
Reflects the imperative of
finding a home as far from the
current location as possible,
given the constraint of the
perceptual range.

DM5CM>GM Decision set on first move,
movement is to location with
highest value. In case of ties, the
first one in the list is chosen.

B~mB xð Þ~ cos qpð Þzcos q xð Þð Þ
2

� �2

z
sin qpð Þzsin q xð Þð Þ

2

� �2
 !0:5
2

4

3

5

r The fuzzy set representing the
degree to which a location falls
within the set of direction_to_
move, where qp is the direction,
in radians, of the move to the
current location and q(x) the
direction, in radians, from the
current location (k) to location x
and exponent r functions like a
hedge, we assume r52.

DM5(CM>GM)>B Decision set on subsequent
moves. Movement is to location
with highest value. In case of
ties, the first one in the list is
chosen.

aThis table is based on Robinson and Graniero (2005a), where the rationale for specific
parameters and function forms is discussed in more detail.

Table 2 (Continued.)

980 P. A. Graniero and V. B. Robinson



habitat of sufficient area. A decision rule is applied that leads to the Agent either

taking up residence at the location or attempting another movement. The residence

decision therefore functions primarily as a stopping rule.

The field of fuzzy sets and logic is exceptionally rich in methods for aggregation

and combination. In this effort, the program SquirrelDispersal creates the World

Table 3. Residence decision setsa.

Equation Description

CR~
T

c

mc
Far kð Þ The Constraint Set (CR) is a

function of the spatial
separation from surrounding
conspecifics.

mc
Far kð Þ~ 1:0{ 1:0

1z
dc kð Þ{bc

Far
hc
Far

{bc
Far

h i

8
<

:

9
=

;
if dc kð Þ§bc

Far

0:0 if dc kð Þvbc
Far

8
>><

>>:

The membership of location k
in the fuzzy set
Far_from_conspecific c
where dc(k) is the distance
from conspecific c (c51 … k)
and the current location (k)
of the Agent, bc

Far represents
the limit of a hypothetical
core and hc

Far is the
distance at which
membership50.5.

GR5LC>HA The degree to which location
k falls in the goal set GR. In
effect a measure of the degree
to which the current animal
location is habitat and
contained within a large
enough patch of habitat.

LC kð Þ~mLC kð Þ~

1:0 if oak

0:9 if oak=deciduous bottomland

0:75 if deciduous

0:0 if conifer
0:0 if early successional deciduous

0:0 if wetland, pasture, grassland, ag:
0:0 if water

8
>>>>>>>><

>>>>>>>>:

The degree to which a land
cover type found in our GIS
database can be considered
quality habitat for a grey
squirrel. The Agent uses the
the land cover at the location,
k, where the squirrel has
moved.

HA kð Þ~mHA kð Þ~max 0, min 1,
farea kð Þ{aHA

bHA{aHA

h i� �� �
The degree to which location
k falls within the class of
minimum habitat area. By
setting the parameters
aHA50.3 and bHA52.0 any
patch less than 0.3 ha is
clearly too small while any
patch greater than 2 ha is
clearly large enough.

DR5GR>CR The membership of location k
in the residence_location set

IF DR>0.5 THEN reside ELSE move The decision rule for
residence versus move.

aThis table is based on Robinson and Graniero (2005a), where the rationale for specific
parameters and function forms is discussed in more detail.

Spatially explicit agents and landscape models 981



object from layers drawn from a GIS database and activates the Agent classes of

CompSquirrel, NoncompSquirrel, YagerSquirrel, and CrispSquirrel that corre-

spond, respectively, to Agents using decision models based on compensatory, non-

compensatory, Yager, and crisp aggregation methods. In addition, a nonfuzzy, or

crisp, set version of the decision models was constructed. Each describes a particular

class of Agents. For example, in table 2, the aggregation of sets to arrive at the

decision set DM for the first movement is expressed as a simple intersection of the

goal and constraint sets such that

DM~CM\GM ð4Þ

The non-compensatory aggregation is expressed as DM5min(CM, GM). In

contrast, the compensatory aggregation expressed as DM5(CM?GM) allows for

lower memberships in one set to be compensated to some degree by higher

memberships in the other. The Yager method of aggregation is somewhat more

complicated (see Robinson 2002). By setting the parameter p to 2, the Yager method

defined the decision to move as

DM~1{min 1{CM
� �p

z 1{GM
� �p� 	1=p

, 1
n o

ð5Þ

Finally, the non-fuzzy, or crisp, set was defined as DM5(0.5CM‘0.5GM). Robinson

and Graniero (2005a) provide a detailed listing of the aggregation methods used at

each level of the decision process by each class of Agents.

Figure 8 shows a dispersal example of each type of Agent. The Agents were

programmed with no Probe awareness of each other and do not modify the

landscape in any way. Therefore, the agent-specific simulations were executed

simultaneously on the same landscape with no interference. In general, the fuzzy

Agents’ pattern of behaviour was more plausibly realistic than that of the agents

using crisp logic. This means that by using the ECO-COSM approach, a range of

behaviours within a single species can be modelled. This is more realistic than

assuming all agents have a single, identical decision model. In addition, the results

shown in figure 8 illustrate how this approach yields plausible spatially explicit

results for each individual agent and for the decision models in general.

Since squirrels tend to set up home ranges in areas not contested by conspecifics,

we ran the simulations for landscapes with different levels of conspecific coverage.

The baseline situation was the case of social fencing with no ‘holes’ in the conspecific

landscape. Variations in the baseline were implemented by randomly allowing for

20, 40, and 60% of the landscape to be composed of unoccupied ‘holes.’ Figure 9

illustrates that variations in landscape perception, implemented via the

ProbeWrapper, and consequent use of the information in the decision model, did

have an effect on the Agents’ ability to find a suitable location for establishing a

home range. Figure 9 shows that Agents using fuzzy-decision models were

consistently more able to find a suitable location for establishing a home range.

This was especially evident in the situation where potential home range locations

were in short supply (i.e. only 20% of all possible locations were available for use as

a home range). This means that the Agents were able to navigate through the

landscape in a more realistic manner to set up home ranges, whereas Agents using

the non-fuzzy, crisp decision model were not as realistically successful. In fact, in the

20% case, none of the ‘non-fuzzy’ Agents were able to navigate the perceived

982 P. A. Graniero and V. B. Robinson



Figure 8. Example movement patterns for each agent decision model. The grey areas are
least suitable as home range locations. The lines show dispersal paths for each squirrel agent.
The same starting points were used for each decision model (from Robinson and Graniero
2005a).

Figure 9. Percentage of squirrel dispersers in each decision model that found a location
suitable as a home range.

Spatially explicit agents and landscape models 983



landscape populated with conspecifics and find a location suitable for establishing a

home range.

4. Adding agents to landscape models

ECO-COSM uses keyword-based identification of and access to World components,

so an Agent only needs to specify which particular landscape layer is of interest at

the conceptual level and does not need to be concerned about lower-level details

such as the layer’s spatial structure (e.g. vector vs. raster) or how the layer changes

state as the model executes. The landscape layers could be statically stored in a GIS

database as in the squirrel dispersal model, or they could be dynamically simulated

as in the patch occupancy model. In both cases, the Agent’s method of accessing,

filtering, and using the landscape information is identical. It is possible to develop

and test an agent-based model on a static landscape and then replace the static

landscape layers with dynamically evolving landscape layers with no change to the

Agent code, as long as the same keywords are used to name the layers. Probes

provide a means to view the model state but not to change it; therefore, a Probeable

Layer in a landscape model sees no difference in passing state information to a

simple output file or to an active Agent. As such, an agent-based model and a

landscape model may be independently developed and tested in ECO-COSM as

stand-alone entities, and subsequently coupled by combining their initialization

descriptions into a single setup routine. Further model refinement can allow Agents

to register changes to local states in the landscape model’s Layers, more closely

coupling the models’ interaction.

Nutrient patterns in wetlands are highly complex, and McClain et al. (2003)

suggest that these patterns are driven by highly dynamic hotspot/hot moment

biogeochemical processes in elemental cycling. A major barrier to improving our

understanding of these patterns and processes is our ability to find these hotspots in

the field with enough speed that we can collect sufficient data in their immediate

surroundings for analysis and hypothesis testing. Movement and measurement

decisions are based on current observations of the surrounding landscape, and the

system is changing at a temporal scale similar to the field worker’s. If such hotspot

locations are not known a priori in the real world, what is the best search strategy to

find them quickly in the field, especially if they can ‘wink out’? Is it better to proceed

with slow but complete local searching, or move faster with only a sub-sample of the

adjacent region?

These questions can be explored with a dynamic landscape model generating

realistic hotspot/hot moment dynamics, and agents simulating the field worker’s

decisions and movements. This section demonstrates the development of a simple

landscape model of nutrient dynamics, and how field worker agents are added once

the landscape model is developed. This example is clearly not sophisticated enough

to properly answer the question posed above; it is simply intended to illustrate the

role Probes can play in the landscape-agent model development process.

Consider a highly simplified system where a nutrient diffuses according to Fick’s

Law:

Lu

Lt
~D

L2u

Lx2
z

L2u

Ly2

" #

ð6Þ

where u is the concentration of the nutrient, and D is the diffusion coefficient. The

984 P. A. Graniero and V. B. Robinson



Laplacian operator acts as a discrete, first-order approximation of Fick’s Law on a

grid with spacing h, and i, j representing row and column coordinates on the grid:

+2u i,j



 ~
D

h2
uiz1,jzui{1,jzui,jz1zui,j{1{4ui,jz
� �

zO h2
� �

ð7Þ

The finite difference equation to estimate u at grid cell i, j at time t + k is then

utzk
i,j ~ut

i,jzk+2u i,j



 ð8Þ

where k is small enough to effectively ignore the truncation error O(h2). This finite

difference equation is easily implemented as a StepRule operating on a nutrient

Layer.

In most natural environments, the diffusion matrix is heterogeneous, often in a

patchy pattern. Rather than applying a global diffusion coefficient D, the model

uses a diffusion coefficient Layer, which is generated from Thiessen polygons

surrounding random seed points i with a randomly generated coefficient Di. A

spatially variable depletion rate is applied to the region, with the edge cells having a

rate 10 times higher than interior cells. This simply creates a ‘drain’ along the edge

since the nutrient cannot continue diffusing beyond the extent of the modelled

region. As an additional measure to reduce edge effects when identifying neighbour

cells in the diffusion calculation, the model is constructed with a reflecting

BoundaryTopology. Once a source Layer defining the local nutrient input rate is

added, the result is a complete landscape model. At each time interval, the local state

of the nutrient Layer is determined by neighbouring states and the local state at the

corresponding location in the depletion and input Layers.

Rather than using a static input layer, consider that the nutrient appears in the

system via asynchronous pulses at specific point locations. The nutrient Layer is

removed, and nutrient inputs are modelled as Agents, parameterized with a location,

input rate, time period over which the input source is ‘on’, and time period over

which the input source is ‘off’. Although this simple behaviour does not require the

Agents to probe their environment, the Agent structure is convenient for having a

number of discrete point objects with independent and similar, but not identical,

behaviour and managing them as a Population.

A Population of seeker Agents is added to the model, each simulating a field

worker with its own search strategy. On model initiation, each Agent obtains a

Probe targeted at the nutrient Layer, analogous to the instrument the field worker

would use to measure the nutrient concentration in the soil or water, as the case may

be. In this example, the Probe produces perfect measurement results, though it

would be easy to simulate documented instrument error using ProbeWrappers as

described in section 2. The Agents are all placed at the same random location. After

a delay period to let the landscape model reach stable conditions, the Agents begin

to search for hotspots. Following some measure-and-compare search strategy, each

Agent moves over the landscape until it determines that it must be at a hotspot and

moves to a ‘finished’ Population. The simulation terminates once all Agents are in

the ‘finished’ Population, or a set period of time has passed.

To demonstrate, two variants of a simple brute-force method are employed. To

begin, the Agent measures the concentration at its current cell, then travels to each

neighbouring cell (either the four cardinal cells of the von Neumann neighbourhood

or all eight cells of the Moore neighbourhood) to take a measurement. If the original

cell is the highest value, it is determined to be a hotspot; the Agent moves back to

Spatially explicit agents and landscape models 985



that cell and decides it is finished. If it finds a neighbouring cell with a higher value,

it moves to the neighbouring cell with the highest value, then starts the process

again. The Agent acts with no memory; even if it just measured a cell, it still travels

to it and re-measures. Once the Agent has determined the next cell it will visit, it

schedules its next action to occur after the travel time it needs to reach the

destination, where the travel time is simply the Euclidean distance between the

source and destination cells. For example, if the Agent plans to move one cell to the

east, it schedules its next action 1 time unit from now; if it plans to move to the

south-east, it schedules its next action 1.414 time units from now. In the mean time,

the landscape model independently follows its own scheduled activity, stepping

through its calculations every k time units.

As a simple experiment, the model was executed 50 times with randomly

established patterns of diffusion coefficients, hotspot locations, and hotspot

behaviours: 10 diffusion patches with diffusion coefficient values between 0.35

and 0.65; and 40 point sources, with on- and off-intervals between 10 and 100 time

steps. One ‘von Neumann Seeker’ and one ‘Moore Seeker’ were placed at a common

random location, and they began seeking a hotspot after time 1000.

Figure 10 shows the result of an example model trial. The von Neumann Seeker

found a hotspot in 40.11 steps, whereas the Moore Seeker found a hotspot in 50.89

steps. This was one of only two trials in which the Seekers found different hotspots.

In general, the von Neumann Seeker found a hotspot faster than the Moore Seeker

(table 4). However, the von Neumann Seeker found a hotspot in only 58% of the

trials. In the other trials, the first exploration produced all zero values (i.e. no

concentrations above background levels), giving no evidence of a hotspot. In

Figure 10. Example of a seeker model result. Left: patch pattern of the diffusion coefficient.
Right: concentration map during final step, with seeker paths superimposed. Dark spots are
hotspots. Dark grey path seeks in the Moore (eight-cell) neighbourhood; light grey path seeks
in the von Neumann (four-cell) neighbourhood.

Table 4. General seeker performance statistics for 50 simulation trials.

Agent type von Neumann Seeker Moore Seeker

Success rate (agent finds a hotspot) 58% 82%
Average seek time, if successful 40.33 48.09
Fastest agent, when both find the same hotspot 74.1% of trials 25.9% of trials
Average seek time improvement over the other

agent type (when fastest)
25.7% 5.1%

986 P. A. Graniero and V. B. Robinson



contrast, the Moore Seeker found a hotspot in 82% of the trials. Thus, if it is

important to find a hotspot if it exists, this experiment suggests that it is better to opt

for more careful, complete searching, even though it will usually (but not always)

take longer to find a hotspot.

At this stage, the model is quite simplistic compared with the complex processes

and goals operative in the natural world, but it clearly demonstrates the interaction

among model components. The landscape model operates with three interacting

grids: nutrient amount, diffusion coefficient, and nutrient-depletion rate. Two

different types of modelled agents are operative: seeker Agents use Probes to

examine state in the landscape model and therefore view their surroundings, make

movement decisions, and carry out their motions; and nutrient input (hotspot)

Agents change the local nutrient state through a controlled programming

mechanism. Furthermore, the model components are operating in two different

temporal modes. First, the landscape model, structured as an explicit finite

difference model, calculates its steps on a regular, sub-unit timescale. Outputs of

current model state are dumped via probes on a regular, unit timescale. Second, each

Agent works on its own discrete event schedule, with intervals between scheduled

activities determined by the time to traverse the landscape to the Agent’s target

destination.

The limit of complexity for an ECO-COSM model is defined by the computing

platform rather than the framework design. Therefore, assuming the computing

power is available, a modeller can construct a model of sufficient complexity to

mimic the environment of interest and conduct an appropriate simulation

experiment to explore and evaluate field-data collection and sampling design

strategies.

5. Conclusions

ECO-COSM provides a simple modelling framework for constructing spatially

explicit landscape simulations. It includes a Probe structure based on the Principle

of Indirection and the Delegation design pattern that may be used to design complex

data extraction and analysis experiments. This structure provides the fundamental

elements to add agents to an existing landscape model. By using ProbeWrappers to

modify the exact state returned from some location in a landscape Layer (or another

Agent), sophisticated Agents can be constructed that:

1. use perceptual filters to modify their view of the landscape, or

2. make their movement decisions based on incomplete or uncertain

observations.

A discrete-event scheduling mechanism allows simple, uniformly stepped

landscape models to be executed simultaneously with discrete-event, trigger-

oriented populations of agents. The modeller can develop dynamic landscapes

with static observers, and static landscapes with dynamic observers. As each

model is tested and refined in parallel, they may be merged together if they agree

on a central conceptual model. This approach to coupled model development

enhances the possibility of using ‘virtual ecologists’ to explore and understand

ecosystems. The examples presented here serve as an illustration of the potential

power of using ProbeWrappers to augment current agent-based modelling

frameworks.

Spatially explicit agents and landscape models 987



Acknowledgements

The authors gratefully acknowledge the financial support of individual Discovery

Grants 44611–02 and 238431 from the Natural Sciences and Engineering Research
Council of Canada (NSERC). We also appreciate the constructive efforts of the

three reviewers which greatly improved the manuscript.

References
BANKS, J. and CARSON II, J.S., 1984, Discrete-Event System Simulation (Englewood Cliffs, NJ:

Prentice-Hall).

BATTY, M., JIANG, B. and THURSTAIN-GOODWIN, M., 1998, Local Movement: Agent-based

Models of Pedestrian Flows, CASA Working Papers, No. 4 (London: Centre for

Advanced Spatial Analysis).

BELLMAN, R.E. and ZADEH, L.A., 1970, Decision-making in a fuzzy environment.

Management Science, 17, pp. 141–164.

BIAN, L., 2003, The representation of the environment in the context of individual-based

modeling. Ecological Modelling, 159, pp. 279–296.

BOOCH, G., 1994, Object Oriented Analysis and Design with Applications, 2nd edition

(Reading, MA: Addison-Wesley).

BOOTH, G., 1997, Gecko: A continuous 2-D world for ecological modeling. Artificial Life

Journal, 3, pp. 147–163.

BROWN, D.G., RIOLO, R., ROBINSON, D.T., NORTH, M. and RAND, W., 2005, Spatial

processes and data models: toward integration of agent-based models and GIS.

Journal of Geographical Systems, 7, pp. 25–47.

CASWELL, H. and COHEN, J.E., 1991, Disturbance, interspecific interaction and diversity in

metapopulations. Biological Journal of the Linnean Society, 42, pp. 193–218.

COLLIER, N., HOWE, T. and NORTH, M., 2003, Onward and upward: The transition to Repast

2.0. In Proceedings of the First Annual North American Association for Computational

Social and Organizational Science Conference, Pittsburgh, PA, June 2003.

DEANGELIS, D.L., GROSS, L.J., WOLFF, W.F., FLEMING, M., NOTT, M.P. and COMISKEY, E.J.,

2000, Individual-based models on the landscape: applications to the Everglades. In

Landscape Ecology: A Top-Down Approach, J. Sanderson and L.D. Harris (Eds), pp.

199–211 (Boca Raton, FL: Lewis).

FORREST, S. and JONES, T., 1994, Modeling complex adaptive systems with Echo. In Complex

Systems: Mechanisms of Adaptation, R.J. Stonier and X.H. Yu (Eds), pp. 3–21

(Amsterdam: IOS).

GAMMA, E., HELM, R., JOHNSON, R. and VLISSIDES, J., 1995, Design Patterns: Elements of

Reusable Object-Oriented Software (Reading, MA: Addison-Wesley).

GARDNER, M., 1971, On cellular automata, self-reproduction, the Garden of Eden and the

game ‘life’. Scientific American, 224, pp. 112–117.

GRANIERO, P.A., 2001, The effect of spatiotemporal sampling strategies and data acquisition

accuracy on the characterization of dynamic ecological systems and their behaviors.

PhD thesis, University of Toronto.

GRIMM, V. and RAILSBACK, S.F., 2005, Individual-Based Modeling and Ecology (Princeton,

NJ: Princeton University Press).

GROSS, L.J. and DEANGELIS, D.L., 2001, Multimodeling: new approaches for linking

ecological models. In Predicting Species Occurences: Issues of Scale and Accuracy, J.M.

Scott, P.J. Heglund, M. Morrison, M. Raphael, J. Haufler and B. Wall (Eds)

(Covello, CA: Island Press), pp. 467–474.

HOLLAND, J.H., 1992, Adaptation in Natural and Artificial Systems, 2nd edition (Cambridge,

MA: MIT Press).

HOLLAND, J.H., 1994, Echoing emergence: Objectives, rough definitions, and speculations for

Echo-class models. In Complexity: Metaphors, Models and Reality, G.A. Cowan, D.

Pines and D. Meltzer (Eds), pp. 309–342 (Reading, MA: Addison-Wesley).

988 P. A. Graniero and V. B. Robinson



HOLT, R.D., PACALA, S.W., SMITH, T.W. and LIU, J., 1995, Linking contemporary vegetation

models with spatially explicit animal population models. Ecological Applications, 5,

pp. 20–27.

HRABER, P.T. and MILNE, B.T., 1997, Community assembly in a model ecosystem. Ecological

Modelling, 103, pp. 267–285.

INCHIOSA, M.E. and PARKER, M.T., 2002, Overcoming design and development challenges in

agent-based modeling using ASCAPE. Proc. Nat. Academy of Science, May 14, 99;

Suppl. 3, pp. 7304–7308.

JOHNSON, R. and FOOTE, B., 1988, Designing reusable classes. Journal of Object-Oriented

Programming, 1, pp. 22–35.

KLIR, G.J. and YUAN, B., 1995, Fuzzy Sets and Fuzzy Logic: Theory and Applications (Upper

Saddle River, NJ: Prentice-Hall).

KRASNER, G.E. and POPE, S.T., 1988, A cookbook for using the model-view controller user

interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1, pp.

26–49.

KUKLA, R., KERRIDGE, J., WILLIS, A. and HINE, J., 2001, PEDFLOW: development of an

autonomous agent model of pedestrian flow. Transportation Research Record, 1774,

pp. 11–17.

LUKE, S., CIOFFI-REVILLA, C., PANAIT, L., SULLIVAN, K. and BALAN, G., 2005, MASON: A

multiagent simulation environment. Simulation, 81, pp. 517–527.

MARTIN, R.C., 1996, The dependency inversion principle. C + + Report, 8, pp. 1–12.

MARTIN, R.C., 2003, UML for Java Programmers (Upper Saddle River, NJ: Prentice Hall).

MCCLAIN, M.E., BOYER, E.W., DENT, C.L., GERGEL, S.E., GRIMM, N.B., GROFFMAN, P.M.,

HART, S.C., HARVEY, J.W., JOHNSTON, C.A., MAYORGA, E., MCDOWELL, W.H. and

PINAY, G., 2003, Biogeochemical hot spots and hot moments at the interface of

terrestrial and aquatic ecosystems. Ecosystems, 6, pp. 301–312.

MECH, S.G. and ZOLLNER, P.A., 2002, Using body size to predict perceptual range. Oikos, 98,

pp. 47–52.

MINAR, N., BURKHART, R., LANGTON, C. and ASKENAZI, M., 1996, The Swarm simulation

system: A toolkit for building multi-agent simulations. Available online at: http://

xenia.media.mit.edu/,nelson/research/swarm/ (accessed 2 October 2005).

PARKER, M.T., 2001, What is Ascape and why should you care? Journal of Artificial Societies

and Social Simulation, 4, Available online at: http://jasss.soc.surrey.ac.uk/4/1/5.html

(accessed 21 July 2006).

PARKER, D.C.,BERGER, T., and MANSON, S.M. (Eds) 2002, Agent-based models of

land-use and land-cover change: Report and review of an international workshop,

October 4–7, 2001, LUCC Report Series No. 6 (Bloomington, IN: Indiana University

Press).

ROBINSON, V.B., 2002, Using fuzzy spatial relations to control movement behavior of mobile

objects in spatially explicit ecological models. In Applying Soft Computing in Defining

Spatial Relations, P. Matsakis and L.M. Sztandera (Eds), pp. 158–178 (Heidelberg:

Physica-Verlag).

ROBINSON, V.B. and GRANIERO, P.A., 2005a, Spatially explicit individual-based ecological

modeling with mobile fuzzy agents. In Fuzzy Modeling with Spatial Information for

Geographic Problems, F. Petry, V.B. Robinson and M. Cobb (Eds), pp. 299–334

(Heidelberg: Springer).

ROBINSON, V.B. and GRANIERO, P.A., 2005b, An object-oriented approach to managing

fuzziness in spatially explicit ecological models coupled to a geographic database. In

Advances in Fuzzy Object-Oriented Databases: Modeling and Applications, Z. Ma (Ed),

pp. 269–300 (Hershey, PA: Idea Publishing Group).

SCHMITZ, O.J. and BOOTH, G., 1996, Modeling food web complexity: the consequence of

individual-based spatially explicit behavioural ecology on trophic interactions.

Evolutionary Ecology, 11, pp. 379–398.

Spatially explicit agents and landscape models 989



SOUTH, A., 1999, Extrapolating from individual movement behavior to population spacing

patterns in a ranging mammal. Ecological Modelling, 117, pp. 343–360.

TOBIAS, R. and HOFMANN, C., 2004, Evaluation of free Java-libraries for social-scientific

agent based simulation. Journal of Artificial Societies and Social Simulation, 7,

Available online at: http://jasss.soc.surrey.ac.uk/7/1/6.html (accessed 21 July 2006).

WEIDMANN, N.B. and GIRARDIN, L., 2005, Evaluating Java development kits for agent-based

modeling. Journal of Artificial Societies and Social Simulation, 8, Available online at:

http://jasss.soc.surrey.ac.uk/8/2/8.html (accessed 21 July 2006).

WESTERVELT, J.D. and HOPKINS, L.B., 1995, Facilitating mobile objects within the context of

simulated landscape processes. In Third International Conference/Workshop on

Integrating GIS and Environmental Modeling, 21–25 January 1996, Santa Fe, New

Mexico. Available online at: http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-

ROM/sf_papers/westervelt_jim/paper.html (accessed 3 October 2005).

WESTERVELT, J.D. and HOPKINS, L.B., 1999, Modeling mobile individuals in dynamic

landscapes. International Journal of Geographical Information Science, 13, pp.

191–208.

WESTERVELT, J.D., 2002, Geographic information systems and agent-based modeling. In

Integrating Geographic Information Systems and Agent-Based Modeling Techniques for

Simulating Social and Ecological Processes, H.R. Gimblett (Ed), pp. 83–104 (Oxford:

Oxford University Press).

WOOD, J., 2002, Java Programming for Spatial Sciences (London: Taylor & Francis).

990 Spatially explicit agents and landscape models


