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Agent-based modelling of shifting cultivation field patterns, Vietnam
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Shifting cultivation in the Nghe An Province of Vietnam’s Northern Mountain

Region produces a characteristic land-cover pattern of small and larger fields.

The pattern is the result of farmers cultivating either individually or in spatially

clustered groups. Using spatially explicit agent-based modelling, and relying on

empirical data from fieldwork and observations for parameterization of

variables, the level of clustering in agricultural fields observed around a study

village is reproduced. Agents in the model act to maximize labour productivity,

which is based on potential yield and labour costs associated with fencing of

fields, and are faced with physical constraints. The simulation results are

compared with land-cover data obtained from remote sensing. Comparisons are

made on patterns as detected visually and using the mean nearest-neighbour

ratio. Baseline simulation outputs show high degrees of spatial clustering and

similarity to the land-cover data, but also a need for further calibration of model

variables and controls.

Keywords: Land use; Spatial patterns; Shifting cultivation; Northern Mountain

region; Vietnam

1. Introduction

Human transformation of the surface of the Earth receives much attention. As a

process in itself, land-cover change has huge impacts on ecosystems, biodiversity,

and the global climate. It is also a spatial footprint of societal processes. Research

on land use and land-cover change (LUCC) has been a programme element of the

International Geosphere–Biosphere Programme and the International Human

Dimensions Programme on Global Environmental Change (Gutman et al. 2004),

and is now continued within the Global Land Project (GLP) (Rindfuss et al.

2004, Verburg and Veldkamp 2005), with the aim to understand the coupled

human–environmental system, and focusing on human decision-making and

actions.

Shifting cultivation is a farming system commonly found in the Tropics (see, for

instance, Halenda 1989, Angelsen 1995, Read and Lawrence 2003, Lawrence 2005).

The basic rationale of shifting cultivation is what may be termed ‘temporal

concentration’ of nutrients (Christiansen 1992, Rasmussen and Møller-Jensen 1999),

achieved by building up a nutrient pool in the fallow vegetation and releasing them
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at the start of the cultivation period. Alternatively, or as a supplement, the use of

fallow may be explained as a means of suppressing weeds (see Mertz 2002, for an

overview of work related to these subjects).

The typical shifting cultivation landscape is a mosaic of cultivated plots and

secondary regrowth, i.e. the fallow plots, and understanding the human processes

configuring the landscape is important when addressing global environmental

change.

A range of quantitative techniques exists for describing the spatial patterns of

landscapes. See, for example, Turner et al. (1989), Turner (1990), and Antrop and

Van Eetvelde (2000), for examples on global landscape indices (diversity,

dominance, and contagion) and patch metrics (patch size, perimeter, fractal

dimension, edges, and adjacency probability), or Leung et al. (2003) and

Amarasinghe et al. (2005) for examples of cluster detection (local Moran’s I, local

Geary’s C, and Getis G). These methods have also been applied to LUCC studies by

Pan et al. (2004) and Parker and Meretsky (2004), for example.

Agent-based spatially explicit modelling offers a potential insight to the

processes configuring the land cover. Referred to as multi-agent systems of land

use and cover change (MASLUCC), the purpose of these models is to simulate

the behaviour of actors (e.g. farmers) by setting up rules describing their

decision-making (Parker et al. 2003), and thereby contribute to an under-

standing of the processes creating the landscape. This understanding is not only

interesting from a pure academic point of view but also an insight in how

people act, and the resulting impact on the landscape can also be useful in a

policy context.

This paper presents a case study from a shifting cultivation system in the uplands

of the Nghe An province, North-Central Vietnam. Analysis of satellite images

covering the study area shows a characteristic patchiness of regrowth/fallow areas

and cultivated fields ranging in size from very small to large fields. The large fields

result from a preference by local farmers to cultivate adjacent fields. Based on

classical shifting cultivation theory (Boserup 1965), fieldwork data, and remote

sensing data, we constructed a spatially explicit agent-based model of shifting

cultivation land use in Ban Que (Que village) and compared the simulated landscape

against remotely sensed images using basic spatial statistics to answer the following

research questions:

1. Are local farmers’ behaviours in accordance with classical shifting cultivation

theory?

2. Will a spatially explicit agent-based model of farmer’s decisions regarding

field location result in a spatial pattern of smaller and larger fields?

3. Will the modelled land-cover pattern match the land-cover pattern observed

by satellite?

2. Theory and methods

In constructing the model presented in this paper, we rely on two basic scientific

principles: Inductive modelling and deductive modelling. Inductive models are based

on real-world observations, while general theories or knowledge drive deductive

modelling (Brown et al. 2004). In this section, we will focus on the deductive part of

the model and return to the empirically fitted model aspects afterwards.
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2.1 Shifting cultivation

What distinguishes shifting cultivation from permanent agriculture is the use of

fallow which can be seen as a labour-minimizing cultivation strategy in two ways:

1. By allowing nutrients to build up in the fallow biomass for subsequent release

to the soil, shifting cultivators let time do the hard work of restoring soil

fertility after cultivation.

2. To the extent that fallow vegetation also has an out-shading impact on weeds,

time also substitutes for labour in this respect.

If space is available, and production is not market-driven, shifting cultivation

can be regarded as a rational production strategy with the main rationale of

farmers being to optimize returns to the sparsest production input, namely

labour (Boserup 1965), while ensuring that enough food is produced to ensure

food sufficiency (Kates et al. 1993). This rationale is expressed through the

behaviour of farmers, deciding when and where to cultivate, and thus

configuring the landscape. Some decisions are based on perfect information,

and farmers are capable of acting in order to make perfectly rational choices à

la ‘economic man’ (Rasmussen and Møller-Jensen 1999), while other decisions

are made within a bounded rationality (Manson 2000, Benenson and Torrens

2004). In the highly simplified model presented here, decisions behind farmer

behaviour are understood in light of empirical observations in Que village and

the theory of labour productivity maximization, while ensuring that the

production meets the demand.

2.2 Agent-based modelling

Agent-based modelling (ABM), multi-agent systems, and multi-agent simulation

have become the terms for a range of applications involving hard- or software

agents (Bousquet and Le Page 2004). In a LUCC context, ABM is being used to

simulate farming or natural-resource management decisions, often by letting a set of

agents, representing local decision-makers, act on a simulated environment

represented as a georeferenced grid map of cells (often derived from remote sensing

or GIS), in which natural processes occur (Deadman et al. 2004, Klügl et al. 2005).

Previous applications of ABM include: a multi-agent simulation of land-tenure

arrangements and land-use allocation in rural Vietnam (Castella et al. 2005), a

simulation of agricultural innovation diffusion and hydrological and economic

processes in Chile in a spatially explicit model (Berger 2001), and use of spatial

pattern metrics to measure the outcome of a spatially explicit model working on an

abstract rural–urban landscape (Parker and Meretsky 2004). Manson (2005)

combined a spatial ABM and genetic programming model of actors, institutions,

and environment in Mexico, and Deadman et al. (2004) constructed a spatially

explicit ABM of smallholder farming in the Amazon rainforest. Excellent reviews of

ABM applications to land-use systems can be found in Agarwal et al. (2002), Parker

et al. (2003), and Brown et al. (2004).

The model presented in this paper is a discrete-choice model (Parker and

Meretsky 2004), where agents choose among a discrete set of land-use choices. The

model outcome is a map of land use that forms the basis for comparison of model

outputs with observed land-use patterns.
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2.3 Validation methodology and spatial metrics

Comparison of the agent-induced land-cover configurations with those from

satellite images of the study area provides a limited means of validating the model

outputs. A suite of spatial similarity techniques exists for comparing model outputs

with observed patterns (Brown et al. 2005), but as the shifting cultivation landscape

is changing every cropping season, a pixel-by-pixel or section-by-section comparison

of the simulated output to the validation data is not fruitful.

As the overall goal of the model is to reproduce the observed landscape as

constituted by the field patterns, we use simple spatial metrics to describe the
clustering tendency. The mean nearest-neighbour ratio (MNNR) is chosen for two

reasons: (1) it is calculated using simple mathematics and (2) it is well suited for

description of clustering. The spatially explicit mean nearest-neighbour tool,

available in ESRI’s ArcGIS 9.0 spatial statistics toolbox, calculates the ratio of

the observed mean Euclidean distance from the centre of a cultivated cell to the

centre of the nearest other cultivated cell against a hypothetical random distribution,

calculated as

NNR~

Pn

i~1

Ci

n

,
0:5
ffiffiffiffiffiffiffiffiffi
n=A

p ð1Þ

where
P

i

Ci is the sum of the distances to each feature’s nearest-neighbour, n is the

number of features, and A is the areal extent of the study area. The resulting value
indicates a clustered pattern if the ratio is less than 1; ratios greater than 1 indicate a

dispersed pattern. Along with the ratio, a Z-score is also reported. Statistically

significant clustering is indicated by low negative Z-scores, while dispersed patterns

have high positive Z-scores. Z-scores around 0 indicate a random distribution of

data.

In this context, landscapes dominated by large fields will appear as clustered

because many small cultivated fields are adjacent. The opposite is the case for a very

fragmented landscape composed of cultivated cells spread throughout the land-

scape. As the MNNR is highly sensitive to spatial extent, it is important to keep this

constant when comparing simulation results and satellite-derived data. In this
analysis, the spatial statistics will be calculated for the area representing the village

territory. To compare land-cover data and simulation results to a truly random

distribution of plots, an image was produced in which 214 plots (the average number

of plots observed in the remote sensing validation data) were distributed randomly

within the village territory, and the MNNR for this image was computed.

3. Data

3.1 Field data

Within the ‘University Support to Environmental Planning and Management in Lao

PDR, Vietnam and Cambodia (USEPAM)’ project (www.usepam.org), research has

been conducted on shifting cultivation production systems in villages across the

Nghe An province of Vietnam. A combination of rapid rural appraisal (RRA) and

participatory rural appraisal (PRA) techniques were used to obtain information on
cultivation strategies, natural-resource use, and labour inputs by methods such as

semi-structured interviews, targeted single and group interviews, and cropping
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calendars. Interviews were done with groups gathered by the village leader in 2003

and 2005, and a structured questionnaire was distributed to the heads of 30

randomly sampled households in 2003. To complement remote-sensing data on land

use and land-cover distribution, transects were walked with local farmers. This

paper presents results from Que village.

The population of Ban Que is 409, distributed in 69 households, and we assumed

that it was constant across the entire period of the study. Of the 69 households, 65

practise shifting cultivation. The land cover within the village territory of 1574 ha

consists of secondary regrowth (fallow) of grass, bamboo and deciduous broad-

leafed trees, cultivated shifting cultivation fields, and irrigated paddy fields. Farmers

did not reveal any preferences for slashing, burning, and cultivating bamboo areas

as opposed to forested areas. In this simulation, the two land-cover classes will

therefore not be treated separately. Households are located centrally in the territory

of Que village along a large stream surrounded by steep slopes and ridges with

elevations ranging from 175 to 500 m (Jakobsen 2005). The flat areas along the river

are used for paddy fields, and areas on steep slopes above 35u are not considered for

cultivation, mainly due to a lack of soil moisture (figure 1).

The fields cultivated by households averaged 5080 m2 in size, and the mean yields

after 4 and 5 years of fallow are 950 kg ha21 and 1200 kg ha21, respectively. The

maximum yield observed is 1875 kg ha21, and one crop is raised annually. We fit a

logistic curve to the relationship between yield and fallow period as reported by

villagers during the interviews (figure 2, equation (2)), and assume that cultivating

without prior fallowing will yield only 300 kg ha21 and that the maximum yield of

1875 kg ha21 is obtained after minimum 12 years of fallow. The relationship is as

follows

y~
a

1zb:exp {cxð Þ ð2Þ

where y5yield; x5fallow age; a51,866; b58.07; and c50.52. R2 is 0.99.

Figure 1. Ban Que territory. The Village territory is shown in light grey, and cells with a
slope less than 6u and higher than 35u are shown in black and white, respectively.
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As a protection against free-ranging livestock and wild animals, fences are

commonly constructed along the perimeter of cultivated fields. Fences are made of

bamboo, either cut from the regrowth or taken from old fences. Due to the hot and

humid climate, most fence materials decompose during a year, and new fences have

to be built at the beginning of each crop season. The effort involved in fencing fields

is thus considerable, and the construction of cropping calendars with the villagers

showed an average of 134 days spend per field, of which 22 days were used for

fencing. Based on the rough assumption that the 22 days spent on fencing represents

fencing two sides of a field, we estimate the average labour requirements for

cultivating a field without fences as 1342225112, and the labour requirements for

cultivating and fencing a field on all four sides as 134 + 225156 days. Values for

cultivating and fencing fields on one, two, or three sides are linearly interpolated

between these values. A formalization of this is that labour require-

ment51562(116the number of uncultivated neighbouring fields); see table 1.

The effort involved in fencing fields may be reduced by cultivating adjacent plots

and thereby sharing the workload associated with fencing. This implies that

contiguous field areas of up to 20 ha are sometimes found. When deciding where to

locate a plot, the farmer thus may have to trade-off between (1) choosing a plot with

high productivity and (2) choosing a plot requiring low labour inputs.

3.2 Satellite data and pattern metrics

We derived the slope from a digital elevation model (DEM) calculated from a

15615 m resolution ASTER along-track optical stereo data from November 2001

(Tottrup in press). Field patterns from Que village territory were obtained from

Figure 2. Exponential fallow–yield relationship. The line shows a logistic regression fitted to
empirical data (Equation 2).
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analysis of Landsat TM satellite images from 20 November 1991, 27 December 1993

and 7 November 1998, with a resolution of 30630 m. These three images were

geometrically co-rectified to each other and subsequently transformed to the UTM

coordinate system and resampled to 15615 m resolution to match the DEM. The

fields were identified by visual interpretation and digitized on screen. The resulting

field polygons were post-processed by overlaying the digital elevation model

described above, in order to discriminate between shifting cultivation fields and

other field types, prevalent in valley bottoms. The output from the analysis was three

vector files describing field boundaries at each date. To ensure consistency in the

modelled data and the validation data, the geographical scale (measured by spatial

resolution and extent) of the two data sets has been matched. The validation

polygons have been converted to raster format with the same extent as the model

input and output, and resampled to a spatial resolution of 70 m (4900 m2). The

conversion and resampling procedures introduce minor errors in the spatial accuracy

of field locations and the spatial extent of each field but also ensure uniformity of the

structure of model data and validation data. Finally, the validation data were

converted to vector domain to allow for the MNNR to be calculated.

Comparison of the three images (figure 3) clearly reveals that shifting sites for

cultivation is an important property of the agricultural system, as is a decision about

Table 1. Labour productivity as a function of fallow age and labour required for fencing.a

Fenced
perimeter

Labour
days

Fallow age

1 2 3 4 5 6 7 8 9 10

0 156 2.38 3.44 4.75 6.20 7.65 8.95 9.99 10.77 11.32 11.69
1 145 2.55 3.68 5.08 6.64 8.19 9.58 10.70 11.53 12.12 12.51
2 134 2.74 3.96 5.46 7.14 8.81 10.30 11.51 12.40 13.03 13.46
3 123 2.97 4.29 5.91 7.72 9.53 11.15 12.45 13.42 14.10 14.56
4 112 3.23 4.67 6.44 8.41 10.38 12.14 13.56 14.62 15.36 15.86

aLabour productivity is calculated as the ratio of yield (calculated using equation (2)) to
assumed labour costs. Values shown in bold are the combinations of fallow age/fencing that
make a cell more attractive to the agent than a 10-year-old fallow without fencing.

Figure 3. Satellite-derived land-cover data. Legend as in figure 5.
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adjacent farming. What appears on the figure (and on the remote sensing data) as

clearcuts, a land-cover phenomenon, is caused by land use, namely the practice of

farming adjacently as described in section 3.1. Each clear cut is composed of at least

one unit of 4900 m2, the smallest unit detectable given the geographical resolution of

the project.

The MNNR for all three validation years indicates a high degree of clustering,

which is supported by very significant Z-score values (table 2). For the years 1993

and 1998, the nearest-neighbour observed mean distance (NNOMD) is close to 70.

As this is the lag of the input map (the distance between centres of two adjacent cells;

Duncan et al. 2002), this figure alone reveals strong clustering. As the area of

analysis is always kept constant, the Expected Mean Distance reflects the number of

cultivated fields in the data.

4. Modelling shifting cultivation field patterns

The model presented here is driven by a combination of empirical data and

theoretical assumptions regarding shifting cultivation strategies. The goal was to

empirically test the ability of agent behaviour based on cultivation theory to

reproduce observed field patterns. The main decision the agents in the model make

is the choice of field location. This decision is guided by expected return to labour

investment which, in turn, is determined by the state of the potential field in terms of

the age of the fallow vegetation, its slope, and its location relative to cultivated

fields. The dependence on the location relative to other cultivated fields stems from

the importance of protecting the fields from free-roaming livestock and wild animals

by building fences. Sharing the outer perimeter of fields with neighbouring fields

implies that the work input is reduced substantially (table 2).

The model’s time step is a year, and agents find one or more cells to cultivate each

time step (depending on their household size; see description in section 4.2). At the

end of the time step, the agents return to Ban Que, and the cultivated areas return to

regrowth.

4.1 Environment

The model is spatially distributed covering the area belonging to Ban Que. The total

area of 1574 ha is represented in a discrete two-dimensional grid map with cell sizes

of 70670 m (0.49 ha), and the spatial resolution approximates the observed mean

plot size (0.51 ha). A basic location map, imported from GIS, discriminates between

the village, the village territory, and areas not belonging to Ban Que.

Table 2. Number of fields (4900 m2), mean nearest-neighbour ratio, and Z-score for the
satellite data and a random distribution of 214 fields within the village territory.

1991 1993 1998 Random

Number of cultivated cells 190 231 222 214
Nearest-neighbour observed mean

distance (NNOMD)
80.87 71.537 71.89 137.20

Expected mean distance (EMD) 134.43 121.92 124.37 126.67
Mean nearest-neighbour ratio

(MNNR)
0.60 0.59 0.58 1.08

Z-score 210.51 212.06 212.03 2.33
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Each cell holds a discrete state representing the simulated land cover and variables

describing the age of the land cover and the slope of the cell. To avoid biasing the

results by using an already clustered real-world land-cover configuration as input,

all the village territory is set to be fallow (regrowth) at the onset of the simulation,

and age of regrowth cells is distributed randomly.

A very central variable is the labour productivity variable. The labour

productivity variable equals the potential productivity of a cell calculated using

equation (2), divided by the labour required to cultivate the cell which is a function

of the number of adjacent cultivated cells, counted in the variable perimeter. Table 3

shows the values and transition rules for states, variables, and parameters.

4.2 Agents

The 65 households of Ban Que engaged in shifting cultivation are each represented

as an agent in the simulation, comprising a total of 385 individuals. Each agent is

described by two variables related to the population; a variable, hh, with the number

of people in the household, and a variable holding the plot requirement. The hh

variable values are distributed to all agents based on a Poisson distribution around

the average household population of 6. The plot requirement variable is informing

the agent about the demand for area based on the household population size. In the

simulation, the relation between household population size and the household plot

requirement is not continuous, as the potential farming area is represented in

discrete 4900 m2 cells. Therefore, the relation between the two variables is defined by

threshold values, representing the assumption that an average person consumes

approximately 500 g of rice per day (FAO 2003). This implies that the average yield

of 1200 kg ha21 from a 4900 m2 plot provides rice for

1200 kg ha{1 year{1
� �

|0:49 ha

0:5 kg day{1 person{1
� �

|365 days
~3:22 persons

on an annual basis.

Table 3. Transition rules and values for the cell states, variables, and parameters a, b, and c of
equation (2).

State Transition rule/value

Cultivated This parameter is controlled by agent decisions
Regrowth If statet215cultivated then set statet5regrowth

If statet215regrowth then set statet5statet21

Village Village is a static state
Variable
Slope Slope is a static variable
Age If statet215regrowth and statet5statet21 then set age5age + 1

If statet21 !a5statet then set age50
Perimeter If statet5cultivated then set perimeter of cells in the von Neumann

neighbourhood5perimeter + 1
Labour productivity (Yieldmax/(1 + (b6exp(2c6age))))/(2116perimeter + 156)
Global parameters
a (Yieldmax) 1875 kg ha21

b 6.75
c 0.48

a!: different from.
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Agents with hh values lower than 3.5 are hence set to a plot requirement value of 1

by default. Agents with hh ranging between 3.5 and 7.5 have a plot requirement of 2,

and agents representing households with more than 7.5 members are set to 3.

Rules specifying agent behaviour are kept very simple. Here, the agents do not

have complete information on total production costs and potential yields. Rather,

they act on very few inputs to find a cell to cultivate:

N the productivity based on the time in fallow (calculated using equation (2));

N the labour required to cultivate the cell (calculated based on the cell perimeter

variable);

N the slope of the cell.

Information on the first two inputs, the fallow/regrowth age and the labour

requirements for cultivation, are available to the agents from the cell variable labour

productivity. As no cells are fenced at the beginning of each time step, the first agent

finds a cell to fence and cultivate based solely on the slope of the cell and the

productivity of the cell. In accordance with the findings from fieldwork interviews

(section 3.1), agents consider only cells with slopes between 6 and 35u suitable for

shifting cultivation. When choosing a cell, the labour productivity of the four

neighbouring (von Neumann) cells is updated to reflect the fencing done by the

agent and thus the decreased labour costs associated with fencing/cultivation of

these particular cells, and the particular cell chosen by the agent changes its state

from regrowth to cultivated. The next agent will therefore have an incentive to

choose their cell next to the cell occupied by the first agent. This procedure continues

until all agents have found a place to cultivate, and the procedure is repeated every

time step. If an agent faces a set of cells with similar labour productivity, a random

cell will be chosen from the set for cultivation. Figure 4 shows the model structure.

Figure 4. Model structure. PP(age): the potential production for a cell with a given age. LP:
labour productivity. Labour productivity, age, state, perimeter, and slope are cell variables.
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Table 1 shows the labour productivity matrix for given combinations of yield

(based on fallow age) and degrees of fencing. Highlighted in grey are the

combinations of fallow age/fencing making a cell more attractive to the agent than

a 10-year-old fallow without fencing. For 9-year-old fallow cells, only one cultivated

neighbour is necessary to raise the labour productivity over that of the 10-year

unfenced cell, while 6-year-old cells must be cultivated on at least three sides to

attract an agent compared with the 10-year-old unfenced cell.

4.3 Model runs and scenarios

The model is dynamic in space and time, resulting in distinct land-cover patterns. As

a closed system, however, no information, energy, or mass is introduced to or

exported from the model world once the simulation is set up. This implies that the

simulated shifting cultivation system has a constant population and a constant area

to cultivate, and as the model does not keep track of nutrient pools or declining

yields, the simulated environment will reach a steady state with respect to the

average age of the regrowth cells—the fallow period. At this point, the model stops,

and the graphics are exported to ArcGIS for conversions and analyses.

To construct a baseline, 30 simulations were made with parameters and rules as

specified in section 3.1 and table 3. Each simulation varies slightly due to

randomness in the initial distribution of fallow ages, the household size distribution,

and the specific cell chosen by an agent for cultivation if cells with similar labour

productivities exist.

To evaluate how the system might change under different parameter values, three

scenarios were constructed:

1. The ‘100-agent scenario,’ where the number of agents is changed from 65 to

100, thereby changing the total population from 385 to 600. It is not unlikely

that this scenario will happen in reality, given an annual population growth

rate in Vietnam of more than 1%.

2. The ‘plot-requirement scenario,’ where the number of cells cultivated by each

agent is changed by varying the hh and plot requirement variables. The default

variable values are based on the average Vietnamese rice consumption which

could be different in the study village due to different dietary composition. In

this scenario, agents with households smaller than two persons cultivate two

cells, agents with households between two and four persons cultivate three

cells, and agents with households larger than (or equal to) four persons

cultivate four cells.

3. The ‘slope scenario,’ building on the plot-requirement scenario, where the

minimum and maximum thresholds for slope are gradually changed, while the

hh and plot requirement variables are similar to the plot requirement scenario.

The slope scenario tests the sensitivity of the model outcome to loosening the

physical barriers for agent movement. Each of the model scenarios was

simulated 30 times for comparison of results to the base scenario.

5. Simulation results

The cultivation patterns for the 30 simulations comprising the baseline, of which

two are shown in figure 5, exhibit some similarity to the patterns observed from

satellite imagery (figure 3). The average statistics for the baseline show that the
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NNOMD, i.e.
P

i

Ci

� ��

n of equation (1), is around half of the expected mean

distance (EMD), based on the number of cultivated fields and the village territory

area. As a consequence, the MNNR is 0.48, and the clustering index is supported by

a strong negative Z-score of 211.72.

The MNNR statistics from the baseline runs compared well to the satellite-

derived data. The values of MNNR for the observed data were 0.60, 0.59, and 0.58

(table 2). The baseline Z-score was similar to the satellite-based Z-scores. Examining

the NNOMD and EMD of the baseline and the satellite data reveals important

differences: the observed mean distance of the baseline was 75.36, while the satellite

data had values in the range 71.54–80.87. The expected mean distance was 158.72

for the baseline compared with 122–134 for the satellite data. Most important,

however, is the difference in the number of cultivated cells: the baseline value is 136,

while the satellite validation data on average contain 214 cultivated cells (table 4).

The 100-agent scenario shows the same visual trends as the baseline, with a

mixture of smaller and larger fields, but naturally with a greater number of plots

than the baseline and with a less clustered field pattern. The MNNR is 0.83, and the

Z-score is 24.65.

The plot requirement scenario forces the agents to cultivate a larger number of

cells than the baseline scenario, the average number of 210 cells cultivated is close to

the average of 214 for the validation data, and the EMD of this scenario (127.87) is

therefore close to the EMD of the validation data (126.67). The NNOMD of 116.93

reveals a long distance between neighbouring cultivated cells, and the MNNR is 0.92

with a Z-score of 22.32, expressing rather weak clustering.

The slope scenario consists of a series of runs where the low slope threshold is

varied from 1 to 6, and the high slope threshold is varied between 20 and 50 in 10u
intervals (figure 6, table 5). The MNNR ranges between 1.03 with a z-score of 0.90

Figure 5. Two examples of the 30 runs comprising the baseline.
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for a low slope56 and a high slope520 and 0.57 with a z-score of 211.80 for a low

slope51 and a high slope550.

6. Discussion

The baseline scenario produces a pattern of cultivated cells with a stronger

clustering than the validation data, measured as the MNNR. But inspecting the

NNOMD, the cultivated cells in the validation data are placed more adjacent than

in the baseline scenario. The higher MNNR for the baseline arises because the

scenario contains a lower number of cultivated cells than the validation data and

Table 4. Mean nearest-neighbour ratio, Z-score, and number of cultivated cells for the
baseline simulation and three scenariosa.

Baseline
(30 runs)

100 agents
(30 runs)

Plot
requirements

(30 runs)

Slope (4630 runs with low slope
constant at 6u)

20 30 40 50

No. of cultivated
cells

136 211 210 135 138 136 137

NNOMD 75.36 106.2 116.93 156.48 98.13 70.96 70.17
(4.06) (7.74) (7.49) (10.41) (8.32) (2.37) (0.92)

EMD 158.72 127.53 127.87 159.32 158.1 158.9 158.69
(2.82) (1.96) (3.28) (2.38) (2.92) (2.99) (3.02)

MNNR 0.48 0.83 0.92 0.92 0.62 0.45 0.44
(0.03) (0.06) (0.07) (0.07) (0.05) (0.02) (0.01)

Z–score 211.72 24.65 22.31 21.76 28.5 212.34 212.46
(0.57) (1.61) (1.87) (1.61) (1.2) (0.33) (0.13)

aNumbers in parentheses are standard deviations.

Figure 6. The spatial output from four simulations: 1) Baseline with default settings; 2)
Baseline with the number of agents increased from 65 to 100; 3) Baseline with the c-constant
of Equation 2 changed from 0.2 to 0.4 and 4) Baseline with maximum slope threshold
changed from 35 to 50.
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hence has a higher EMD value. In general, the algorithm used for calculation of the

labour productivity value of the cells (equation (2) divided by the cell perimeter

variable) and the rules describing how the agents select cells to cultivate succeed in

producing a clustered cultivation pattern, but the number of cultivated cells in the

baseline scenario falls below the observed number.

The results from the 100-agent scenario were surprising. As indicated by the EMD

of 127.53, the number of cultivated fields was similar to the satellite data, but the

NNOMD was 106.20, higher than the baseline value. This results from cultivated

cells not being situated as adjacent as in the baseline scenario and the validation

data. The reason for the high NNOMD could be an artefact of the method used to

stop the model; when the landscape change, measured as the cultivated-to-regrowth

ratio, is constant between two time steps, the model stops. To test if the model is

stopped prematurely by a ‘quasi-stationary’ level occurring before the landscape

reaches a steady state, a test was carried out where the simulation runs 10 times

longer than the average number of time steps for the 100-agent scenario, but this

only decreased the NNOMD from 106 to 98.68. Another reason for the high

NNOMD is that the physical barrier for cultivation, the slope threshold of 35u, is set

too low, thus forcing the agents to avoid steeply sloping cells despite adjacency to

other cultivated fields and related high labour productivity values, and thereby

fragmenting the pattern of cultivated cells.

The 100-agent scenario partly compensates for the fact that the baseline

underestimates the number of cultivated fields by letting more agents cultivate.

Table 5. Mean nearest-neighbour ratio, Z-score and number of cultivated cells for the slope
scenarioa.

high_slope low_slope NNOMD EMD Z-score Cultivated cells MNNR

20.00 1.00 124.75 (5.96) 127.54 (3.33) 20.58 (1.45) 211.50 (11.10) 0.98
20.00 2.00 126.95 (6.06) 126.56 (3.54) 0.10 (1.24) 214.83 (11.77) 1.00
20.00 3.00 128.70 (6.72) 127.55 (2.42) 0.25 (1.35) 211.27 (8.07) 1.01
20.00 4.00 127.81 (7.04) 127.53 (2.73) 0.06 (1.38) 211.40 (8.83) 1.00
20.00 5.00 132.15 (7.61) 128.69 (3.79) 0.74 (1.38) 207.87 (12.14) 1.03
20.00 6.00 131.38 (7.83) 127.24 (3.31) 0.90 (1.53) 212.50 (11.05) 1.03
30.00 1.00 100.57 (7.25) 127.57 (3.63) 25.90 (1.38) 211.50 (11.99) 0.79
30.00 2.00 102.40 (6.23) 127.76 (3.58) 25.51 (1.23) 210.83 (11.86) 0.80
30.00 3.00 101.82 (7.71) 127.59 (3.84) 25.65 (1.37) 211.47 (12.68) 0.80
30.00 4.00 102.47 (6.71) 127.49 (2.73) 25.47 (1.30) 211.53 (9.24) 0.80
30.00 5.00 103.80 (6.65) 128.62 (3.42) 25.30 (1.45) 207.97 (10.84) 0.81
30.00 6.00 110.10 (6.21) 127.89 (3.70) 23.83 (1.43) 210.43 (11.63) 0.86
40.00 1.00 83.99 (4.88) 127.39 (3.19) 29.44 (1.17) 211.97 (10.48) 0.66
40.00 2.00 85.74 (7.10) 126.52 (2.70) 28.98 (1.70) 214.80 (9.26) 0.68
40.00 3.00 87.42 (5.84) 126.46 (4.39) 28.56 (1.52) 215.43 (14.29) 0.69
40.00 4.00 88.92 (7.86) 127.94 (3.46) 28.39 (1.82) 210.20 (11.14) 0.70
40.00 5.00 93.79 (6.57) 127.42 (3.29) 27.28 (1.69) 211.90 (10.95) 0.74
40.00 6.00 99.05 (7.39) 127.38 (3.64) 26.09 (1.98) 212.13 (12.31) 0.78
50.00 1.00 73.39 (4.33) 128.99 (3.26) 211.81 (1.01) 206.77 (10.58) 0.57
50.00 2.00 74.79 (4.71) 127.48 (3.70) 211.44 (1.15) 211.80 (12.03) 0.59
50.00 3.00 76.90 (4.63) 127.07 (3.22) 210.97 (1.11) 213.03 (10.56) 0.61
50.00 4.00 77.52 (3.77) 126.64 (2.96) 210.83 (0.91) 214.43 (10.00) 0.61
50.00 5.00 81.37 (5.62) 126.74 (3.47) 29.95 (1.38) 214.23 (11.62) 0.64
50.00 6.00 84.05 (4.08) 127.53 (2.88) 29.45 (0.98) 211.43 (9.60) 0.66

aEach row presents mean values of 30 runs with standard deviations in parentheses.
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But this approach relaxes the relation between model and reality, as the empirical

data on the number of households in Que village (65) are regarded as robust. Instead

of changing this variable to increase the number of cultivated cells, we change the

number of cells each of the 65 agents should cultivate by varying the hh and plot

requirement variables. In this scenario, the plot-requirement scenario, the model

reproduces the number of cultivated cells observed on the satellite images but fails to

reproduce the clustering. Like the 100-agent scenario, this can be attributed to the

physical limitations posed on agent choice by the slope thresholds.

In the slope scenario, the threshold values were varied, thereby testing the impact

of the slope constraint on the pattern produced. With hh and plot-requirement

variables like the plot-requirement scenario, the EMD matches the validation data

and as the area available to the agents is increased by losing the slope barriers, the

OMNND of the simulations approaches the average OMNND of the validation

data. In the slope scenario, the simulations with a low slope52 and high slope550

yield results closest to the validation data, in terms of both MNNR and z-score (0.59

and 211.44 for the simulation, 0.59 and 211.53 for the validation data).

The mean nearest-neighbour ratio is a simple measure of spatial clustering.

Inspecting the ratio’s two components, the observed and expected nearest-neighbour

distances, allows a more precise description of the patterns analysed. In the present

context, validation of the model by the ratio alone would reveal similarities in

clustering tendencies between modelled and observed data but would not measure if

the model produces the correct number of cultivated cells or whether the mean

nearest-neighbour distance in the model results fits the validation data. For instance,

the baseline scenario matches the mean nearest-neighbour distance and the z-score

of the validation data but only produces around two-thirds of the cultivated cells

observed in the satellite data. As a consequence, the baseline EMD is 25% larger

than the validation data EMD, and the MNNRs of the baseline and the validation

data do not match.

Both the 100-agent scenario and the plot-requirement scenario arrive at the

number of cultivated cells observed in the satellite data and thus match the EMD.

But the OMNNDs and MNNRs for the two scenarios show that cultivated cells are

spread across the landscape with weak clustering. Two reasons could exist for this:

(1) the benefit of cultivating adjacently, expressed as the labour productivity

variable of the cells, is too low; and (2) the area available to the agents is too

restricted by the slope thresholds. While the first reason is not addressed in this

study, the second reason is examined in the slope scenario which yields a result very

similar to the validation data. This indicates that the slope thresholds reported by

the interviewed villagers could be misestimates and that the farmers are willing to

cultivate slopes as steep as 50u. Indeed, overlaying the cultivated cells observed in

the satellite images with the slope map shows some cultivated cells situated on slopes

between 40 and 53u. But even though the model contains a modest amount of

variables, the number of combinations is huge, as is the formulation of rules

governing agent’s behaviour. It is therefore not unlikely that other rules and variable

combinations would produce results similar to the slope scenario, making it difficult

to reach a firm conclusion about the model’s performance.

6.1 Model shortcomings

The model is a rough simplification of reality. In a real-world situation, yield is

partly dependent on the labour invested in production. When setting the labour
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productivity of a cell in the model, yield is calculated from the cell age, and labour

costs are calculated based on the number of adjacent cells that are cultivated. No

feedback exists between labour costs (or investments) and yield. In addition, while

real-world subsistence farmers probably do consider labour productivity as an

important factor, the size of the actual yield, the productivity, might be crucial for

decision-making. This is simulated here through the plot requirement variable,

which does not respond linearly to the household size but responds stepwise

following the plot-requirement thresholds. An interesting improvement in the model

would be to keep track of which cells an agent is cultivating and to obtain empirical

data on the ‘ownership’ of fields. This would enable a micro-scale validation of the

simulations by testing if the modelled tendencies of each agent to locate their own

cells adjacently fits with the empirical observations.

In contrast with one of the often claimed principles of cellular automata and

multi-agent systems, the agents here do not process information in parallel but ‘line

up’ and execute the decision serially for each time step. This approach is highly

intentional: before selecting a cell, agents check the productivity value of the cells

and check if the cell is occupied by another agent. Then, the agent chooses an

unoccupied cell to cultivate. If this sequence of commands were to be executed in

parallel, all agents could in principle end up at the same cell. The serial processing is

done in the same order for each time step. This means that the same agent can always

choose first. As agent performance in terms of productivity or labour costs is not

part of the model outcome, this approach does not impact the resulting land cover.

Finally, the procedure for stopping simulations could be improved. A method yet

to be tested is to calculate the MNNR for each model time step and keep a list of

MNNRs for a range of time steps. The model could then be stopped with the

MNNR, for a given time step is within a given threshold of the average of the

MNNRs in the list.

The mean nearest-neighbour distance and mean nearest-neighbour ratio provide a

reliable first-order neighbourhood measure. But as a validation tool, it has a

shortcoming: if all cultivated cells have a neighbour, the OMNND will be 70, the

smallest distance between any two cells, thus indicating perfect clustering. This will

also be the case if cultivated cells are located in dispersed pairs. To measure the size

of clusters, and thus provide a more precise measure of patterns, the nearest-

neighbour distance should be expanded to include distances to the second nearest

neighbour, third nearest neighbour, etc. Application of a k-order nearest-neighbour

distance index (Mitchell 2005) would be an interesting feature in the validation of

spatially explicit agent-based models.

7. Conclusion

Agent-based models operating in simulated environments have a strong logical and

pedagogical appeal. Decision-makers, be they farmers, farm households, or actors at

other organizational levels or geographical scales, are represented as agents acting

on their surroundings, represented as cells, which in turn provide opportunities and

constraints to the agents.

The baseline simulation presented here is almost entirely based on empirical data,

and fieldwork has served to identify and parameterize variables. The rules in this

simulation are simple, revolving around labour productivity and the impact of

physical barriers on adjacent farming.
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The ability of the model simulations to generate spatial clustering and approach

the validation data indicates that the ‘core’ rule in the model, i.e. the search for cells

with high labour productivity, could be a realistic representation of farmer decision-

making. The model succeeds in producing a land-use pattern consisting of smaller

and larger fields, and the pattern produced in the slope scenario is similar to the

validation data measured by the spatial statistics applied. This supports traditional

shifting cultivation theory: farmers act to maximize their labour productivity,

sometimes at the expense of maximizing the yield. But it should be kept in mind that

validating rules of locational behaviour by their spatial expression is still a ‘proxy

validation’, and that the observed patterns could be reproduced using many

different rules and model types.
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