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This paper examines the use of evolutionary programming in agent-based

modelling to implement the theory of bounded rationality. Evolutionary

programming, which draws on Darwinian analogues of computing to create

software programs, is a readily accepted means for solving complex computa-

tional problems. Evolutionary programming is also increasingly used to develop

problem-solving strategies in accordance with bounded rationality, which

addresses features of human decision-making such as cognitive limits, learning,

and innovation. There remain many unanswered methodological and conceptual

questions about the linkages between bounded rationality and evolutionary

programming. This paper reports on how changing parameters in one variant of

evolutionary programming, genetic programming, affects the representation of

bounded rationality in software agents. Of particular interest are: the ability of

agents to solve problems; limits to the complexity of agent strategies; the

computational resources with which agents create, maintain, or expand

strategies; and the extent to which agents balance exploration of new strategies

and exploitation of old strategies.

Keywords: Agent-based model; Bounded rationality; Evolutionary programs;

Land change

1. Introduction

Human transformation of the Earth’s land surface has environmental and socio-

economic impacts that extend from specific locales to the entire globe. We know

surprisingly little about this land change because it is a complex phenomenon caused

by individual actors, such as households or firms, within larger environmental and

social systems (NRC 2001). Models that integrate human decision-making, societal

context, and ecological relations are central to understanding land change (Brown et

al. 2004, Gutman et al. 2004). Nonetheless, relatively few land-change models

actively consider theories of human behaviour (Irwin and Geoghegan 2001). This

work instead has tended to address ‘highly empirical questions using statistical

methods … and has generally avoided abstract theoretical formulations’ (Walker

2004: 248). There is a need for a broader conceptualization of individual decision-

making in land-change models as such and in the cognitive and social sciences more

generally (Agarwal et al. 2002).
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Agent-based models (also termed multi-agent systems or individual-based

models) are increasingly used to represent decision-making in land-change contexts.

An agent-based model is a system of semi-autonomous software programs, or

‘agents’, that represent the complex behaviour of interacting entities such as

individuals, households, or firms. Agent-based models advance our understanding

of decision-making by representing actors, such as individuals or households, as

autonomous, heterogeneous, and locally interacting entities. To fully leverage these

advantages, however, modellers must also invest agents with theoretical and

methodological representations of the decision-making that drives land change

(Parker et al. 2003).

This research explores the use of evolutionary programming to represent decision-

making in agent-based models. It uses the SYPR Integrated Assessment (SYPRIA)

model, named for the southern Yucatán peninsular region of Mexico, which is home

to deforestation and attendant cultivation that threatens one of the world’s largest

remaining subhumid tropical forests. The chief proximate cause of this land change

is household agricultural activity. To represent these households and their decision-

making, SYPRIA agents make land-use decisions in a simulated landscape,

decisions that account for individual, social, and environmental context. Other

studies describe SYPRIA in general and its capacity for scenario generation

(Manson 2000, 2004, 2005, 2006).

This paper focuses on linking the theoretical and technical imperatives of

decision-making research in agent-based models of land change. SYPRIA agents are

invested with a form of evolutionary programming, termed genetic programming

that serves as a computational analogue to real household decision-making. This

paper examines how changes in genetic programming parameters affect the

representation of a specific decision-making theory, bounded rationality, in agents.

Section 2 examines how agent decision-making is a form of multicriteria evaluation

that assesses the suitability of land for agriculture. Agents treat their multicriteria

evaluation question as a symbolic regression problem that they solve with

evolutionary programming. This approach offers important methodological

and conceptual advantages when representing decision-making in agent-based

models of land change. Section 3 describes how changes in genetic

programming parameters affect the ability of agents to act in accordance with

bounded rationality.

2. Modelling agent decision-making

Agents in many agent-based models of land change choose locations in a simulated

landscape for activities such as clearing forest and planting crops (Gimblett 2002,

Janssen 2003, Parker et al. 2003). Agents can treat this decision-making problem as

a form of multicriteria evaluation (Collins et al. 2001), where each agent creates

strategies to choose locations in the simulated landscape according to their

suitability for any given production activity as a function of spatial factors that vary

over the landscape (Manson 2005). A key challenge in designing software agents

that represent real decision-makers is determining the manner in which each agent

solves its multicriteria evaluation problem. When agents use evolutionary

programming to solve this problem as a form of symbolic regression, the modeller

gains a useful computational tool and a means of representing agent decision-

making as a form of bounded rationality.
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2.1 Multicriteria evaluation as a symbolic regression problem

Agents can treat their multicriteria evaluation problem as a symbolic regression.

Symbolic regression is empirical modelling that involves inductively building a

mathematic or computational statement of relationships among random variables.

Symbolic regression approximates an ideal function f (x) that reproduces the value

of a dependent variable Y as a function of independent predictor variables X5{X1,

…, Xn}. These variables are known solely through empirical observations O5{y, x}

where y:5(yi)m, a column vector of m observations on Y, and x:5(xi, j)m6n, an m6n

matrix of m observations on the n independent variables X. Any given observation

of the m observations in O is denoted oi or {yi, xi}. The value of f (x) at xi, or f (xi), is

denoted f̄i and is related to the ideal value fi through error defined as ei5fi2f̄i.

Consider a statistical linear regression, for example, that takes the familiar

functional form

Y~f xð Þ

~f x; bð Þ

~b0zb1X1zb2X2z . . . zbnXnze

ð1Þ

where dependent variable Y is expressed as a linear function of independent

variables X5{X1, …, Xn}, coefficients b5{b1, …, bn}, and error term e.

Generic symbolic regression does not specify a functional form for f (x), but

instead combines primitive functions that range from simple arithmetic operators to

specialized domain-specific functions. Symbolic regression approximates f (x) as

f̂ xð Þ

f̂ xð Þ&
Xn

i~1
aiwi xð Þ ð2Þ

comprising n pairings of function w (x) with coefficient a estimated to minimize e
over the values of dependent and independent variables given by observations

O5{y, x} (after Ralston and Rabinowitz 2001). The means used to estimate f (x)

vary according to the restrictions imposed by its functional form. In the case of the

statistical linear regression, we can employ an approach such as ordinary least

squares. Other versions of symbolic regression require specialized methods such as

computational intelligence or machine learning to compose independent variables,

coefficients, and primitive functions in a way that minimizes the error of f̂ xð Þ with

respect to observations O (Russell and Norvig 1995).

In the case of SYPRIA, the dependent variable Y maps onto actual land use, and

the independent variables X correspond to social and environmental factors. The

propensity for real households to clear land for extensive agriculture in the Southern

Yucatán is a function of factors related to environmental systems (e.g. water, soil,

precipitation) and social drivers (e.g. distance to market, land tenure). As proxies to

actual households, each software agent must approximate its own f (x) to establish

the suitability of any given location as a function of spatially varying social and

environmental factors. Each of the m observations in O gives the value of the

dependent and independent variables for a single location in the area surrounding

each household.

In SYPRIA, a different agent represents each of the roughly 5000 real households

in the Southern Yucatán. These agents sample nearby locations in the simulated

landscape, represented by GIS layers based on real data, to extract values for the
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dependent and independent variables found in observations O; this formulation is

similar to that found in other agent-based models of land change (cf. Polhill et al.

2001, Evans and Kelley 2004, Parker and Meretsky 2004, Brown et al. 2005). For the

purposes of this paper, the dependent variable is land use observed in 1998 as

derived from Thematic Mapper remotely sensed imagery. Independent variables

include soil type, elevation, slope, aspect, precipitation, surface hydrology, distance

to roads and markets, and socio-economic and demographic factors for the same

year (Manson 2005). While the general characteristics of these data and the larger

model structure are given here as background, these data and most specifics of

SYPRIA are exogenous to the analysis of the linkages between evolutionary

programming and bounded rationality, and as such are not detailed beyond what is

necessary here.

2.2 Symbolic regression and evolutionary programming

Agent-based models in which agents conduct symbolic regression use approaches

including statistics, linear programming, rules and heuristics, vector weighting

schemes, belief–desire–intention models, and classifier systems (Tesfatsion 2001,

Parker et al. 2003). Agents can also solve their respective multicriteria evaluation

problems through evolutionary programming, or the creation of software programs

through computational means inspired by biological processes, particularly

Darwinian evolution (Eiben and Schoenauer 2002).

Genetic programs are trees composed of terminals and functions in a branching

structure. In terms of the underlying biological metaphor, a tree that constitutes a

genetic program is equivalent to that program’s genetic code, and each function and

terminal is analogous to a gene. Consider a simple tree that corresponds to the

symbolic regression equation Y5b1X1 + b2X2 (figure 1(a)). This equation can be

represented by a tree that possesses two branches, one composed of the terminals b1

and X1, and another by b2 and X2. These sub-branches are joined by the

multiplication function, 6, implicit in the regression equation Y5b16X1 + b26X2.

These sub-branches in turn are joined by the addition function, + , at the root node

of the tree. Tree depth is the number of branches spanning the longest descent from

the root to terminals, while length is the total number of nodes (figure 1(a)).

Terminals such as b1 and X1 are, respectively, numerical coefficients and spatial

factors corresponding to the variables in X, while functions can range from simple

arithmetic operators to more complex operators. Functions tend to be restricted to a

small set because the genetic programs will evolve sophisticated functions

themselves, just as simple machine languages can undergird complicated programs

(Banzhaf et al. 1998). The tree structure is useful because it can be interpreted

visually while being functionally equivalent to a generic computer program (Koza

1992).

A genetic programming system manages individual programs, exerting pressure on

the programs to evolve over time to become better solutions to agent symbolic

regression problems. Each agent possesses a genetic programming system that

controls genetic program population K of size M that evolves over generations G

(after Koza 1992). Members of the initial population (g50) comprise randomly

chosen terminals and functions. Members of this generation compete for the

opportunity to pass on their genetic material to the next generation (g51), which in

turn aim to do the same for the next (g52), and so on. Each generation serves as the
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‘children’ of the preceding generation and the ‘parents’ for the next. This evolution

may involve as few as 10 generations or upwards of several thousand.

The genetic programming system chooses parents to create offspring through

selection, whereby fit parents are more likely to have children. SYPRIA employs a

steady-state approach, where population size is fixed over time by replacing less fit

programs in the parent generation with the children of fitter parents. The system

selects parents according to their fitness, fk, in approximating function f̂ xð Þ as given

by minimizing error over observations O. The most common fitness function in

genetic programming is summed error, or the sum of the absolute value of the

differences between genetic program output and the dependent variable given by O

(Koza 1999). Variants calculate the mean error in order to include the effect of

sample size, sum of the squared errors, or the sum of square root of error (examined

below and given in table 1). From this follows the sometimes confusing convention

that a lower fitness score indicates a greater ability to solve the symbolic regression

problem.

Three genetic operators create child genetic programs from fit parents to replace

less fit parents: crossover, reproduction, and mutation (figure 1(b)). Crossover

mingles the genes of two parents by creating a single child that carries a mixture of

parental genes. Crossover is the driving force behind evolution because it quickly

culls substandard strategies from the population while creating potentially better

strategies through the intermingling of well-performing genetic programs.

Reproduction is analogous to asexual reproduction or cloning, whereby a genetic

program in the parent generation makes a copy of itself for insertion into the child

Figure 1. Genetic program (a) and crossover, reproduction, and mutation operators (b).
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generation. Reproduction is useful for maintaining fit strategies across generations.

Mutation is a special form of reproduction in which a parent creates an identical

child but a gene is randomly mutated in the process. Mutation introduces changes in

a program by chance and ensures that terminals and functions do not disappear

from the population due to crowding by more successful terminals and functions in

early generations.

2.3 Evolutionary programming to represent bounded rationality

The choice of evolutionary programming as a symbolic regression method stems

from the broader challenge of establishing how agents may approximate f̂ xð Þ in a

manner that satisfies theoretical imperatives. One of the most common theories of

decision-making in the social sciences, perfect rationality, is joined by a growing

number of alternatives, of which bounded rationality is prominent. Every decision-

making theory has specific corollaries that govern its attendant computational

Table 1. Genetic program parameter settings.

Parameter Value (default)

Tested parameters
Fitness function: error e measured by f (xi), denoted-

fi, and the ideal value fi given by yi in o5{y, x}
e~
Pm

i~1 fi{f̄i

�� ��
e~
Pm

i~1 fi{f̄i

�� ��=n

e~
Pm

i~1 fi{f̄i

� �2a

e~
Pm

i~1 fi{f̄i

� �0:5

Creation method: initial profile of programs Full, Variable, Ramped Variable,
Ramped Full, Ramped Variable/Fulla

Selection mechanism: means by which parents are
chosen

Probabilistic, Ranked, Tournamenta,
Elitist Tournament, Demetic

Population size (M): programs in the population 10–500 (300a)
Generations (G): generations over which programs

evolve
10–100 (30a)

Secondary parameters
Crossover probability (Pc): probability that a

program will be the offspring of two other
programs

0.9

Mutation probability (Pm): probability that a
program mutates

0.001

Reproduction probability (Pr): probability that a
program will be the offspring of one parent
program

12(Pc + Pm)

Internal crossover points (%): probability that
program is crossed or mutated at a function
instead of a terminal

0.7

Creation depth: maximum depth of programs when
created

6

Crossover depth: maximum depth at which pro-
grams cross

17

Function set: functions that can act as tree nodes + 246
Randomness: probability of choosing an ephemeral

constant
0.5

Program length: maximum genetic program length 500
Tournament size: tournament is held between X

individuals
5

aDefault.
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implementation of symbolic regression. Perfect rationality is expressed in a variety

of ways, particularly via statistical regression models, while bounded rationality is

successfully implemented with evolutionary programming.

Perhaps the most commonly accepted model of decision-making in the social

sciences—and, by extension, land-change models—is rational choice theory

implemented with statistical regression. One variant of this theory, termed perfect

rationality, is particularly widespread because it offers power and analytical

tractability via assumptions of utility maximization, perfect computation, and

complete information on alternatives (Myers and Papageorgiou 1991). Many

methods for solving symbolic regression problems are in keeping with the corollaries

of perfect rationality. Econometric research in particular adapts a variety of

regression methods (e.g. least-squares, hazard, and logistic models) to the

underlying principles of perfect rationality for land use (Bockstael 1996, Nelson

and Geoghegan 2002) and rational choice in general (McFadden 2001). When

applied to empirical data, these symbolic regression methods aim to solve in

the aggregate the same multicriteria evaluation problem faced by agents

individually.

The normative tradition of rational choice is increasingly joined by descriptive

alternatives (Bell et al. 1988, van den Bergh et al. 2000). Key among these is bounded

rationality, introduced by Simon (1997: 267) as ‘rational choice that takes into

account the cognitive limitations of the decision-maker—limitations of both

knowledge and computational capacity’. Actors under bounded rationality do not

optimize because they possess limited computational resources and information on

which to base decisions. Actors instead satisfice—make suboptimal yet acceptable

decisions—with a small cadre of partial strategies based on imperfect information. A

key effect of these limits is that strategies have limited complexity; decision-makers

use simple heuristics or ‘rules of thumb’ (Baumol and Quandt 1964, Slonim 1999).

These key precepts of bounded rationality—limits to information and cognition—

have been extended by positing that learning from experience is important to

explaining satisficing, creation of heuristics, and limits to information. Actors

improve strategies through a Darwinian process of learning-by-doing that balances

path-dependent exploration of new strategies by extending current strategies versus

simply exploiting existing strategies (Arthur 1993, Gigerenzer et al. 2001).

A key advantage claimed for agent-based modelling is the ability to represent key

features of bounded rationality in agents, such as learning over time, bounded access

to information, and limited computational resources (Epstein 1999). Agent-based

models of land use implement bounded rationality (sometimes implicitly) through

mechanisms such as limits to knowledge, as when agents use local information or

have a limited search capacity, and limits to computation, particularly through

symbolic regression approaches such as heuristics or classifier systems (Gimblett

2002, Janssen 2003, Parker et al. 2003).

Evolutionary programming is a particularly promising means of representing

bounded rationality in agent-based models, although the modeller must choose

between two ways in which to do so: functional and representational (Chattoe

1998). Evolutionary programming is functional when it acts in an instrumental

manner to find optimal or near-optimal solutions to well-specified problems in high-

dimensional domains characterized by noise and complexity (Kaboudan 2003). In

land-change research, evolutionary programming is most often used in a functional

manner for the optimal allocation of land because it can quickly navigate
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complicated search spaces defined by millions of land parcels or raster grid cells (e.g.

Balling et al. 1999, Matthews et al. 1999, Xiao et al. 2002).

In contrast, the representational use of evolutionary programming draws several

parallels between human decision-making and the genetic programming system

(Edmonds 2001, Chen 2003). Representational evolutionary programming grants

each agent a population of strategies; in an agent-based model of land change like

SYPRIA, each program is an alternative multicriteria evaluation strategy of land

use. An agent uses the fittest strategy when it makes a decision at any given time, but

it also possesses many other potential strategies to use in the face of changing

circumstances (Dosi and Nelson 1994). Importantly, the fittest strategy for an agent

is almost always satisficing instead of optimizing because the representational use of

evolutionary programming imposes computational limits to cognition and

information.

Representational evolutionary programming maps onto many corollaries of

bounded rationality. First, limits to computational ability are imposed by reducing

the number of trees available to an agent and the depth or length that they can

achieve (Edmonds and Moss 2001). Second, limits to information are imposed by

the manner in which offspring carry remnants of preceding generations. These

portions of earlier programs are equivalent to memory, but this memory does not

provide perfect information because it is distorted over time (Chen 2003). Third,

evolutionary programming can also represent learning under bounded rationality as

the above-noted balance between exploitation and exploration. Agents use crossover

to blend successful strategies to create better strategies, in essence learning from

experience (Dawid 1999), while agents use reproduction as the equivalent of

exploiting existing well-performing strategies (Moss and Edmonds 1998,

Beckenbach 1999). Fourth, mutation is akin to the errors, experimentation, and

accidents that form the basis for innovation (Chen and Chie 2004). Fifth, crossover

implements imperfect information and search costs when less fit programs engage

in crossover, leading to suboptimal offspring (Brenner 1999). Finally, agents

can engage in imitation, communication, and development of new strategies

by borrowing strategies, although this interpretation requires us to

adopt the computational conceit that function follows form (Pingle 1995, Dawid

1997).

Of course, the linkages between evolutionary programming and bounded

rationality are relatively nascent. There is mounting evidence for the correspon-

dence between evolutionary programming, models of bounded rationality, and

bounded rationality in real decision-making (in addition to works noted above,

for reviews see Chattoe 1998, Edmonds 1998, Chen et al. 2002, Chen and Wang

2004). Evolutionary programming also captures aspects of decision-making that

perfect rationality and statistical models do not. Few researchers would claim,

however, that either all bounds to rationality or the rationality (as such) of real

actors strongly maps onto the artificial cognitive processes of agents equipped

with genetic programming systems. Bounded rationality assumes that real

decision-makers face limits to their cognitive processing but does not assume

that they use genetic programs or that programs fully reconstruct actual

strategies that map onto actual cognitive structures (leaving aside the

philosophical question of where cognition resides). There is an ongoing need to

explore computational analogues, in general, and evolutionary programming, in

particular, to bounded rationality.
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3. Methods

We face unanswered questions when linking the conceptual underpinnings of

bounded rationality to the technical implementation of genetic programming. The

modeller must modify the genetic programming system possessed by each agent in

order to fulfil the functional task of solving the multicriteria evaluation problem

while also satisfying the representational goal of capturing features of bounded

rationality. I constructed an experimental frame to test five key genetic

programming parameters—fitness function, creation mechanism, selection operator,

population size, number of generations—and their effects on both the functional

efficiency of programs and their representational fidelity.

3.1 Experimental frame

To better understand the role of the five system parameters in modelling bounded

rationality with genetic programming, I tested variations of one of the five

parameters of interest across 600 model runs in SYPRIA while holding the other

parameters constant, for a total of 3000 runs. Table 1 details the range of these

parameters and outlines secondary parameters common to genetic programming

applications (Banzhaf et al. 1998). As noted above in section 2.1, much of the

operation of SYPRIA is irrelevant to the experimental frame, which reports on the

genetic programming systems of SYPRIA agents solving their symbolic regression

problem.

3.1.1 Fitness function. The heart of genetic programming lies in breeding better

strategies, which in turn requires the selection of fitter parents for reproduction,

crossover, and mutation. Parents are selected according to their fitness fk as given by

minimizing error over observations O when solving for f̂ xð Þ. The four most

common functions are summed errors, mean error, sum-of-squared errors, and sum-

of-square-root errors (table 1).

3.1.2 Creation operator. There are three ways to modify genetic programs at their

creation, and these can be used to create five kinds of population (figure 2). The first

is to fill a population with full programs, each of which has branches that extend

outward from the root to a uniform maximum depth. The second is to create a

population of variable trees, the branches of which can vary in depth up to a

maximum value. The third is to create a ramped population of either full (ramped

full) or variable (ramped variable) trees by dividing it into subpopulations that vary

in their maximum depth. A ramped full population of 10 programs can consist of

five subpopulations, for example, in which the members of the first have a depth of

two, the second a depth of four, and so on to the fifth group having a depth of 10.

Finally, a population may also have both full and variable members to create a

ramped variable/full population. The purpose of creating a ramped or variable

population is to grant it greater diversity of program size and complexity, instead of

forcing all programs to share a common structure at the outset.

3.1.3 Selection operator. The overall fitness of the genetic program population

increases over time because successful parents are more likely to have offspring that

replace poorly performing programs. Five functions are commonly used to select

parents: probabilistic, ranked, tournament, elitist tournament, and demetic. The

widely used probabilistic approach was developed by Holland (1975) for genetic

algorithms, the precursor to genetic programming. The probability of a program
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being chosen is proportional to its individual fitness compared with the summed

fitness of all other programs in the population. Parent programs are therefore

selected according to their fitness as a proportion of the total fitness, while programs

to be replaced in the steady-state population are selected with the inverse operation.

Under ranked selection, parents are chosen according to their fitness rank in the

population overall, and their offspring replace the worst-ranked individuals. The

tournament method chooses a small group of programs at random from the entire

population. Each member in this group is compared with the others, and the

program with the best fitness is selected for crossover, reproduction, or mutation,

and its child replaces that with the worst fitness. The elitist tournament method is

identical to the tournament technique except that the fittest individual in the

tournament automatically reproduces. Finally, the demetic grouping method divides

the population into subpopulations, or demes. Within each deme, parents are

Figure 2. Creation operators.
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chosen at random, but migratory programs are probabilistically chosen from each

deme and sent to another deme. Demetic grouping is useful for halting premature

convergence in the population, since each deme can evolve without pressure save for

the occasional incursion of migratory programs (Langdon 1998).

3.1.4 Population size. When each agent has a larger initial population, it has a

greater diversity of candidate solutions and an increased likelihood of finding good

solutions. Population size in applications across the social, natural, and information

sciences range across several orders of magnitude, with an average size of 500 for

smaller problems, 10 000 for difficult ones, and upwards of 1 000 000 for very large

and near-intractable problems (Banzhaf et al. 1998, Koza 1999).

3.1.5 Generations. The number of generations works much in the same way as

population size, in that a genetic programming system with a greater number of

generations is more likely to produce better solutions (Kushchu 2002). The number

of generations varies widely across applications, with 30–500 being typical (Banzhaf

et al. 1998).

3.2 Evaluating outcomes

I used linear regression and ANOVA to examine changes in two measures—

program complexity and fitness—to elucidate the effects of varying the five key

parameters in agent genetic programming systems. Program complexity, expressed

primarily as length, gives a simple measure of how many terminals and functions a

tree possesses (Kaboudan 2003). In this application, genetic programs are limited to

a length of 500 because we are generally interested in agents creating short programs

that serve as rules of thumb with limited complexity. Program fitness measures how

well programs solve the multicriteria evaluation problem for each agent, keeping in

mind that a lower fitness score indicates greater program fitness because the score is

an error measure. Fitness is expressed as either the average population fitness in a

model run, fp̄, or the fitness, fk, of the best program in a run.

Statistical analysis of program complexity and fitness establishes how well genetic

programs fulfil their functional and representational roles. The functional efficiency

of a genetic programming system is determined by its ability to create candidate

solutions to the multicriteria evaluation problem faced by agents, each of which

performs a symbolic regression to approximate f (x) given observations O. The

representational fidelity of a genetic programming system is determined by the extent

to which programs, as measured by changes in their complexity and fitness, provide

reasonable representations of bounded rationality.

Of the many potential aspects of such representations, four are of particular

interest here. First, each agent must solve its multicriteria evaluation problem by

maximizing the fitness of its strategies. These strategies in turn are limited to

satisficing solutions because the genetic programming system imposes a number of

constraints, and each agent has only a limited number of observations O with which

to plumb its surroundings. Second, strategies should have limited complexity, as

expressed by program length and depth, in keeping with the assumption of bounded

rationality that decision-makers use simple heuristics. In this respect, shorter

programs are preferred over longer programs, as program length and depth are

proxies for agent memory and strategy complexity. Third, agents should possess

limited computational resources with which to create, maintain, or expand

strategies. These limits to resources are controlled directly by population size and
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number of generations, for example, and indirectly by strategy complexity. Finally,

the genetic programming system must balance exploitation of existing strategies and

exploration of new ones.

In many respects, genetic programming parameters must balance the functional

and representational roles of evolutionary programming. An agent could limit its

genetic programming system to a few generations of programs, for example, but this

configuration would not adequately represent either the learning of new strategies

through crossover or exploitation of existing strategies through reproduction. Nor

would the majority of resultant strategies solve the multicriteria evaluation problem

because they would not have had the opportunity to evolve much beyond their

initial random structures. Conversely, an agent could command an extraordinarily

large population of programs or enough computing power to find a near-optimal

solution to its multicriteria evaluation problem. This resource endowment is not in

keeping with corollaries of bounded rationality, however, such as simple strategies

or limits to computational resources. It is therefore important for the modeller to

determine parameter settings that balance functional and representational needs.

4. Results and discussion

4.1 Fitness function

Switching among the fitness functions (summed errors, mean error, sum-of-squared

errors, and sum-of-square-root errors) had little discernible effect, which is

somewhat surprising given that sum-of-squared errors highlights large errors, while

the sum-of-square-root errors dampens the effects of large deviations. An ANOVA

of ln (fp̄) to test for differences in program fitness among fitness functions

demonstrated that they were not statistically significant (p50.3374, F51.13,

df5596).

This lack of significant differences is likely due to the programs evolving with the

sole goal of approximating f̂ xð Þ. In contrast, a multiobjective problem such as

maximizing fitness while minimizing program length would likely see differences in

the effectiveness of varying fitness functions (Ekart and Nemeth 2005). Otherwise,

sum-of-squared errors is useful because it is analogous to the error function used by

other symbolic regression methods, such as ordinary least squares.

More broadly, there is no immediately compelling reason stemming from the

theory of bounded rationality to suggest one form of error function over another,

although risk perception research suggests that humans tend to overemphasize large

errors (Tversky and Kahneman 1974). Despite the lack of a significant relationship

in this application, linkages between fitness function and bounded rationality may

prove a fertile topic for exploration given potential ties to research on risk

perception.

4.2 Creation operator

Although an ANOVA of ln (fp̄) indicates that between-group variation in genetic

program fitness for creation methods was significant overall (p50.0000, F510.61,

df5596), only several pairings were significantly different among the operators full,

variable, ramped variable, ramped full, and ramped variable/full (table 2). The

largest differences occurred between full or variable populations when either one

was ramped but only two combinations were uniformly significantly different,

namely ramped variable versus either full or ramped full.
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In terms of average population genetic program fitness, there was a small

significant difference of means between the methods. Full populations (ln

(fp̄)513.19) outperformed variable (13.34), ramped variable (13.32), ramped full

(13.20), and ramped variable/full (13.28) populations (again noting that lower scores

indicate better programs). Figure 3 better illustrates the range of effects of creation

operators on program complexity. Figure 3(a) indicates the distribution of

standardized fitness for each creation method, highlighting that while full

populations generally were more fit (having lower fk scores), they also possessed a

higher proportion of poorly performing programs (higher fk scores). Figure 3(b)

demonstrates that full populations possessed longer genetic programs, while

variable populations possessed larger proportions of relatively short programs

balanced against a number of larger programs (bearing in mind that programs have

a maximum length of 500). The ramped variable/full approach attenuated the

excesses of either the full or the variable methods by ensuring that about a third of

the programs were short.

The ramped variable/full creation method appears to balance genetic program

performance and length. While no one program length can be said to be realistic in

terms of decision-making, shorter programs are better if they are meant to act as

rules of thumb and if actors have limited computational capacity. In computational

terms, the bimodality in lengths that results from the various creation types in

figure 3(b) suggests that there is a natural break point in the distribution at programs

with a length of roughly 50–75. The agent can choose among the roughly one-third

of the individual programs that have reached this length and ignore the group of

larger programs. In representational terms, short programs are useful because they

are simple strategies. At the same time, these strategies survived over the full amount

of time required to create programs; these programs are not short because they were

plucked from the population early. They are both simple and competitive against

longer programs; otherwise, they would be culled. In another sense, agents retain

their capacity to experiment and evolve programs over the full operation of the

genetic programming system while maintaining short but fit programs.

4.3 Selection operator

An ANOVA of ln (fp̄) across the five selection operators indicates a significant

difference among them (p50.0000, F534.36, df5596, where the operators are

probabilistic, ranked, tournament, elitist tournament, and demetic). Tournament

methods, both regular (mean ln (fp̄)513.39) and elite (13.41), outperformed

Table 2. Creation method between-class variance.

Creation type

[Difference (¡) in ln (fp̄) and p-values (p)]

Variable Full
Ramped full/

variable Ramped variable

¡ p ¡ p ¡ p ¡ p

Full 20.152 0.000
Ramped
variable/full

20.058 0.486 0.094 0.023

Ramped
variable

20.024 1.000 0.129 0.000 0.035 1.000

Ramped full 20.141 0.000 0.011 1.000 20.083 0.079 20.118 0.001
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probabilistic (13.68), ranked (13.64), and demetic (13.55) methods by margins wider

than those seen in tests of creation methods. Table 3 illustrates significant differences

between three groups of selection operators: probability and ranked methods vs.

tournament and elite tournament methods vs. demetic grouping.

Figure 4 further illustrates the differences between selection operators. Ranked

and probability methods produced leptokurtic fitness curves because the earliest

best-performing programs quickly dominated other individuals (figure 4(a)). In

essence, these programs gained a large evolutionary advantage because their

offspring were far more likely than those of other programs to propagate through

the population. As a result, the average population fitness over repeated runs was

poor because less evolutionary pressure was brought to bear on the population as a

whole. In contrast, tournament and demetic methods showed more uniform

distributions of programs that are generally low scoring and therefore fitter because

a broader array of programs were allowed to develop and propagate. Similar

evolutionary pressures led to differences in program length (figure 4(b)). The ranked

and probability selection methods created a higher proportion of short genetic

programs because smaller successful programs quickly dominated the population

Figure 3. Creation operator effect on standardized fitness score (a) and length (b).
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and stifled further evolution in the population as a whole. The tournament and

demetic methods were less prone to creating such lopsided distributions.

The choice of selection operator in representing bounded rationality requires a

greater trade-off than for the choice of creation methods. Ranked and probabilistic

methods produce short programs, for example, which is useful for representing

Figure 4. Selection type effect on standardized fitness score (a) and length (b).

Table 3. Selection operator between-class variance.

Selection
type

[Difference (¡) in ln (fp̄) and p-values (p)]

Probabilistic Ranked Tournament Elitist tournament

¡ p ¡ p ¡ p ¡ p

Ranked 20.041 1.000
Tournament 20.295 0.000 20.253 0.000
Elitist
tournament

20.273 0.000 20.232 0.000 0.021 1.000

Demetic 20.137 0.000 20.096 0.045 0.158 0.000 0.136 0.001
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simple strategies, but at the cost of generating poor length and fitness distributions.

Perhaps more important is the manner in which the genetic programming system

adopts early solutions more readily than with other selection methods. This early

adoption precludes many potential strategies by limiting the amount of exploration

in the long run in trade for overwhelming exploitation of early successful strategies.

Ranked and probabilistic methods highlight the fundamental tension between the

need to create short programs while allowing the population in aggregate (and

thereby the agent) to explore other strategies.

Tournament and demetic grouping offer a functional advantage in that they

produce programs of higher fitness. Demetic selection is intriguing but complicates

the already tenuous association between actual decision-making and genetic

programming. Does each agent have subpopulations of related strategies that

occasionally spill over into one another? Barring a compelling answer, tournament

selection is a compromise solution for agent decision-making. In addition to not

suffering the functional and representational drawbacks of the other methods, each

agent that uses tournament methods is in essence experimenting with a small cadre

of competing strategies at any one time. This batchwise comparison accords well

with findings that actual decision-makers can simultaneously consider and compare

relatively few strategies (Chase et al. 1998)

4.4 Population size

Population size had an effect on both program fitness and length (figure 5). Not

surprisingly, there was a positive relationship between population size and fitness

(figure 5(a)). A linear regression for ln (fp̄) as a function of population size yields an

R2of 0.488 (coefficient52.000924, p50.0000, t5223.871, df5599). Smaller

populations yielded shorter programs because, as seen with probabilistic and

ranking methods of selection, relatively fit programs that appeared early in small

populations quickly dominated others because they faced less competition. These

early programs tended to be shorter because they had less time to grow. In larger

populations, there was less competitive pressure among programs in early

generations, which gave the population greater latitude for growing larger programs

that could develop over time. These larger programs in turn were more likely to have

higher fitness than smaller programs.

Conceptually, just as there is no single program length that represents a human

decision strategy, there is no obvious population size that best represents actual

human cognition. Does the average person have one strategy, a hundred, or a

Figure 5. Population effect on standardized fitness score (a) and program length (b).
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million? Does each genetic program represent part of a larger compound strategy or

a strategy in and of itself? We must again balance two representational precepts: an

agent should command limited computational resources, but it should also produce

useful solutions to its multicriteria evaluation problem. In this case, a population in

the range of 200–300 programs is the lowest realistic number, as smaller populations

do not converge well on useful strategies. Conversely, populations larger than

approximately 300 programs would move the agents away from representing

boundedly rational actors and towards those with infinite computational capacity

under perfect rationality.

4.5 Generations

There was a weak but significant relationship between genetic program generation

size and fitness, where linear regression results for fitness on ln (fp̄) against

population size yields an R2 of 0.110 (coefficient52.00173, p50.0000, t528.578,

df5599). Figure 6 illustrates the effect of generations on program fitness and length.

Figure 6(a) indicates to a limited extent how the genetic programming system

required 25–30 generations to settle into a weak relationship with fitness. Figure 6(b)

shows how the number of programs with greater lengths generally increased with the

number of generations before being overtaken by bimodality imparted by the

ramped variable/full selection method.

The relationship between generations and program fitness and length becomes

more apparent when examining the fitness and length of the fittest member of the

population in every generation (figure 7). Given that the initial random programs

were poor solutions, the fitness of the fittest member increases dramatically over the

first eight to 10 generations before settling down to a slower rate of increase over the

remaining generations. The length of the fittest member also demonstrated strong

and steady growth to generation 20 before levelling off, which is due in part to

genetic programs converging on successful solutions and, importantly, by the length

of programs in later generations being limited to a maximum of 500.

In terms of representing bounded rationality, many of the same arguments for low

population size hold true for a small number of generations, as do some of the

conceptual conundrums. An agent must create a useful solution to the multicriteria

evaluation problem with a minimum of computational resources. A range of 10–30

generations maintains both the functional and representational utility of evolu-

tionary programming. Interestingly, this range is low relative to other genetic

programming efforts (Aler et al. 2001), but higher values would make for more of an

Figure 6. Generation size effect on standardized fitness score (a) and program length (b).
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instrumental or functional search for solutions by agents that is not in keeping with

bounded rationality. Low generation values lead to shorter programs, which offsets

the tendency of other preferred parameters (such as tournament selection or ramped

variable/full creation) to create longer genetic programs. As with population size,

limiting the number of generations limits both the length of programs and the

computational resources granted to agents.

More broadly, humans typically have fewer than 10 or so opportunities to learn

strategies in many decision-making situations (Arthur 1993), while genetic

programming can require hundreds or thousands of generations to reach workable

solutions for large and complex problems. We can address this issue in part by again

acknowledging that genetic programs are merely proxies to actual strategies. We can

also posit that human imagination allows the decision-maker to mentally assess the

fitness of competing alternative strategies in addition to testing them outright.

5. Conclusion

Understanding human decision-making is a central challenge in the social and

cognitive sciences in general and land-change research in particular. We increasingly

rely on computational models that in turn require a combination of theory, method,

and data on decision-making. While modellers will continue to employ perfect

rationality and its associated methods, it is necessary to explore alternatives such as

bounded rationality. Despite persistent interest from the cognitive and social

sciences, however, research on bounded rationality is less theoretically developed

and methodologically integrated than that on perfect rationality.

Land change provides an excellent domain for examining decision-making

because this change is caused by individual actors guided by, and contributing to,

social and environmental drivers of change. Moreover, land-change research offers

an interdisciplinary blend of data, method, and theory with which to test the

computational representation of key features of cognition. By using agent-based

modelling and genetic programming to represent agriculturalist households and

Figure 7. Generation size effect on standardized fitness score and program length for fittest
programs.
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their decision-making, SYPRIA contributes to a broader movement towards use of

evolutionary programming to represent decision-making.

Genetic programming offers a way to model the cognition of individual actors in

a manner that addresses the need for agents to solve their multicriteria evaluation

problems; limits to strategy complexity; limits to the computational resources with

which to create, maintain, or expand strategies; and the balance between exploration

of new strategies and exploitation of existing ones. In a broader sense, this work is

part of a larger movement that draws ever firmer ties between evolutionary

programming and bounded rationality in particular and between computational

modelling and decision-making in general.

Further research is required to better understand the linkages between

evolutionary programming and bounded rationality in agent-based models.

Agent-based modelling is a relatively young endeavour and faces a number of

challenges, perhaps the most important of which is moving from agents representing

entities with little or cognition (cells, molecules) to agents that have many forms of

rationality (humans, institutions). Agent-based models can recreate real-world

patterns of land change, but they must arguably draw on realistic generating

processes in order to explain this change, while at the same time not becoming so

complex so as to lose their ability for generalization. In this respect, the elegance and

universality of perfect rationality must be balanced against the need for more

realistic decision-making models such as bounded rationality.

At the same time, alternatives to perfect rationality require a good deal more

research before they will be fully accepted into the mainstream. As argued

throughout this paper, there is a growing body of research centred on empirical

investigations designed to advance our theoretical understanding of decision-

making. This research highlights the need for closer integration between qualitative

field research and quantitative modelling. Agent-based modelling is proving a useful

vehicle for combining geospatial technologies such as remotely sensed imagery,

global positioning system data, and GIS with qualitative in-depth interviews or field

surveys necessary for deeper insight into human cognition (e.g. D’Aquino et al.

2003, Brown et al. 2005, Evans and Kelley 2004).
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