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Geospatial data are often used to predict or recommend movements of robots,

people, or animals (‘walkers’). Analysis of such systems can be combinatorially

explosive. Each decision that a walker makes generates a new set of possible

future decisions, and the tree of possible futures grows exponentially. Complete

enumeration of alternatives is out of the question. One approach that we have

found promising is to instantiate a large population of simple computer agents

that explore possible paths through the landscape. The aggregate behaviour of

this swarm of agents estimates the likely behaviour of the real-world system. This

paper will discuss techniques that we have found useful in swarming geospatial

reasoning, illustrate their behaviour in specific cases, compare them with existing

techniques for path planning, and discuss the application of such systems.
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1. Introduction

The physical structure of the environment constrains the movements of robots,

people, or animals (‘walkers’). Ecologists may be interested in how changes to the

landscape will affect migratory patterns. Emergency preparedness workers may need

to evaluate the flow of evacuees through a road network. Security personnel may

want to track the likely location of suspected terrorists. Roboticists may want

autonomous vehicles to find their way through a landscape populated by threats

and targets. In each case, one or more walkers move in response to stimuli,

constrained by the topology and topography of their environment.

The set of choices available to a walker in such a system is, in the worst case,

exponential in the length of the walk. A walker on a square lattice can turn in eight

possible directions at each step, so that a walk of length k can follow one of 8k

possible trajectories. Complete enumeration and analysis of the alternatives for a
single walker is clearly impractical.

Yet in practice, the structure of the environment often constrains reasonable

choices. For example, there is very little chance that a walker at the bottom of a

steep valley will wander up the valley wall. In fact, the value of geospatial analysis is
greatest in just those domains where such constraints exist. If the landscape does not

constrain movement, migration will be unimpeded, evacuees and robots can go

wherever they want, and security personnel have no choice but to monitor the entire

space. The task of geospatial reasoning is often to discover and identify the very

constraints that restrict the combinatorial explosion of the search.
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Rather than reason sequentially about the exponential tree of possible movements

open to a single walker, we instantiate a large population of simple computer agents,

each of which explores one possible path through the landscape. These agents

diversify their behaviour through a stochastic element in their decisions. Given a

walk of length k, we replace a branching search of a single walker’s trajectory (of

complexity O(ck), where c is the number of choices available at each step) with a

search over multiple parallel non-branching trajectories (of complexity O(kn), where

n is the size of the swarm). The computational burden can be adjusted to balance the

accuracy of the results against the resources available. In addition, in some

applications each member of the swarm moves independently of the others. In these

cases, the swarming approach lends itself to implementation on parallel hardware,

while the sequential exploration of a branching trajectory is difficult to parallelize

due to the dependence of later steps on those that have gone before.

This swarm of agents performs a Monte Carlo sampling of the possible paths

through the space. Its aggregate behaviour estimates the likely behaviour of the real-

world system. If the space does in fact highly constrain movement, the trajectories of

the members of the swarm will converge, and in the process identify the constrained

path. A space that does not constrain movement identifies itself through the

dispersion of the swarm.

Such a system can be used in two ways. First, it can predict the behaviour of

walkers that move autonomously (e.g. for studies of animal migration or the

movement of adversarial troops). Second, it can plan movements that walkers

execute under external control (e.g. path planning for robots or search teams).

Because the same mechanisms support both prediction and planning, the same

system can do both at the same time. We regularly use these mechanisms in military

applications, to plan the movements of one population of walkers (representing

friendly troops) in a way that anticipates and responds to the predicted movements

of another population (representing adversaries).

This paper introduces these swarming methods for geospatial reasoning. Section 2

outlines several techniques that we have found useful in such systems. Section 3 gives

concrete examples of three such systems, two for planning and one for prediction,

and shows how planning and prediction can be combined. Section 4 discusses some

practical issues in deploying such systems, including their relation to conventional

methods for geospatial analysis in geographic information systems (GISs), speed of

convergence, support for the computational environment on which our methods rely

in distributed robotics, and ways to exploit the information generated by these

methods in predictive systems. Section 5 concludes.

2. Modelling techniques

Swarming geospatial reasoning is an application of agent-based modelling. Instead

of reasoning logically about how entities might behave in a geospatial environment,

we create models of the entities, situate them in a model of the environment,

simulate their behaviour, and observe what they do. The collective behaviour of the

model answers the same kind of question that one might put to more conventional

methods (e.g. predicting an entity’s movement, or planning a desirable course of

action), so we describe it as ‘reasoning’.

To set the context for our methods, we characterize agent-based models in

contrast with other computational models, distinguish swarming models from other
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agent-based models, and discuss the criteria by which such models may be

evaluated.

2.1 Agent-based vs. equation-based modelling

At some risk of oversimplification, computational models can be divided into two

broad classes. In agent-based modelling (ABM), the model consists of a set of agents

that encapsulate the behaviours of the various individuals that make up the system,

and execution involves emulating these behaviours. In equation-based modelling

(EBM), the model is a set of equations, and execution involves evaluating them.

Equation-based models, such as systems of differential equations, were the only

practical form of mathematical model in the days before computers. They are quite

mature (Sterman 2000) and can be executed extremely rapidly using numerical

integration. Agent-based models have become popular only with the advent of

inexpensive computers. They offer significant benefits over equation-based models

in respect to the underlying structure of a model, the naturalness of its

representation of a system, and the verisimilitude of a straightforward representa-

tion (Parunak et al. 1998), and have rapidly grown in popularity in many fields,

including geographical information systems (Gimblett 2002).

2.2 Distinctives of swarming agent-based modelling

The most straightforward application of agent-based modelling to a geographical

scenario would be to assign one agent to each entity, model the agent’s behaviour on

the entity’s as closely as possible, then execute the set of agents and observe their

behaviour.

In a swarming approach, the agents that explore the landscape differ from real

agents (and from a naı̈ve agent representation) in several ways. Swarming methods

are inspired by mechanisms exhibited by social animals, notably insects (Parunak

1997), and these mechanisms often rely on characteristics that differ from those

associated with real-world people or robots. These differences include the number of

walkers, their internal logic, stochasticity, and stigmergic information exchange. The

publications by Parunak, Brueckner, and Sauter cited in this section provide further

details, lessons from experience, and methodological recommendations for those

wishing to adopt our techniques.

2.2.1 Number of walkers. In a conventional multi-agent model, agents are in one-

to-one correspondence with physical entities in the real world. Swarming systems

achieve self-organization through the repeated interactions of many agents, and if

the population of real agents is too small, a one-to-one correspondence will not yield

the required dynamics. Thus, each physical agent may correspond to many

computational agents. In some cases, we may even instantiate computational agents

that do not correspond to any specific physical agent.

Using a many-to-one representation has another benefit in addition to enabling

the dynamics of self-organization. Representing a single entity by a population of

agents is analogous to representing a single particle by a wave function. We are

shifting our focus from the unique behaviour of one individual to a collection of

behaviours that sample the space of possible actions. It is sometimes helpful to

interpret their movements as concurrent Monte Carlo. The resulting distribution of

swarming agents can then serve as an estimate of the probability function of real

walker distribution over the landscape. Our polyagent technology (Parunak and
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Brueckner 2006a) captures this technique, using a single persistent avatar agent to

manage the model’s correspondence with an entity in the real world, and a swarm of

ghost agents to explore the entity’s possible alternative behaviours.

2.2.2 Walkers’ internal logic. The conventional approach to ABM seeks to model

the internal logic of each real-world entity. When those entities are humans, each

agent becomes an independent artificial intelligence, most commonly modelled in

terms of its beliefs, desires, and intentions, the so-called ‘BDI’ model (Rao and

Georgeff 1991, Haddadi and Sundermeyer 1996, Müller 1996). The development of

the complex symbolic knowledge bases needed to support BDI agents is an instance

of the knowledge acquisition problem, which has long plagued the development of

realistic AI applications.

The constraints imposed on the agents by the environment (including one

another) often outweigh the effect of different decision algorithms, so that agents

with different decision algorithms yield the same system-level behaviour. We call

this phenomenon ‘universality’ (Parunak et al. 2004b), borrowing the term from its

use in statistical physics to describe the emergence of identical critical exponents in

widely different physical substances at their critical points. As in physics, so in multi-

agent systems we do not fully understand what makes universality happen (or even

how to predict when it will or will not apply). But knowing that it can happen

encourages us to begin modelling with very simple rules rather than with the

complete decision logic of a real-world agent. We focus on simple environmental

clues (‘prefer the path with the lowest gradient’) and tropisms (‘head in a general

southerly direction’), and then enhance the agent sophistication only as long as it

improves the performance of the system. The ‘brain’ of an agent is not a knowledge

base, but a simpler (usually quantitative) structure such as a neural network or a

polynomial. These structures can be tuned using synthetic evolution (Sauter et al.

2002, Brueckner and Parunak 2003, Parunak 2005), which is a much more efficient

process than the knowledge acquisition required for BDI agents.

2.2.3 Stochasticity. Rational agents are typically deterministic, driven by compu-

tations that are modelled on theorem proving or optimization theory. For example,

an agent will typically have an objective function that it seeks to maximize. One

consequence of this approach is that agents with an identical state will make

identical decisions, and the system will quickly fall into a stagnant state. To

overcome such symmetries, one must invest in detailed knowledge engineering to

capture the distinctions that always exist among real-world agents.

A simpler way to break symmetries is to have agents choose stochastically among

alternative behaviours. Typically, we use a Boltzmann–Gibbs function. For

example, at a point in its evolution, an agent might have n possible choices, each

with perceived value vi. Instead of making the choice with the highest value, the

agent chooses among them, assigning each the probability

pi~
evi=T

P

j

evj=T
ð1Þ

In this equation, T is a temperature parameter that determines the degree of

stochasticity in the decision. When T is small, the agent chooses the highest-valued

option almost deterministically. When T is large, the choice becomes almost equal

among the alternatives. This approach, inspired by simulated annealing
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(Kirkpatrick et al. 1983), breaks symmetries among the agents without expensive

knowledge engineering and avoids local minima. We have developed local measures

that agents can use to estimate the degree of convergence of the system and thus

adjust T dynamically as the model runs (Brueckner and Parunak 2003).

2.2.4 Stigmergic information exchange. Conventional agents interact primarily by

sending messages to one another. These messages are typically symbolic, with a

grammar based on standards such as KQML/KIF (Finin 1997) or FIPA (FIPA

2000). While the messages necessarily pass through a communication infrastructure

such as the Internet, the agents are not aware of this infrastructure and behave as

though they had direct telepathic capabilities.

Studies of insect behaviour have revealed the importance of indirect communica-

tion, mediated by a shared environment. The French entomologist Grassé (1959)

coined the term ‘stigmergy’ from the Greek words stigma ‘sign’ and ergon ‘action’,

to capture the notion that an agent’s actions leave signs in the environment, signs

that it and other agents sense and that determine their subsequent actions. A

common form of stigmergy, and one that we imitate heavily, is the use by ants of

chemical markers (pheromones) that they deposit and sense (Brueckner 2000).

Stigmergic interaction has several benefits over message-based interaction, including

simplicity, scalability, robustness, and the ability to take advantage of environ-

mental noise to support the need for stochasticity in decision-making (Parunak

2003, Parunak and Brueckner 2004). In our systems, agents deposit and sense digital

pheromones (named scalar variables) at their current locations in a computational

environment.

The use of a distinct environment as the primary medium of interaction avoids

computational paradoxes that can arise from direct agent-to-agent communication

(Michel 2004). It is one thing for an agent to intend to change the world, but quite

another for the change to succeed. Classical agent models often assume

unrealistically that an agent’s actions achieve their intended purpose (Ferber and

Müller 1996). The environment provides a computational locus where the actions of

different agents can be integrated and arbitrated, just as the laws of physics do in the

real world.

2.3 Evaluating swarming geospatial methods

Other, non-swarming methods are commonly used to plan and predict behaviours

under geospatial constraints. In deciding which method to use for a given

application, three criteria must be taken into account: applicability, efficiency,

and effectiveness. Applicability concerns the computational structure of the

application. Efficiency concerns the computational effort needed to produce a

solution. Effectiveness concerns the quality of the solution. The three are largely

orthogonal to one another. Abstract discussions comparing different solutions

usually focus on effectiveness, but real applications are often so constrained by

issues of applicability and efficiency that they can sacrifice some degree of

effectiveness.

2.3.1 Effectiveness. The first question one usually asks about a computational

method concerns the quality of the answer it delivers. In prediction problems,

effectiveness is estimated by the error between the prediction and what actually ends

up happening. In planning problems, it is measured by the value achieved by

executing the plan, compared with the maximum value achievable. Often, a relative
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rather than an absolute measure is useful, comparing how well one mechanism does

with other commonly used mechanisms. Relative measures are particularly

important in planning problems, where the maximum value achievable in a scenario

may be difficult to determine.

Swarming methods are seldom justified on the basis of effectiveness alone. Like

neural networks and genetic algorithms, they fall in the general category of ‘weak

methods,’ methods that do not rely on detailed knowledge of the problem domain.

A method that embodies deep domain knowledge can sometimes be more effective

than one that does not, but at a price. The effectiveness of a strong method typically

falls off drastically when the assumptions of the domain are not met (a phenomenon

known as ‘brittleness’). In addition, strong methods often use logical manipulations

(such as varieties of theorem proving) whose computational complexity is

prohibitive and may not fit naturally into the computational structure of the

application. These latter two concerns are addressed by efficiency and applicability,

respectively.

2.3.2 Efficiency. In real-world applications, an approximate answer soon is often

worth more than an exact answer later. This constraint impacts the choice between

strong and weak methods in at least two ways, which are reflected in potential

measures of efficiency.

First, strong methods that rely on logical manipulations of symbols often face

combinatorial bottlenecks. These bottlenecks are most severe in NP-hard problems

(Garey and Johnson 1979), in which processing time increases faster than

polynomially in the size of the problem. Swarming approaches are one way to

find an approximate solution to such problems in polynomial time. This insight

suggests the usefulness of measuring how long an algorithm takes to solve a

problem, and how that time varies as a function of size of the problem.

Second, even when a strong method is computationally tractable, it often provides

no answer until the complete answer is ready. Swarming methods tend to be any-

time. That is, they quickly yield an approximate solution, which then becomes more

refined if more time is available for solution. Ideally, the improvement of quality

over time should be non-convex, so that the greatest gains are realized early in the

algorithm’s execution. This insight suggests the usefulness of measuring the shape

and convergence speed of a method.

2.3.3 Applicability. Even more fundamental than the speed and quality of solution

is the issue of whether an algorithm is appropriate to the computational structure of

an application. Swarming methods are motivated primarily by constraints of

applicability. They have been found useful primarily in domains that may be

characterized mnemonically as discrete, deprived, distributed, decentralized, and

dynamic (Parunak and Brueckner 2004).

N Discrete problems involve the interactions of numerous entities. The

nonlinearities of these interactions can lead to combinatorial explosion in

methods that reason about those interactions explicitly. In swarming methods,

each agent develops its own trajectory, interacting only with those other agents

that it encounters, so the complexity of the problem is largely independent of

the total population size.

N Deprived problems are those where resources are constrained. If the

constrained resources are computational, the discussion of efficiency in

section 2.3.2 applies. If communications bandwidth is the constrained resource,
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this constraint deals with the same issue as Distribution, discussed in the next

bullet.

N Distributed problems are those whose elements have different locations in

some topology (in the case of geospatial reasoning, different geospatial

locations). In such a configuration, many conventional approaches require a

global analysis of the state of the agents. If the space being analysed is large,

this constraint can require high-bandwidth long-range communications.

Swarming approaches make extensive use of local interactions among agents

that are near one another, and will succeed if these local interactions can

propagate to produce the desired global effect.

N Decentralized problems are those that cannot rely on a central processor. Such

a processor may be undesirable for several reasons. It may limit the scalability

of the solution, or it may overload when the system becomes exceptionally

busy, or it may pose a single point of failure that could limit the robustness of

the system, or (in military applications) it may make the system vulnerable to a
single attack. Because of the locality of swarming interactions, they avoid these

problems.

N Dynamic problems are those that are changing fast enough that a solution

based on a single estimate of the state of the system may not be useful. The

issues here are those discussed under ‘efficiency’ in section 2.3.2.

An example of a scenario where applicability is more important than effectiveness or

even efficiency is a network of unattended ground sensors monitoring for events that

must be reported promptly. To keep the cost of individual sensors down and permit

long battery life (deprived), communications must be severely limited (distribution),

but the architecture must scale to large areas (decentralization). The need for
prompt reporting precludes retrieving information from the sensors manually, and

makes the problem dynamic. For researchers concerned with such problems, the

ability of an algorithm to produce even approximate answers under the appropriate

applicability constraints is a more important evaluation criterion than its

effectiveness or efficiency in a limited laboratory setting.

3. Example applications

We describe three different systems that use swarming agents to solve geospatial

problems. The first two, planning applications intended for robotic units, illustrate

how swarming agents can develop paths that balance the influence of environmental

threats and targets. The third, a predictive application, illustrates reasoning about

more detailed topographical information. We comment on the behaviour of each

example against the criteria of section 2.3.

3.1 Path planning with threats and targets

Consider an unmanned air vehicle (UAV) that must find its way around a network

of surface-to-air missiles in order to reach a target. Figure 1 shows one possible

configuration, in which a gauntlet of threats guards access to the target.

A common mechanism in robotics for path planning in this kind of problem is to

define a loss function at each point in space on the basis of proximity to threats and

targets, integrate it to generate a potential field, and then climb the field’s gradient

(Rimon and Kodischek 1992). Such methods require centralized computation, and

so do not meet the applicability criterion for a distributed problem. They can also
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have difficulty solving configurations such as figure 1. The field can easily achieve a

local maximum outside the gauntlet, trapping the hill-climbing search prematurely.

In one experiment, researchers could only solve this configuration with standard

potential methods by first manually defining a waypoint at the entrance to the

gauntlet, and then planning the path in two segments, one from the base to the

waypoint and the other from the waypoint to the target. Our approach exploits the
recognized ability of stochasticity to break out of such local optima, as discussed in

section 2.2.3. (In terms of section 2.3, our approach has greater relative effectiveness

than the conventional potential field approach.)

This potential-based method is similar to the path-planning mechanisms used in

current raster-based GIS systems (Douglas 1994). In general, these systems develop

three successive layers:

1. a ‘friction’ or cost of traversal for each cell, analogous to the loss function

used in robotic navigation;

2. the accumulated cost to reach each cell from a specified origin (the minimal

path integral of the friction layer from the origin to each cell);

3. the least-cost direction from each cell toward the specified origin, developed
by moving perpendicularly to iso-cost contours in the accumulated cost layer.

In this form, the algorithm does not recognize direction-dependent differences in the

cost of crossing a cell. This difficulty has been addressed in various ways, including

graph-theoretic flow algorithms (Stefanakis and Kavouras 1995), and iteration

(Collischonn and Pilar 2000).

Our agent architecture for solving this problem uses digital pheromones, and has

three components:

1. A distributed network of place agents maintains the pheromone field and

performs aggregation, evaporation, and diffusion. Each place agent is

responsible for a region of the physical space. In our simulation, we tile the

physical space with hexagons, each represented by a place agent with six

neighbours but in principle both regular and irregular tiling schemes can be
employed. Place agents ideally are situated physically in the environment

using unattended ground sensors distributed over an area and connected to

Figure 1. Path planning with threats (radar icons) and target (open house icon with ‘C’).
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nearest neighbours through a wireless network. They may also be located in a

distributed network of command and control nodes.

2. Each physical entity is represented by a software agent. Red agents represent

enemy targets and threats. Each blue entity (a vehicle being routed) is

represented by a polyagent (Parunak and Brueckner 2006a). A polyagent
consists of a single persistent avatar and a swarm of transient ghosts that the

avatar generates. The avatar runs on the UAV and manages the path

production process. The ghosts wander over the place agents, looking for

targets and continually building a path from their avatar to the target. The

avatars and ghosts continuously deposit pheromones at their current

locations.

3. Different classes of agents deposit distinct pheromone flavors. Agents can sense

pheromones in the place agent in whose sector they reside as well as the
neighbouring place agents. Brueckner (2000) develops the underlying

mathematics of the pheromone field, including critical stability theorems.

Both avatars and their ghosts follow the gradient of a function computed over the

pheromones in their vicinity. We will shortly describe the stochastic algorithm that

ghosts use to follow this gradient. The ghosts on average tend to climb the

pheromone gradient, but each explores a slightly different path. A polyagent’s

multiple stochastic ghosts thus reason about alternative possible experiences of the

vehicle as it moves through space. The world is not deterministic, and plans (such as

pre-planned paths) are rarely followed completely. Particularly in military
operations, it is a truism that ‘no plan survives contact with the enemy’. A sudden

wind shear may force an aircraft off-course. A robot travelling along the contour of

a slippery hill may slide off its planned trajectory. A previously unknown adversary

may begin attacking a convoy, requiring it to detour. Such variations can transfer a

moving entity from its pre-planned path to a location from which the best path to

the destination is no longer the same as that originally planned. The swarming ghost

agents explore many such alternative paths, and the density of the aggregate

pheromone field that they generate is a probabilistic balance between the theoretical
optimal path and the variation that may be forced on the entity as it travels.

Battlefield intelligence from sensors and reconnaissance activities causes the

instantiation of red agents representing known targets and threats. These agents

deposit pheromones on the places representing their location in the battlespace. The

field they generate is dynamic, since targets and threats can move, new ones can be

identified, or old ones can disappear or be destroyed. A blue avatar representing a

UAV is associated with one place agent at any given time. It follows the pheromone

path created by its ghost agents.

Ghosts initially wander through the network of place agents, attracted to

pheromones deposited by targets and repelled by threat pheromones. Once they find

a target, they return over the network of place agents to the walker depositing

pheromones that help to build the shortest, safest path to the target. The basic

pheromone flavors are RTarget (deposited by a Red target agent, such as the Red

headquarters), RThreat (deposited by a Red threat avatar, such as an air defence

installation), GTarget (deposited by a ghost that has encountered a target and is

returning to its blue avatar, forming the path to the target), and GNest (deposited by
a ghost that has left the blue avatar and is seeking a target).

A ghost agent chooses its next sector stochastically by spinning a roulette wheel

with six weighted segments (one for each of its six neighbours). The size of each
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segment is a function of the strength of the pheromones and is designed to guide the

ghost according to the algorithm above. We experimented with several different

forms of the function that generates the segment sizes. Manual manipulation yielded

the current form (for outbound ghosts):

Fn~
h:RTargetnzc:GTargetnzb

r:GNestnzbð Þ DistnzQð Þdza RThreatnz1ð Þ
zb

ð2Þ

Fn is the resultant attractive force exerted by neighbour n, and Dist is the distance to

the target if it is known. Table 1 lists the tuneable parameters in the equation and the

effect that increasing the parameter has on the ghost’s behaviour.

Though this table provides general guidance to the practitioner, in practice, the

emergent dynamics of the interaction of ghost agents with their environment makes

it impossible to predict the behaviour of the ghosts. Thus, tuning the parameters of

this or any pheromone equation becomes a daunting task. We use synthetic

evolution to adjust these parameters in real time, as the system is operating (Sauter

et al. 2002, Parunak 2005). As the avatar emits new ghosts, it breeds them from the

fittest ghosts that have already returned. Fitness takes into account three

characteristics of those ghosts:

1. Ghosts have a fixed lifetime. Ghosts that complete their search faster have

longer to breed, and generate more offspring. Thus, we favour ghosts that

found shorter paths.

2. Ghosts encounter threats during their search. We favour ghosts that found

safer paths.

3. Targets differ in value. We favour ghosts that found more valuable targets.

This system is extremely robust and adaptable (Parunak et al. 2004a) and has been

deployed successfully on physical robots (Sauter et al. 2005). It can solve the

scenario of figure 1 (among many others). It has several benefits in our application

domain over the classical potential field algorithm and its GIS analogues. These

benefits fall in the evaluation category of applicability (section 2.3):

N The swarming approach is local. It touches only the cells that the ghost agents

actually visit, rather than computing fields across the entire space being

modelled.

N Because it is local, the swarming approach naturally supports a distributed

network of place agents (such as a network of unattended ground sensors with

limited communications range and bandwidth). It does not require synchro-

nized computation of successive layers of information, a feature of the

Table 1. Tuneable parameters and their effects on ghosts.

Parameter Effect on ghost

a Increases threat avoidance farther from the target

d Increases probability of ghosts moving towards a known target in the absence
of RTarget pheromone

Q Increases threat avoidance near target
r Increases ghost exploration (by avoiding GhostNest pheromone)
h Increases attraction to RTarget pheromone
b Avoids division by zero
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potential field algorithm that makes it much better suited for centralized

computation.

N The swarming approach is dynamic. Ghosts are continually emitted by their

avatars as the avatars move, and any changes to the landscape during the

course of the mission automatically vary the portion of the path not yet

traversed. The potential field method plans a complete path based on a

snapshot of the terrain being traversed. If the landscape changes, the user must

decide whether to continue to use an old path that may no longer be optimal,

or recompute a new path.

N The swarming approach is stochastic. The polyagent’s ghosts explore a range of

alternative trajectories for the robot, reflecting the uncertainty of movement in

the physical world, and the path that is computed is a weighted combination of

these trajectories. The potential field method is deterministic. It reflects the

likely experience of the entity that is to follow the path only in the single loss,

cost, or friction value that it assigns to its initial raster, and does not

account for possible variation in the experience of the entity as it follows the

path.

3.2 Area surveillance

A common task for uninhabited robotic vehicles is surveillance of a region of

territory. Such surveillance must satisfy several characteristics. In this example, we

focus on one: the vehicles should spread out over the area to avoid double coverage

and reduce the time needed to cover the entire area. A convenient metric for such a

system is how rapidly the agents initially cover the territory that they must monitor,

tracking the fraction of the area that has been seen as a function of time.

A simple algorithm for this problem (Sauter et al. 2005) uses digital pheromones

(Parunak et al. 2002a, b, 2004a). Unlike our other examples, each physical entity

corresponds to only a single agent. The pheromone infrastructure represents the

environment as a square grid, each cell of which has a place agent:

1. Once a second, each place agent deposits 20 units of attractive pheromone in

its cell, propagates pheromone to the eight neighbouring cells, and evaporates

the pheromone by a fixed proportion.

2. Every time a vehicle enters a new cell (on average, once every 4.8 s), it deposits

two units of repulsive pheromone and zeros out the attractive pheromone in

its current cell.

3. Once every 12 s, each place evaporates (but does not propagate) its repulsive

pheromone by a fixed proportion.

4. Each vehicle moves to the neighbouring cell for which difference (attractive

pheromone–repulsive pheromone) is greatest.

Agents’ decisions use only the information available in their immediate vicinity and

thus are local (though the propagation of attractive pheromone in step 1 provides

some spread of information over time). In the absence of a vehicle, step 1 leads to an

asymptotically constant level of attractive pheromone in each cell, drawing in

vehicles. Step 2 causes the vehicles to spread out from one another and avoids repeat

visits that are close to one another. Because step 1 repeats after step 2, and because

the repulsive pheromone from step 2 evaporates over time, eventually each site will

be revisited.
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One could use a GIS to plan a shortest path that visits a sequence of locations

with minimal repetition, a version of the travelling-salesman problem (Reinelt 1994),

then follow this path repeatedly to keep the locations under surveillance. Our

approach differs from this strategy in two important ways.

First, as with path planning, there is no guarantee that the surveillance vehicle will

succeed in staying on the path. If it is forced off that path, it must find its way back

and in the process may miss some locations that will remain unvisited until the next

transit. If our approach misses a location, its attractive pheromone remains high,
and continued pheromone growth raises its priority for visitation, reordering the

vehicle’s path dynamically.

Second, in an adversarial setting, the adversary can learn and evade a regular

surveillance schedule. In our approach, the path changes in response to inevitable

perturbations in the vehicle’s movement. Thus, the surveillance is much more

difficult to predict and evade.

In terms of section 2.3, these benefits are instances of applicability. In addition,

our approach has highly desirable efficiency characteristics, discussed in more detail

in section 4.2.

3.3 Topographical prediction

Our third application illustrates the use of swarming agents to predict the

movements of entities that we do not control. In this example, insurgents are

fleeing southward from friendly forces through a complex mountainous terrain. The

task is to identify where in this terrain they are most likely to pass, so that

surveillance assets can be deployed to detect and intercept them. Unlike the previous
two examples, this example does not use digital pheromones but relies entirely on

exogenous environmental variables (direction and gradient).

The sequence in figure 2 illustrates how swarming mechanisms can address this

problem. The shading of the terrain indicates the steepness of the terrain. White

terrain is level, while the steeper regions are successively darker shades of green, and

the patch of red near the centre bottom is the steepest area.

The area under study is divided into a square lattice (2006200), and the gradient

in each cell is computed on the basis of the elevations in its Moore neighbourhood

(the eight adjacent cells). In addition, we compute a spatially smoothed gradient for

each cell based on 565 Moore neighbourhoods.

We begin with a uniform distribution of 200 Red agents across the width of the

battlespace along the northern edge, one per cell. At each time step, an agent assigns

a weight to each of the cells in its 363 Moore neighbourhood, as the product of

three values:

1. the inverse of the cell’s gradient, normalized to sum to 1 over the

neighbourhood;

2. the inverse of the cell’s smoothed gradient, again normalized to 1;

3. a directional weight to encourage southward movement.

The directional weight is set heuristically, to reflect our estimate of how strong the

insurgents’ desire is to move southward. In the experiment reported here, we

estimated that they would want to move southward 75% of the time, and 25% of the
time might tolerate a lateral move. Empirically, we achieve this distribution of

movement with weights (from NW to W clockwise) of (0, 0, 0, 0.13, 0.23, 0.28, 0.23,

0.13). In practice, we find that the behaviour of these systems is stable over a wide
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range of such parameters. An evolutionary mechanism (Brueckner and Parunak

2003) can be used to search the parameter space efficiently for pathological regions.

The agent’s current cell and the northern cell are omitted, the products are

renormalized, and then the agent selects from among the five eligible directions

using the Boltzmann–Gibbs distribution (equation (1)). In these experiments, we

used a t of 0.01.

After only a short time (figure 2a), the result of the gradient information and the

southward pressure guides the agents into clusters. By the time they reach the

southern third of the territory (figure 2d), all 200 agents have merged into six

groups. The final (lower right) plot shows the history of their distribution,

emphasizing how the initial broad distribution rapidly narrows into only a few likely

tracks.

This application is the closest in spirit of our three examples to traditional GIS

processing, relying as it does primarily on topological information. Since we are not

trying to control the red units, only to predict their movements, we are not as

concerned about real-time variations in their behaviour as we were in the previous

two cases. However, taking an agent-centred view of path generation rather than a

terrain-centred view offers several interesting benefits, even in this application:

N As before, the stochastic nature of swarming agents provides a more robust

path than a deterministic algorithm. In principle, this should offer a benefit in

effectiveness (section 2.3.1), though we have not done a quantitative

comparison with other methods.

N Swarming red agents could deposit attractive pheromones that in turn would

route surveillance assets to the regions through which the Red forces are most

likely to pass. In a deployed system, it would be advantageous to house these

pheromones on unattended ground sensors, motivating the swarming

Figure 2. Successive stages in predicting movements in a complex topography.
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approach on grounds of applicability (in particular, distribution and

decentralization).

N A slight modification of this algorithm can model an intelligent adversary that

is familiar with the terrain. The evolutionary mechanisms used in UAV path

planning could evolve individuals that are able to make it from the North to

the South in the shortest time with the least likelihood of being detected by

blue. The paths followed by such an individual might not be strictly the low-

gradient paths. For example, the red agent might evade areas of known blue

surveillance, or its stochastic exploration might discover that if one ascended a

particular steep cliff using a rope ladder, one could connect useful path

segments that otherwise would not offer a complete path. Answering several

questions with the same set of mechanisms promises efficiency benefits in

comparison with multiple specialized algorithms, though we have not

conducted a quantitative comparison.

Supported by such a system, a robotic swarm could automatically perform highly

directed surveillance activities against a knowledgeable enemy anywhere in the

world without having to explicitly direct the units where to survey and how often

they should monitor the different possible paths or choke points.

4. Discussion

In this section, we compare our methods with traditional GIS mechanisms, discuss

their convergence, and suggest how the results of such analysis can be used.

4.1 Comparison with traditional GIS mechanisms

In describing our examples, we have given special attention to how they would be

solved in a traditional GIS, and the constraints that motivate our approach. The

fundamental distinction between our approach and traditional mechanisms is that

the latter are centred on the terrain, while ours are centred on entities that move in

the terrain. This difference is responsible for the contrasts that we have noted. In

terms of section 2.3, most of these are benefits of applicability:

N Agents move, while the terrain is relatively static. Our focus on agents leads to

an emphasis on real-time computation that can adapt to changes as they occur,

while a focus on the terrain suggests pre-planning of more static structures. The

latter approach is appropriate for engineering projects such as roads and

aqueducts. The former is essential for robotic control.

N Computation intended to guide individual agents can be limited to the areas

that they are likely to touch, rather than addressing attributes such as

aggregate cost for an entire quadrant of landscape. This local focus encourages

us to think in terms of distributed computational support, such as a network of

unattended ground sensors, and such a distributed architecture in turn urges us

to prefer mechanisms such as digital pheromones (which can be managed

locally at an individual processor) over those that require repeatedly scanning

an entire raster layer.

N We are sensitive to the vagaries of an agent’s experience in the real world. It

may not be possible to execute a pre-computed plan with complete accuracy, so

we favour mechanisms that take into account a probabilistic sampling of

alternative trajectories, rather than a single deterministic computation.
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N Different agents can perform in different ways. Some GIS researchers explicitly

acknowledge the impact that differences among mobile entities can have on the

computation of a path (Balstrøm 2002). Our methods can explore these

impacts directly, by implementing agents with different behavioural character-

istics and testing the sensitivity of our geospatial conclusions to those

variations.

Neither an agent-centred nor a terrain-centred approach is intrinsically superior.

The preference for one over the other depends on the application. An agent-centred

approach has benefits for real-time robotic control, while a terrain-centred approach

has advantages for developing relatively stable infrastructure (such as power lines or

highways). In an ideal world, tools for geospatial reasoning would incorporate

mechanisms to support both perspectives on problems, enabling users to tailor each

implementation to its intended application.

4.2 Convergence speed

A major justification of swarming is its potential for overcoming the combinatorial

complexity of classical methods. However, the use of stochastic decisions raises the

question of how rapidly a swarming system can itself converge.

A general model for the convergence of swarming systems (Parunak et al. 2005) is

based on an extension of the adaptive walk (Kauffman and Levin 1987). Consider a

binary vector S g {0,1}N of length N. Initially, all elements of S are 0. This system

seeks to maximize N1, the number of elements of S that are 1. The adaptive walk

repeatedly takes the following actions:

N Randomly select an element of S.

N If the element is 0, set it to 1 with probability p01. If it is 1, set it to 0 with

probability p10. p01 and p10 are independent and need not sum to 0.

Analysis of the master equation for this system shows that

N1~p01 1{e{lt
� ��

l ð3Þ

where

l: p10zp01ð Þ=N ð4Þ

This simple model has features shared by many more realistic systems:

N Each element of S is an agent.

N The system objective is global over the entire system.

N The agents do not have access to this global measure in making their decisions.

In this simple model, they do not consider the state of any other agent in

making their decisions but choose probabilistically. p01 reflects the probability

that their local decision will advance the global goal, while p10 reflects the

likelihood that it will oppose the goal.

Though simple, this model can analyse the convergence of real systems. Consider

the system of section 3.2, with 15 vehicles responsible for surveillance of an area

200 cells square. Figure 3 shows three plots of coverage as a function of time for

this system: an upper bound, observed performance, and our model’s estimate.
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The time step in all cases is 4.8 s (the average time it takes a vehicle to move from

one cell to another).

Ideally, at each time step, each vehicle would move immediately to an unvisited

cell. This strategy is physically impossible, because it would sometimes require

vehicles to move directly between non-contiguous cells. But it provides an upper

bound, visiting 15 new cells or 15/40 00050.0375% on each time step.

The experimentally observed convergence is nearly linear, with a slope of 0.030,

until the coverage is almost saturated, well over 95%.

To fit our model, observe that 15 vehicles are sampling cells of a 40 000-cell area.

Thus, |S|540 000/15,2667. For p0151 and p1050, l53.75E–4 (the same as the slope

of the upper bound, and N1~2667 1{e{3:75E{4t
� �

).

The model provides an excellent fit to the observations up to about 40% coverage.

The model rises slightly faster than the experiment, then falls below it (inset). The

model initially rises faster than reality because it is not constrained to move between

contiguous cells. The adaptive walk slows as more and more of the area is covered,

and random selection of the next site increasingly chooses a site that has already

been visited, resulting in the shortfall above 40%.

The superior performance of our system above 40% shows the efficiency of the

pheromone mechanism in improving over random selection of the next site to visit.

Pheromones reduce the locality of the decision process in two ways. First, the

propagation of attractive pheromone makes information from one cell available

nearby, reducing spatial locality by generating a gradient that guides vehicles.

Second, the persistence of pheromone deposited by one vehicle for sensing by

another reduces temporal locality, enabling later decisions to build on the results of

earlier decisions.

This example illustrates how the adaptive walk model can provide a lower bound

for estimating the achievable performance of a real system, and for measuring the

efficiency of mechanisms for overcoming locality.

4.3 Use of results

The examples we have presented illustrate two different applications of swarming

geospatial reasoning. In this section, we discuss some of the issues involved in

deploying these results.

Figure 3. Comparison of adaptive walk with pheromone-guided area surveillance.
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The path planning and surveillance examples show how swarming can develop a

plan to control physical hardware. Avatars controlling physical vehicles continu-

ously manage a population of ghosts whose interactions emergently yield a solution

to the path-planning problem. In this case, although there are many more ghosts

than vehicles, the output of the system is a single recommended path for each

vehicle.

An important consideration in control applications concerns the implementation

of the environment that maintains the digital pheromones. The pheromone variables

need to be maintained on processors that can update them (to provide evaporation

and propagation), while remaining accessible to the agents. There are at least three

workable alternatives:

1. A single central computer can maintain the pheromone infrastructure. While

this approach limits the distribution and scaling of the system, it is the

simplest. Because pheromone computations are so simple, in practice we can

handle a system of 24 000 ghost agents on a grid of 40 000 cells on a single off-

the-shelf laptop computer in real time.

2. At the opposite extreme, each region of space can be assigned its own

processor. The most elegant approach is to embed the processors in the space,

as unattended ground sensors that have on-board storage, processing, and

communications. Only nearest neighbours need to communicate with one

another, so power requirements can be limited.

3. Each avatar can maintain a pheromone map for regions it has recently visited,

and exchange maps with other avatars when it comes near them. Agents move

continuously through space, so the areas of most interest are those close to an

agent’s current location, which is the region for which an agent-based

pheromone map will be most accurate.

The topographical reasoning example shows how swarming can predict behaviour

by generating a probability distribution over possible futures. The frequency with

which the agents visit different regions of the landscape is proportional to the

probability that a single agent would traverse that region. Such an interpretation is

useful in guiding the search for walkers of interest, or in planning traffic networks,

among other applications.

We have described the utility of evolutionary methods in tuning control

applications of swarming. Synthetic evolution is also useful in predictive

applications. We are currently applying swarming geospatial prediction to the

movement of soldiers in urban combat (Parunak 2005, Parunak and Brueckner

2006b). We begin the swarming simulation in the past, and adjust the individual

parameters of each ghost to fit the observed recent behaviour of the corresponding

real-world entity. Then, we allow the fittest ghosts to run into the future to form our

prediction. This mechanism allows us to base our predictions on a much richer

model of the individual agent’s behaviour than would otherwise be possible, without

the need for time-consuming knowledge acquisition.

An important feature of our approach is that the same underlying mechanisms

(emulation of situated agents) provide both planning and prediction. For the sake of

human observers, it is useful to reduce the observed movements of the agents to a

symbolic description of the prediction or the plan, but the agents themselves need no

such description, In particular, military applications often have two populations of

swarming agents. One population represents the adversary, and its movements
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constitute a prediction about likely adversarial behaviour. The other population

represents friendly troops, and its behaviour is a seminal plan for deliberate action.

Human decision-makers may plan their actions based on an explicit articulation of

the perceived enemy plan, but within the model, the population representing friendly

troops needs no such articulation. It responds directly to the behaviour of the

adversarial agents, and vice versa. By staying within the sub-symbolic domain, the

model can execute extremely rapidly, avoiding the combinatorial bottleneck of

requiring agents to reason symbolically over representations of plans.

5. Conclusion

Swarming methods are a fruitful resource for reasoning about the movements of

entities constrained by topological or topographical features of the environment. By

making disciplined use of large populations of agents with greatly simplified internal

logic, appropriate application of stochastic decisions, and stigmergic information

exchange, we can solve problems that would be intractable by classical enumerative

techniques and prohibitively expensive to implement with more sophisticated agent-

based simulation. These methods converge with reasonable speed and can support

both robotic control and prediction of natural systems. Their agent-centric view of

geospatial reasoning complements the terrain-centric view more common in

traditional GIS systems and is particularly suited to applications that must run in

real-time, on distributed networks of processors without central control.
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