
Agents on the Web

Inside an Agent

O ver the past four years, this column has
focused on the uses and behaviors of
Internet agents but ignored their imple-

mentation and internal appearance. Multiagent-
system platforms1 aid in creating agent-based sys-
tems, but to use them effectively we must
understand an agent’s architecture.

When we discuss agent-based-system construc-
tion with software developers or ask students to
implement common agent architectures using
object-oriented techniques, we find that it is not
trivial for them to create an elegant system design
from the standard presentation of these architec-
tures in textbooks or research papers.

To better communicate our
interpretation of popular agent
architectures, we draw UML (Uni-
fied Modeling Language) dia-
grams2 to guide an implementer’s
design. However, before we
describe these diagrams, we need
to review some basic features of
agents. Consider the architecture
in Figure 1, showing a simple
agent interacting with an envi-

ronment.3 The agent senses its environment, uses
what it senses to choose an action, and then per-
forms the action through its effectors. Sensory
input can include received messages, and action
can be the sending of messages.

To construct an agent, we need a more detailed
understanding of how it functions. In particular, if
we are to build one using conventional object-ori-
ented analysis and design techniques, we should
know in what ways an agent is more than just a
simple object. Agent features relevant to imple-
mentation are unique identity, proactivity, persis-
tence, autonomy, and sociability.4

An agent inherits its unique identity simply by
being an object. To be proactive, an agent must be
an object with an internal event loop similar to that

possessed by an object in a derivation of the Java
thread class. Here is simple pseudocode for a typi-
cal event loop, where events result from sensing the
environment:

Environment e;

RuleSet r;

while (true) {

state = senseEnvironment(e);

a = chooseAction(state, r);

e.applyAction(a);

}

This is an infinite loop, which also provides
agents with persistence. Ephemeral agents would
find it difficult to converse, making them, by neces-
sity, asocial. Additionally, persistence makes it
worthwhile for agents to learn about and model
each other. To benefit from such modeling, they
must be able to distinguish one agent from anoth-
er, hence the need for unique identities.

Agent autonomy is akin to human free will and
enables an agent to choose its own actions. For an
agent constructed as an object with methods,
autonomy can be implemented by declaring all of
the methods private. With this restriction, only the
agent can invoke its own methods, under its own
control, and no external object can force the agent
to do anything it doesn’t intend. Other objects can
communicate with the agent by creating events or
artifacts (especially messages) in the environment
that the agent can perceive and react to.

Enabling an agent to converse with other agents
achieves sociability. The conversations, normally
conducted by sending and receiving messages, pro-
vide opportunities for agents to coordinate their
activities and cooperate, if so inclined. We can
achieve sociability by generalizing the input class
of objects an agent might perceive, as shown in
Figure 2. Events serving as input are simply
reminders the agent sets for itself. For example, an

82 JANUARY • FEBRUARY 2001 http://computer.org/internet/ 1089-7801/00/$10.00 ©2001 IEEE IEEE INTERNET COMPUTING

José M.Vidal • University of South Carolina • vidal@sc.edu
Paul A. Buhler • College of Charleston • pbuhler@cs.cofc.edu
Michael N. Huhns • University of South Carolina • huhns@sc.edu

Agent autonomy
is akin to human
free will.

agent wanting to wait five minutes for
a reply would set an event to fire after
five minutes. If the reply arrives before
the event, the agent can disable the
event. If it receives the event, then it
knows it did not receive the reply in
time and can proceed accordingly.

UML Agent Descriptions
The UML diagrams in Figure 3 and Fig-
ure 4 should help anyone interested in
understanding or participating in soft-
ware agent development (also called
agent-based software engineering).
These diagrams don’t address every
functional aspect of the architecture.
Instead they provide a general frame-
work for implementing traditional
agent architectures4 using an object-
oriented language. We’ve had good
experiences using them, and we
encourage readers to contact us if they
have a better way to implement these
architectures.

Reactive Agents
A reactive agent is the simplest kind to
build, since it doesn’t maintain infor-
mation about the state of its environ-
ment but simply reacts to current per-
ceptions. Our design for such an agent,
shown in Figure 3 (next page), is fairly
intuitive, encapsulating a collection of
behaviors, sometimes known as plans,
and the means for selecting an appro-
priate one. A collection of
objects, in the object-oriented
sense, lets a developer add and
remove behaviors without hav-
ing to modify the action selec-
tion code, since an iterator5 can
be used to traverse the list of
behaviors. Each behavior fires
when it matches the environ-
ment, and each can inhibit
other behaviors. Our action-
selection loop is not as efficient
as it could be, since getAction
operates in O(n) time (where n
is the number of behaviors). A
better implementation could
lower the computation time to
O(log n) using decision trees, or
O(1) using hardware or paral-

lel processing. The user is responsible for
ensuring that at least one behavior will
match for every environment. This can
be achieved by defining a default
behavior that matches all inputs but is
inhibited by all other behaviors that
match.

BDI Agents
A belief-desire-intention (BDI) archi-
tecture includes and uses an explicit
representation for an agent’s beliefs,
desires, and intentions. The BDI
implementations that we have ana-
lyzed—Procedural Reasoning System
(PRS), University of Michigan PRS,
and JAM—all define a new program-
ming language and implement an
interpreter for it. The advantage of

this approach is that the interpreter
can stop the program at any time,
save state, and execute some other
plan, or intention, if it needs to. The
BDI architecture shown in Figure 4
(page 89) doesn’t do this. Instead, it
uses a voluntary multitasking method
whereby the environment thread con-
stantly checks to make sure the cur-
rent intention is applicable. If it finds
that it isn’t, it will tell the intention to
stop itself, which the intention does
by calling stopCurrentPlan(). This
method in turn will call stopExecut-
ing(). Thus the plan is responsible for
stopping itself and cleaning up. By
giving each plan this capability, we
eliminate the possibility of a deadlock
resulting from the plan’s having some

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2001 83

Agents on the Web

Inputs
Sensors

Effectors

What the world
is like now

What action I
should do now

Outputs

Environment

Agent

Condition-action
rules

Figure 1. Simple agent-environment interaction.

Input(timeStamp : long)
getTimeStamp() : long
setTimeStamp(timeStamp : long)

timeStamp : long

contents : String

Message(contents, timeStamp)

Input

Message

name : String

Event(name, timeStamp)
isBefore(e : Event)

Event

SensorInput(timeStamp)

SensorInput

Figure 2. An agent’s input can be a piece of sensory information, a mes-
sage from another agent, or an event defined by the agent.

resource reserved when it was
stopped. The pseudocode in Figure 5

(page 90) illustrates the two main
loops, one for each thread, of our BDI
architecture.

The agent’s run method consists of
finding the best applicable plan and
executing it to completion. If the plan
returns true, it means the goal was
achieved, so the goal is removed from
the desire (goal) container. If the envi-

ronment thread finds that an executing
plan is no longer applicable and calls
for a stop, the plan will promptly return
from the execute() call with a false.
Notice that the environment thread
modifies the agent’s set of beliefs. The
belief container needs to synchronize
these changes with any changes the
plans make to the set of beliefs.

Finally, the environment thread’s
sleep time can be modified, depending
on the system’s real-time requirements.
If we don’t need the agent to change
plans rapidly when the environment
changes, the thread can sleep longer.
Otherwise, a short sleep will make the
agent check the environment more fre-
quently, using more computation. A
more efficient call-back mechanism
could easily replace the current run
method if the agent’s input mechanism
supported it.

Behaviors and Activity
Management
Most popular agent architectures,
including the two we diagrammed,
include a set of behaviors and a
method for scheduling them. A behav-
ior is distinguished from an action in
that an action is an atomic event, while
a behavior can span a longer period of
time. In multiagent systems, we can
also distinguish between physical
behaviors that generate actions, and
conversations between agents. We can
consider behaviors and conversations
to be classes inheriting from an
abstract activity class. We can then
define an activity manager responsible
for scheduling activities.

This general activity manager design
lends itself to the implementation of
many popular agent architectures
while maintaining the proper encapsu-
lation and decomposability required in
good object-oriented programming.
Specifically, activity is an abstract class
that defines the interface to be imple-
mented by all behaviors and conversa-
tions. The behavior class can imple-
ment any helper functions needed in
the particular domain (for example,
subroutines for triangulating the
agent’s position). The conversation
class can implement a finite-state
machine for use by the particular con-
versations. For example, by simply fill-
ing in the appropriate states and
adding functions to handle the transi-
tions, an agent can define a contract-
ing protocol as a class that inherits
from conversation. Details of how this
is done depend on how the conversa-
tion class implements a finite-state
machine, which varies depending on
the system’s real-time requirements.

Defining each activity as its own
independent object and implementing
a separate activity manager has sever-
al advantages. The most important is
the separation between domain and
control knowledge, a feature first pop-
ularized by blackboard systems. The
activities will embody all the knowl-
edge about the particular domain the
agent inhabits, while the activity man-

84 JANUARY • FEBRUARY 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Column

Agent

b : BehaviorCollection
e : Environment

run ()

BehaviorCollection

elements : Vector

getAction()

run () :
while (true)
 e.takeAction (b.getAction
 (e.getInput()))

takeAction()
getInput()

Action State

Environment

getAction(state):
Vector match;
for each b in elements
 if (b.matches(state))
 match.add(b);
for each b in match
 inhibited = false;
 for each c in match
 if(c.inhibits(b))
 inhibited = true;
 break;
if (!inhibited)
 return b.execute(state);
return null;

Behavior

inhibits : Vector

matches ()
inhibits ()
execute ()

Figure 3. Diagram of a simple reactive agent.

Reactive agents are
just a fixed set of
behaviors.

ager embodies knowledge about the
deadlines and other scheduling con-
straints the agent faces. By imple-
menting each activity as a separate
class, we compel the programmer to
separate the agent’s abilities into
encapsulated objects that other activi-
ties can then reuse. The activity hier-
archy forces all activities to implement
a minimal interface, which also facil-

itates reuse. Finally, placing the activ-
ities within the hierarchy provides
many opportunities for reuse through
inheritance. For example, the conver-
sation class can implement a general
lost-message error-handling procedure
that all the conversations can use.

Architectural Support
Figures 3 and 4 provide general guide-

lines for implementing agent architec-
tures using an object-oriented language.
As agents become more complex, you
will likely have to expand upon our
techniques. We believe these guidelines
are general enough that it won’t be nec-
essary to rewrite the entire agent from
scratch when adding new functionality.

Of course, a complete agent-based
system requires an infrastructure to

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2001 85

Agents on the Web

Agent

B : BeliefContainer
D : DesireContainer
P : PlanContainer
I : Plan
e : Environment

run()
currentPlanIsApplicable() : Boolean
stopCurrentPlan()
getBestPlan()
pickBest()

Plan

a : Agent
e : Environment
priority : int
goal : Desire

satisfies (Desire) : Boolean
execute(Agent) : Boolean
context(BeliefContainer) : Boolean
stopExecuting()

Environment

a : Agent
thread : Thread

getInput(Agent) : BeliefContainer
takeAction(Agent, Action)
run()

Desire

type : String
priority : int

context(BeliefContainer) : Boolean

BeliefContainer

incorporateNewObs(BeliefContainer)

PlanContainer

elements : Vector

getApplicable(DesireContainer, BeliefContainer) : PlanContainer

DesireContainer

elements : Vector

getApplicable(BeliefContainer) : DesireContainer
add(Desire)
remove(Desire)

Belief

Figure 4. Diagram of a belief-desire-intention architecture.

provide for message transport, directo-
ry services, and event notification and
delivery. These are usually provided as
operating system services or, increas-
ingly, in an agent-friendly form by
higher level distributed protocols such
as Jini (http://www.sun.com/jini/),
Bluetooth (http://www.bluetooth.com/),
and FIPA’s (the Foundation of Intelli-
gent Physical Agents, http://www.
fipa.org/) emerging standards.

José Vidal also edits and maintains
the http://www.multiagent.com/ Web
site, which includes additional infor-
mation about agent tools and archi-
tectures.

References
1. P.M. Ricordel and Y. Demazeau, “From

Analysis to Deployment: A Multi-Agent

Platform Survey,” Proc. Workshop Engi-

neering Societies in the Agents’ World,

Springer-Verlag, Berlin, 2000; http://lia.deis.

unibo.it/confs/ESAW00/.

2. M. Fowler, UML Distilled, 2nd Edition: A

Brief Guide to the Standard Object Modeling

Language, Addison Wesley Longman, Read-

ing, Mass., 2000.

3. S.J. Russell and P. Norvig, Artificial Intelli-

gence: A Modern Approach, Prentice Hall,

Englewood Cliffs, N.J., 1995.

4. G. Weiss, ed., Multiagent Systems, MIT

Press, Cambridge, Mass., 1999.

5. E. Gamma et al., Design Patterns: Elements

of Reusable Object-Oriented Software, Addi-

son-Wesley, Reading, Mass., 1995.

José M. Vidal is an assistant professor of com-

puter science and engineering at the Univer-

sity of South Carolina, where he is conduct-

ing research in multiagent systems and

distributed software systems.

Paul A. Buhler is an instructor of computer sci-

ence at the College of Charleston and a PhD

candidate at the University of South Caroli-

na, where his primary research interest is

agent-oriented software engineering.

Michael N. Huhns is a professor of computer sci-

ence and engineering at the University of

South Carolina, where he also directs the

Center for Information Technology.

86 JANUARY • FEBRUARY 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Column

Agent::run() {

Environment e;

e.run(); //start environment in its own thread

while (true) {

I = getBestPlan();

if (I.execute()) // true if goal was achieved

D.remove(I.goal);

}

Environment::run(){

while (true) {

a.B.incorporateNewObservations(getInput(w));

if (! a.currentPlanIsApplicable())

a.stopCurrentPlan();

sleep(someShortTime);

}

Figure 5. Pseudocode for voluntary multitasking in the BDI
architecture.

Join a community that targets your discipline.

In IEEE Computer Society Technical Committees, you’re in good company.

http://computer.org/TCsignup/

Computer Society Technical Committees explore a
variety of computing niches and provide forums

for dialogue among peers. TCs influence standards
development and offer leading conferences.

JOIN A THINK TANKJOIN A THINK TANK

