
Abstract. The use of object-orientation for both spatial data and spatial
process models facilitates their integration, which can allow exploration
and explanation of spatial-temporal phenomena. In order to better
understand how tight coupling might proceed and to evaluate the possible
functional and efficiency gains from such a tight coupling, we identify four
key relationships affecting how geographic data (fields and objects) and
agent-based process models can interact: identity, causal, temporal and
topological. We discuss approaches to implementing tight integration,
focusing on a middleware approach that links existing GIS and ABM
development platforms, and illustrate the need and approaches with
example agent-based models.
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1 Introduction

This paper addresses the representation of both form and process, as
spatial data models and spatial process models, respectively, and how
relationships between these representations might be structured to better
facilitate scientific inquiry and application. Raper and Livingstone (1995)
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addressed this same issue in the context of geomorphological processes and
phenomena. Their definitions of process and data models suffice for our
purposes. ‘‘Process models generally express theories predicting the nature
of the exchange of energy and mass within systems, over time.’’ (Raper
and Livingstone 1995; P. 361). In a broader context, this definition could
be expanded to include exchange of ideas, culture, viruses, etc. ‘‘By
contrast, data models express theories predicting the structure of the real-
world domains in terms of entities and their attributes organized in inter-
related sets. One of the basic problems encountered when ‘coupling’
environmental models with GIS is that the former are specified as process
models while the latter are specified as data models’’ (Raper and
Livingstone 1995; P. 361). In addition, they argue that progress in
object-oriented data modeling presents a tremendous opportunity for
coupling with object-oriented process models. This is an argument we
pursue here.
Geographic information systems (GIS) use multiple spatial data models

for representing and storing information about phenomena with spatial
location and/or extent (Lo and Yeung 2002). The focus of data models in
GIS has been on spatial, at the expense of temporal, dimensions (Peuquet
2002). Space and time can be defined in absolute or relative terms (Blaut
1961; Couclelis 1997; Wachowicz 1999; Goodchild 2002). Whereas
absolute space and time offer a rigid geometric structure within which
phenomena are referenced, the relative view references location largely in
terms of relationships, topological and temporal, between features
(Peuquet 2002). Object-oriented data models, which have grown increas-
ingly sophisticated in GIS (Leung et al. 1999), assign location as an
attribute of features rather than of the space itself, and allow represen-
tation of relative space. In contrast to GIS, process models make use of
sophisticated representations of time and behavior, often at the expense of
sophisticated representations of space and spatial relationships. By
assigning temporal behavior as an attribute of objects rather than of
the environment, object-oriented process models (e.g., individual-based
and agent-based models) allow for a relative view of time, in which
objects are updated asynchronously (Westervelt and Hopkins 1999), as
opposed to updating all at once (i.e., synchronously).
In this paper we address the coupling of GIS-based data models with

agent-based process models. After reviewing fundamental types of data and
process models and implications for their coupling, we review the successes
achieved in coupling synchronous models of change with raster-based GIS.
Next, we identify the largely unrealized opportunities for coupling object-
based spatial process models with multiple GIS data models. We describe
four key relationships that affect the interactions between geographic data
(fields and objects) and agent-based (i.e., object-oriented) process models.
We describe some alternative approaches to implementing GIS-ABM
integration, focusing on an approach that involves development of
middleware to manage connections between agents and spatial features,
and some implementation issues. Then, the relationships and some of the
implementation approaches are illustrated by describing four models that
make use of them in common combinations.
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2 Spatial data models

Spatial data models describe two fundamentally different conceptions of
space. The field view represents space as a continuously varying distribution
of geographic variables, and the raster data model is often used to
approximate this view by discretizing an absolute space and subdividing it
in regular intervals. In contrast, the object view focuses on discrete entities,
which have location, some level of spatial extension and attributes, and are
usually represented as spatial features (i.e., points, lines or polygons) using a
vector data model. Though many phenomena can be reasonably represented
as either fields or objects, some geographic phenomenon have both field and
object characteristics, and might require a combination of these views. One
example is an aggregation of many discrete objects, created as outputs from
an optimization algorithm, that represents a solution space as a field of
objects (Cova and Goodchild 2002). Alternatively, an object, like a storm
cell, can exhibit continuous spatial variation (e.g., wind speed) within its
spatial extent (Yuan 2001).
Object-oriented data models, which make use of hierarchically nested

entity definitions that encapsulate behaviors (e.g., about allowable entries in
the database) and inherit data characteristics from higher levels, have
become mainstream within commercial GIS, for example in the form of the
geodatabase structure within ArcGIS (ESRI 2004). In addition to facilitating
a closer conceptual relationship between features in the database and
discernible entities in the real-world, object-orientation also facilitates the
implementation of relative space. One way to represent relative location
using object-oriented GIS is through topological rules that can proscribe
certain kinds of spatial relationships and require others. For example, a
topological rule can specify that a spatial feature in one layer (e.g., a house)
may not overlap a spatial feature in another layer (e.g., a lake). These
topological rules describe certain logical characteristics of the physical world
that can prevent erroneous placement of features.
Several researchers have proposed extensions to existing spatial data

models to provide richer representations of time. These extensions have used
(a) spatio-temporal objects to represent evolution of the geometry, proper-
ties, and location of entities through time (Worboys 1994), (b) event
sequences on a grid to keep track of how a process evolves (Peuquet and
Duan 1995), (c) events and processes to describe spatio-temporal phenomena
that possess both field and object characteristics (Yuan 2001) and (d)
versioning, through the use of ‘‘amendment vectors,’’ to represent boundary
changes (Langran 1992). By explicitly including time, these extended spatial-
temporal data models facilitate visualization and analysis of dynamic
attributes and features defined with spatial and temporal extension.
However, even with inclusion of temporal referencing or time-based
attributes, these data models have not (with few exceptions; Raper and
Livingstone 1995) included explicit representations of the processes (i.e.,
sequences of operations) by which spatial features change and move,
focusing instead on representing the changing structure of the phenomena.
Representations of process are important, however, in explaining why the
structures change as they do and are also required if analytical operations are
to be implemented across space and time, for example if we desire to
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interpolate features and/or attributes across time. Such representations of
process, then, interact with and extend the capabilities of spatio-temporal
data models.

3 Spatial process models

A variety of approaches exist to represent dynamics in process-based models.
We borrow, in a general sense, two conceptual views of spatial processes from
the Eulerian and Lagrangian views of fluid dynamics. The Eulerian view
describes the processes that influence properties (e.g., temperature) at fixed
locations, and thus is a description of change. The Lagrangian perspective,
on the other hand, tracks the changing location of particles through space
and, therefore, is a description of movement. Many processes in the real
world could be reasonably described as either Eulerian or Lagrangian. For
example, as a cold air mass moves (described as Lagrangian motion) over a
location it causes the temperature at that location to drop, affecting an
Eulerian change. The duality between models of change versus movement
can be extended to describe nearly any geographic process, and the choice of
which approach to take for representing any given process is made on the
basis of both conceptual and practical considerations. Here, we describe how
change and movement models interact differently with spatial data models.

3.1 GIS-based change models

Perhaps the simplest models of change are based on the Markov process, in
which the state of a random variable at a location in the future is only
dependent on its current state (Sheynin 1988). For example, many early
computer simulations of land-use change were based on Markov formula-
tions (Burnham 1973, Bell 1974). A variety of cellular models have enhanced
these Markov formulations by incorporating spatial interactions into the
calculation of probabilities of change at locations (e.g. Verburg et al. 1999;
Brown et al. 2000). For example, to investigate diffusion of innovation and
its effects on regional-level behavior and spatial patterns, Hägerstrand (1967)
developed cellular models using local interaction rules. The probabilities of
future states were based on the surrounding states within some window.
Tobler’s (1970; 1975; 1979) ‘‘cellular geography’’ built on Hägerstrand’s
approach, and perhaps on the work of Burks (1970) who was a contempo-
rary of Tobler’s at the University of Michigan, to model change in a variety
of systems, including urban development in Detroit (Batty 1997). The work
of Burks (1970), his mentor von Neumann (1966), and others (Ulam 1962)
resulted in the development of cellular automata (CA), which use simple
rules to represent complex dynamics resulting from social, physical,
biological and computational processes (Toffoli and Margolus 1987). In
their purest form, CA represent change on a lattice deterministically, using
rules that relate the current state at a location and at immediately
surrounding locations with the next state at that location.
The logic of integrating field-based spatial data models with change-based

spatial process models is strong (Kemp 1997) and, for this reason, has been
exploited in a variety of GIS. Eastman (2001) introduced into a recent
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version of Idrisi, a raster GIS system, a spatial modeling component that
combines a Markov process representation of state changes with a cellular
model to introduce spatial interactions. In addition, Idrisi now includes a
graphical modeling environment, in which the ‘‘map algebra’’ functions
common in raster GIS (Tomlin 1990) can be applied iteratively to maps in
discrete time steps to implement change processes. It is relatively simple, for
example, to employ spatial filtering and map reclass operations iteratively to
implement simple cellular automata within this environment. Burrough and
colleagues at Utrecht University (Van Duersen 1995; Wesseling et al. 1996)
developed a system, called PCRaster, that extends the map algebra to include
representations of time and dynamics. The system maintains a timer to track
the progression of time in discrete steps, and includes explicit representation
of change and transport processes.
Discrete-state spatial models of change processes operate on a discrete

representation of continuous space and employ discrete time steps and
synchronous updating to represent time. Models of flow and transport
processes based on fluid mechanics, such as those used to represent
hydrological flow and atmospheric processes, are based on continuous
notions of space and time (e.g., through the use of differential equations).
However, their implementation with GIS usually involves a discretization of
space and time similar to the discrete state models above (Maidment 1996).
The processes in this discretized environment are commonly represented as
finite difference or finite element models, which essentially represent the
future state at a location, in terms of the quantity or flux of the fluid or
materials, as a function of its current state and flux and its surrounding states
and fluxes. These common discrete numerical solutions create fluid models
that interact with spatial data models in very similar ways to the discrete-
state models.

3.2 GIS-based movement models

The most common GIS-based movement models involve models of flow and
transport, e.g., hydrological flow and transport of pollutants. However,
while flow and transport models represent the dynamics of movement, the
underlying implementation is usually expressed in terms of updating (or
changing) states, which can include fluxes, at fixed locations and over discrete
time steps. Similarly, though CA and other cellular models focus on
modeling changes in state, emergent features can appear to ‘‘move’’ in space.
Conway, in developing his ‘‘Game of Life’’ illustrated the emergence of
moving features (i.e. ‘‘gliders’’) on the basis of simple local change rules
(Gardner 1971). Fire is another emergent feature that seems to spread across
a landscape as a result of the interactions encoded in the individual state
changes (Clarke et al. 1994). So, by explicitly representing how states change
at a location, some types of movement can be captured implicitly. An
important limitation of this approach, however, is that geographic features
(e.g., in an object-based spatial data model) are not represented explicitly in
the model. Moreover, the movement is implicit in the change rules, and
cannot be queried directly. As a result, the relationship between the process
as observed in the real-world (i.e., movement) and its representation in the
model is not always clear.
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GIS, in general, do not include operators that explicitly describe movement
of features (De Vasconcelos et al. 2002; Westervelt and Hopkins 1999). For
this reason, it is relatively more difficult to implement object-oriented
movement models than change models in close coupling with spatial data.
However, such coupling is a logical next step in merging spatial data with
spatial process representations.

3.3 Agent-based models and object-based movement

Object-oriented process models, which include individual-based models
(IBM) commonly used in ecology (DeAngelis and Gross 1992) and
agent-based models (ABM) common in the social sciences (Epstein and
Axtell 1996), allow for modeling movement and have developed indepen-
dently of GIS. The object-oriented framework of ABM involves identifi-
cation of agents and of a temporal framework within which those agents
perform actions. While many different types of agents can exist, the
following general definition is common: an agent is a self-directed object,
i.e., it has the ability to satisfy internal goals or objectives through actions
and decisions based on a set of internal rules or strategies (Iglesias et al.
1999). These agents may be dynamic in either state (i.e., change) or space
(i.e., movement) and may, through their actions, change the state or
location of other objects, processes, or environments around them. Agent
dynamics are most naturally implemented in an ABM by a set of behaviors
(‘‘methods’’) that can include conditional decision making and other (non-
linear) rules that distinguish them from mathematically continuous models
(Parunak et al., 1998). The ability for Lagrangian motion (i.e., agent
movement) distinguishes ABM and other object-oriented modeling frame-
works from the change-based spatial models described above. It also
creates additional challenges for integrating these models with GIS, as
described in more detail below.
ABM dynamics are defined at the level of (a) agent behaviors that result in

change and movement, and (b) the independent dynamics, if any, of non-
agent objects. Thus to represent dynamics, ABMs are implemented as
discrete event simulations (Zeigler et al. 2000), in which some kind of
‘‘scheduling’’ mechanism handles the sequencing of agent behaviors and
events. An ABM may implement scheduled events in three ways:

– Events may be sequenced in a synchronous step-wise fashion. For
example, each agent, set of agents or non-agent object is signaled to
perform its tasks once at each time step or once every n time steps.

– An event may be scheduled to occur only once at some time step n. Any
number of different events may be scheduled to occur in this fashion
providing a predetermined history of events to take place.

– The model may encapsulate ‘event-driven’ processes whereby model agents
may trigger events to occur or may add events to the schedule or queue of
events to take place (Ropella et al. 2002).

The choice of both an event-scheduling approach and a temporal
resolution (i.e., frequency of time steps) can have serious consequences for
the behavior of the model (Liu and Andersson 2004). Though more research
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is surely needed on the consequences of these choices, they make it clear that
ABMs have significant flexibility with respect to their handling of time.
On the other hand, ABMs often use relatively limited representations of

space. For example, ABMs frequently use hypothetical spaces based on
square or hexagonal tessellations, and only recently have ABMs begun to use
real-world spatial data. To avoid edge effects on the performance of some
models, researchers commonly use a toroidal representation of space, which
wraps around from top-bottom, left-right, and vice versa. The rich temporal
representations (agents and processes) of agent-based models, therefore
complement the spatial data representations (fields, objects and functions) of
GIS. The object-oriented nature of both presents tremendous opportunities
for their integration.

4 Relationships affecting process-data coupling

Given the complementarities of spatial data models (fields and objects) and
agent-based (i.e., object-oriented) process models, and their combined
potential to improve on integrated representations of spatial patterns and
temporal processes, we argue that tight coupling of models and data within
ABM and GIS, respectively, can reap benefits in terms of both efficiency,
through reduced computing times, and capability, through new functional-
ity. Attempts to integrate ABM and GIS techniques have raised several
conceptual and technical questions (Gimblett 2002). These issues broadly fall
into questions of ontology and process, i.e., how are entities and processes
represented, and how do those representations interact, respectively. As an
instance of the former, Bian (2003) concluded that the environment within an
individual-based model can be represented as either patch-based (i.e., object-
based), maintaining object-orientation in both the model and data, or field-
based, such that object-oriented individuals interact with a discretized
environment of attributes. She discounts the value of treating all cells in a
grid-based environment as objects on both technical (i.e., due to inefficien-
cies) and ontological (i.e., poor match to conceptual view of fields) grounds.
More generally, developing models that make use of both GIS and ABM

techniques requires the specification and implementation of relationships
between agent-level processes and spatial data. In order to facilitate better
understanding of the technical and conceptual issues that can arise when
creating models that tightly couple GIS and ABM techniques, we present
below a description of four key relationships that affect the integration of a
dynamic GIS data base and an agent-based process model (Fig. 1). We
describe how the relationships affect representations of dynamic geograph-
ical systems with the goal of better understanding how ABM and GIS
techniques can be coupled to treat spatial and temporal dynamics equally
well. Approaches to implementing these relationships are taken up in a later
section.

4.1 Identity Relationships (Fig. 1a)

By defining an identity relationship between an agent and a spatial feature or
features, GIS techniques can be used to store the geographic extent and
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attributes of the feature, while ABM techniques represent the behavior of the
agent and the change in associated feature(s). Thus (a) spatial features
associated with agents can move or change, and (b) attributes of features
associated with agents can change. The spatial features that are associated
with agents can be stored in the GIS as polygons, lines, points, or cells in a
raster. It is possible for an agent to be associated with only one spatial
feature (i.e., a one-to-one relationship) or more than one spatial feature (i.e.,
a one-to-many relationship). In any given model, there also can be some
spatial features that are not related to agents and some agents that are not
related to spatial features. One example of an identity association is vehicles
represented as agents, with movement rules, that are associated with points
and attributes in a spatial database (Deadman and Gimblett 1994). The
points move when the vehicles move and the attributes of the points change
as the vehicles change (e.g., their fuel levels change). As a given model

Fig. 1. Conceptual illustration of four key relationships that affect the interaction of spatial data

models and their associated techniques and agent-based process models and their associated

techniques. The four relationships are (a) Identity Relationships, (b) Causal Relationships, (c)

Temporal Relationships, and (d) Topological Relationships. The graphic portrays the

relationships conceptually and is not meant to describe any particular implementation

32 D. G. Brown et al.



progresses, the agents might update their own locations, shapes, and/or
attributes, affecting changes in a spatial database and/or graphic display. The
behavior of an agent can interact with (i.e., affect or be affected by) other
agents, whether or not they have associated spatial features. For some types
of movement or spatial interactions, however, it might be necessary to
compute the spatial relationships among features (see item 4 below).

4.2 Causal relationships (Fig. 1b)

In many models, agents have the ability to take actions that affect spatial
features and/or their attributes, even if there is no identity association
between the agent and the spatial feature(s) it is acting on (i.e., non-agent
features). Agents can take actions that result in changed locations or
attributes of features, or they can take actions that change the values of an
attribute on a field (e.g., a raster). For example, a public health agency (i.e.,
agent) could implement a disease control strategy that involves treating
wetlands (i.e., polygon feature) with mosquitocides or draining them to
reduce the prevalence of mosquito-borne diseases. The actions of the agency
affect the attributes (i.e., mosquito abundance) and/or spatial expression
(i.e., through draining) of the polygon features representing the wetlands.
Note that the behavior of other agents, e.g., nearby households, might be
subsequently affected by the changes in the spatial features, making
appropriate handling of temporal dynamics important.

4.3 Temporal relationships (Fig. 1c)

Two types of actions in a coupled process-data model are fundamentally
time-sensitive: (a) the actions of the agents and (b) the updating of attributes
or locations of features in a database or display. Either can be handled using
synchronous or asynchronous approaches. When actions are handled
synchronously, the coordination of these dynamics is relatively straightfor-
ward. All agent actions can be carried out at once, and changes to features
and attributes are written to the database (and to the display) at the same
instance. (Note: In non-parallel computer implementations, such models
carry out the changes in series, but they represent processes that are
instantaneous.) To record the history of the process, the model might create
a new attribute, set of spatial features, or raster layer, which is saved to a
database along with some indicator of the time. There is little value in using
asynchronous updates to a database, when the model runs synchronously,
because the model does not change the features or attributes between discrete
time steps. However, synchronous database updates can be made less
frequently than synchronous model time steps.
When agent actions are asynchronous, database updates can be made

either synchronously or asynchronously. When handled synchronously,
database updates reflect snapshots of a model run taken at regular time
intervals and are made in a similar manner as a synchronous model,
described above. However, asynchronous model actions used together with
synchronous database updates can complicate issues associated with the
‘‘speed of light’’ problem. The problem is, if an agent requests a change in
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one part of the world, how soon are other agents (or non-agent objects)
located in other parts of the world affected by that change? Exactly how to
handle this issue depends on the specifics of what is being modeled, the time
scales required, and the modeling goals. This problem is especially
complicated when agent actions are dependent on the database to provide
information about the state of the world at a given time, because of the delay
in updating a given part of the database associated with the specified
synchronous-updating interval. An alternative approach is to use asynchro-
nous database updates to mirror the asynchronous agent actions. This
implies an alternative database structure, requiring that all changes to
features or attributes are stored explicitly (e.g., to create different versions of
features) along with time stamps to indicate when these changes occurred.
Further complicating the issue of temporal relationships are models in

which there are dynamic processes that are, more or less, independent of the
dynamic processes represented by agents (e.g. Westervelt and Hopkins 1999).
For example, if a process of natural plant succession using a Markov process
is updating a landscape while agents move across it, then some coordination
of the timing of updates to the Markov process and the movement of agents
is needed. To coordinate these processes, the clock that governs agent
behavior must be coordinated with the clock that governs the updates of the
Markov model.

4.4 Topological relationships (Fig. 1d)

Movement of spatial features, either by processes internal to their associated
agents or by those of other agents (only the former are illustrated in Fig. 1d
for simplicity), can require basic information about the physical world or
spatial relationships between features. Whether a particular move is desirable
or physically possible can require information about (a) topological rules
specified for a set of spatial features in relation either to each other or to
another set of spatial features, or (b) the spatial associations between features
as determined by calculations of distance, cost of interaction, or visibility.
For example, movement of a vehicle to a particular location may not be
possible because a building or another vehicle already occupies that location.
Alternatively, a person (i.e., agent) may be programmed to move to a nearby
location on the landscape that maximizes some spatially defined objective,
like visibility.
Clearly, models make use of the relationships described above to varying

degrees. However, identifying the general types of relationships that are
possible can move us toward general concepts and tools for linking process
and data models. Next, we discuss the implementation of these linkages.

5 Software implementation

Where real-world spatial data are to be used by an ABM, some form of
coupling with GIS data and functionality is necessary in order to create
models that effectively represent both complex spatial structures and rich
dynamical processes. The use of loose coupling, which involves passing
interchange files between the model and the database, limits models in a
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variety of ways. First, computational efficiency is low because of the costs of
input and output. Because many models are very computationally demand-
ing, this is an important issue. Secondly, loose coupling precludes direct use
of existing database query and analysis functions within the models
(Gimblett 2002) and direct use of modeling functions with the database.
For these reasons, more tightly coupled models are desirable. While tighter
coupling provides many advantages, such coupling also raises a number of
implementation issues, which we discuss next.
Implementing tightly coupled process-data models requires choosing an

appropriate architectural platform. Initial attempts to tightly couple ABM
and GIS functionality (several of which are described in the Examples
section) have taken an ABM-centric approach. One of these approaches has
involved the use of software libraries of GIS functions within ABMs and the
encapsulation of features and attributes with the agents, where there are
identity relationships. For example, the GeoTools Java library (http://
www.geotools.org), which includes GIS data management and visualization
functionality, is available for use by models developed with the RePast ABM
development platform (University of Chicago 2003). It is also possible to
implement (i.e., write code for) spatial data management and analysis
functions within a model. However, the costs of this strategy increase
dramatically as a model’s use of frequent updates to spatial data and
complicated spatial analysis functions grow. Functions that are readily
available within the GIS framework need to be written, debugged, tested,
and documented within the ABM framework; thus the development time
increases. Also, code developed in the ABM to perform GIS-like tasks may
not be as efficient as that within a GIS. This is partly because ABM platforms
are not built to handle primarily spatial interactions, but also because GIS
systems have developed over many years with attention to increased
efficiency. Additionally, use of standard GIS tools for spatial analysis
improves functional transparency of a model, as the model makes use or
well-known and understood algorithms.
A GIS-centric approach to coupling, i.e., implementing ABM functions

and models within a GIS system and user interface, is an attractive
alternative. A GIS-centric coupling would allow such models to run
interactively within the graphical user interface of a GIS package. Given
the large GIS user base, such accessibility could expand the potential user
base for any given model. A complement of the ABM-centric approach, GIS-
centric coupling can be carried out using software libraries of ABM functions
accessed through the GIS interface. To fully embed ABMs within a GIS
would require the ability to encapsulate a wide range of agent behaviors with
spatial features and a means of keeping and coordinating time. The obvious
difficulties of this approach arise because GIS do not usually provide these
capabilities. They therefore lack the most basic tools required for agent-
based model creation and use. We know of no existing implementation of an
ABM embedded completely within a GIS environment.

5.1 Integrated systems

A third broad approach to integration is centered on neither ABM nor GIS,
but makes use of the functionality available in both environments. One
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alternative is to build such an integrated system from the ground up. For
example, Torrens and Benenson (In Press) argue for the implementation of
geographic automata systems (GAS), which tightly couple spatial data and
process models within a single, integrated system. They demonstrate the
Object Based Environment for Urban Systems (OBEUS), which is a model
development environment, like RePast (Collier 2000) and Swarm (Minar
et al. 1996), but with particular emphasis on spatial interactions.
In contrast to building a completely new system from the ground up, an

intermediate ‘‘middleware’’ alternative builds on existing platforms and
involves the development of software to handle the identity and causal
relationships between the agents within an ABM environment and spatial
features within a GIS environment, as well as the temporal and topological
relationship issues that arise in the model. Such middleware could allow a
model to make use of the tools that are most appropriate for a given task.
Rather than providing all functionality within one system, the middleware
manages connections between systems, so that the relationships described
above can be implemented. An important advantage of this approach is that
models can both be developed using an ABM platform and run and
visualized within a GIS platform. It also takes advantage of the substantial
investments in developing existing GIS and ABM environments. Although
this approach does not take full advantage of the ontological and practical
benefits of encapsulation within an object-oriented framework, the fact that
both ABM and GIS are object-oriented makes the coupling possible.
Further, we see this as a practical direction for short- to medium-term
development, because the approach requires only linking existing systems,
rather than building new ones.
A potential disadvantage of creating a model that relies on both GIS and

ABM toolsets is increased start-up costs, because of the added complexity
required to handle both software environments and their integration. It is
important to avoid the temptation to use tools that are more sophisticated
than necessary for a given model. For example, if a model requires only
minimal spatial analysis and interaction with real spatial data, tight coupling
may be unnecessary. Another disadvantage can be the dependence of a

Fig. 2. A composite diagram showing all relationships between process models and spatial data

models as they are displayed separately in Fig 1 (legend is the same)

36 D. G. Brown et al.



model on two toolsets instead of one. A model is more likely to suffer
obsolescence because of changes in either the GIS or ABM platforms.
Platform dependence might also turn off potential users who do not have or
like one or both of the choices of platforms.
An example of this approach, implemented to link RePast and ArcGIS, is

illustrated in the Infrastructure SymSuite example described below. The
model developer simply names a class of agents to match the name of a
feature layer within ArcGIS, and names agent properties to match the names
of attributes in the layer. When the model is run, the middleware creates an
agent for each feature and sets the agent properties according to the feature
attributes. Changes in agent properties also cause updates to the attributes of
GIS features.

5.2 Handling the four relationships through middleware

Implementing a middleware approach between ABM and GIS first requires
establishment of identity relationships between agents and features. To
represent identity relationships, a software mapping is required to identify
object ID(s) in the GIS database associated with each agent, and vice versa.
As agents perform actions, they implement a change, or send messages to the
GIS software that requests a change, in the location and/or attributes of the
spatial features that are written to a graphical output and/or to the database.
To implement causal relationships, in which the state of the GIS affects the

behavior of agents and the behavior of the agents may affect the state of the
GIS, agents in the ABM query the GIS for objects (some of which might be
associated with other agents) with particular locational or attribute charac-
teristics and may affect changes to their location or attributes.
Because ABM development platforms (like Swarm and RePast) have the

potential for richer representations of time, and have better mechanisms for
implementing dynamical processes and relationships at various time-scales,
coordination of temporal relationships should be managed by the common
temporal reference maintained by the ABM. This can be implemented by
either directly requesting the GIS to carry out updates at particular (ABM)
time steps, or by communicating time-step references to the GIS as needed.
The simplest cases are those in which all dynamics are represented in the
ABM, and the GIS is primarily used as a database and graphic display
tool. One way to implement coordination of time, when the GIS platform
includes an autonomous process model (like the Markov model described
in the discussion of temporal relationships) is to have the ABM send a
message to the GIS indicating that so many ticks on the ABM clock have
elapsed and that it is time for the GIS model to advance and update the
landscape maps. This, of course, requires careful coordination of the
meaning of time steps.
Because GIS have more sophisticated representations of space, topology,

and spatial relationships, the topological relationships should be handled
within the GIS. Communicating topological and spatial relationships such
that they provide constraints on agent behavior could be implemented by (a)
having agents query the GIS each time a move is attempted, or (b) having
agents that want to move act by sending a ‘‘try to move’’ message to the GIS,
for example using feature editing functions. In the latter case, the GIS could
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respond in turn by either moving the agent as requested (and thus updating
the GIS database and associated graphical displays), or by returning a
message to the agent about why the move could not be executed (e.g., the
location was already occupied).

6 Examples

Here we describe several models to illustrate interactions between spatial
data and spatial processes and, therefore, the different requirements for
integrating ABM and GIS functionality. The specific cases were selected to
reflect commonly encountered types of models. These examples demonstrate
multiple types of models, in terms of the four relationships listed above, and
implementation strategies. Focusing on the middleware development
approach used in the last example, we address future developments needed
to improve on the existing implementation.

6.1 Urban land-use change

In a project on land-use change at the urban-rural fringe, called SLUCE
(http://www.cscs.umich.edu/sluce), we are studying how individual decision-
making drives land-use decisions that affect and are affected by environ-
mental systems. The investigation utilizes an ABM called SOME (SLUCE’s
Original Model for Exploration) to model the residential location decision
process (Rand et al. 2003; Brown et al. 2005). This model incorporates two
kinds of agents: homebuyers and service centers. It also incorporates several
spatial data layers that characterize aesthetic quality, roads, and locations of
current development.
Agents have no identity relationships with spatial features in this model,

though the service centers and homebuyers do participate in the land-change
processes. The primary relationships that exist in this model are causal. The
agents affect change in attributes on a grid-based landscape and their
decisions are affected by the attribute values on that landscape. The residents
make decisions about where to locate based on features such as aesthetic
quality, distance to service centers, and nearby density. Service centers are
programmed to enter at specified intervals and to locate near recent
residential development. Thus, homebuyers are affected by environmental
qualities and then influence the behavior of the service centers, which in turn
influences the behavior of future homebuyers by changing the distances to
service centers. This model uses the simplest class of temporal relationships,
i.e., all agents entering the system each time step perform their actions and the
ABM updates the raster database before the next time step begins.
Topological relationships include checking if development is prohibited at a
location because other agents have already developed it or because develop-
ment is not possible, e.g. lakes or greenbelts. Also, nearby density of a given
cell is calculated using a kernel calculation of the number of developments
around each cell, and distance to service centers is calculated for each cell.
The existing implementation of this model uses elements of both loose and

ABM-centric coupling. The grids of initial conditions are read from
interchanges file that are produced by the GIS. Results from the ABM,
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i.e., maps showing cells occupied by residents and service centers (Fig. 3a),
are then written to the same interchange format that can be read into the GIS
for viewing and analysis. Functions written within the model are used to
handle the spatial data, including special functions written to carry out
spatial analyses (e.g., window operations and checking for occupied
locations, and distance calculations). Because of the relatively simple types
of interaction between the model and the database (Fig. 3b), the biggest
benefits of tighter integration would come from enhanced availability of
spatial analysis functionality (from the GIS) within the model.

6.2 Military mobile communications

The goal of the Tactical Sensor and Ubiquitous Network Agent-Modeling
Initiative (TSUNAMI) is to directly support a shift toward ‘‘information

Fig. 3. The SOME model. aMap showing cells that are occupied by residents (black) and service

centers (gray) at a particular time during the run of the SOMEmodel. b Conceptual relationships

between process and spatial data models

Fig. 4. The TSUNAMI Model. a Local battle space visualization with geography and agent

locations. The agent locations and geography are for illustrative purposes only. b Conceptual

relationships between process and spatial data models. Only jeeps and tanks are shown for

illustration, though other agents are also present
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superiority and dispersed, networked force capabilities’’ within the US Navy
(Clark 2002) by simulating military mobile communications in and around
amphibious landing areas. TSUNAMI simulates battle space motion and
interaction over real terrain data, applies rule sets to simulate message traffic,
simulates quality of service protocols, and simulates exercise data manage-
ment choices on a case-by-case basis, to model traffic loading using realistic
tactical network architectures. The TSUNAMI simulation tracks the current
state of global and local battle spaces (Fig. 4a)
In this model, all agents (including soldiers, tanks, jeeps, airplanes, and

ships) have identity relationships with spatial features (i.e., points) (Fig. 4b).
Attributes of the agents include location, current heading, fuel or battery
levels, communications equipment, a communications routing capability that
uses specific protocols, differing sensing capabilities, ranges of mobility, and
sets of fuel and battery lifetimes. Causal relationships are described through
the agents’ abilities to move, to sense surroundings, and to communicate.
Each of these basic behaviors has appropriate variations that add detail and
fidelity. For example, agents move throughout the space in three different
ways: (a) responsive motion to fight, follow, or flee other agents; (b) scripted
motion defined by the model users before a simulation run; and (c) random
motion when no other options are available. The agents move across the
landscape and surrounding waterways and react to one another. The agents
can change their attributes based on the other agents they encounter as well
as the features of the terrain. For example, a tank may increase the power
output of one of its radios if it is obscured in mountainous terrain but has a
message for an allied aircraft circling nearby. Temporal relationships are
handled within the model through asynchronous event scheduling. As each
event occurs, the agents determine their new status and then update the GIS
accordingly (i.e., asynchronously). Topological relationships are utilized when
the agents query the GIS to determine the locations of neighboring agents
and the type of terrain surrounding them. The model makes use of spatial
analysis functions within the GIS to carry out these queries, the results of
which are passed back to the model. By querying the landscape for allowable
moves, the model makes use of topological rules that are coded within the
ABM, but implemented with the help of GIS queries. A communications
network topology is constructed by the agents (i.e., within the ABM) using
selected self-configuring protocols.

Fig. 5. The IDLAMS model. a RePast Interface. b Conceptual relationships between process

and spatial data models
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This model is implemented through a tight coupling of the RePast platform
and the Java-based OpenMap GIS (http://openmap.bbn.com). The coupling
takes an ABM-centric approach, in which GIS components were accessed
through the ABM program. The grid-based landscape is currently handled
within the ABM to avoid inefficiencies in converting this information back
and forth from the GIS to the ABM. A more balanced integration of GIS and
ABM could provide for better handling and updating of raster layers.

6.3 Integrated dynamic landscape analysis and modeling system (IDLAMS)

The Integrated Dynamic Landscape Analysis and Modeling System (IDL-
AMS) is an individual-based, spatially-explicit model of red-cockaded

Fig. 6. The Infrastructure SymSuite. a ArcGIS interface, with electric power infrastructure

locations, natural gas infrastructure locations and hypothetical critical components. The

infrastructure information shown in the example is for illustrative purposes only. b Conceptual

relationships between process and spatial data models
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woodpecker populations (Fig. 5a). The goal of this system is to integrate
ecological models with decision support tools to allow military land
managers and decision makers to balance mission preparedness with a
diverse set of multiple land-use goals (Rewerts et al. 2000).In particular,
there is a need to protect endangered species that find refuge from urban
encroachment on military bases.
All agents in this model (i.e., representing individuals of the red-cockaded

woodpecker [Picoides borealis] and pieces of military equipment) have identity
relationships with spatial features (i.e., points for birds and areas for military
equipment) (Fig. 5b). The causal relationships involve movement of birds and
other agents and changes in the birds’ attributes as they grow and are affected
by other features and attributes. Military equipment (e.g., jeeps and tanks)
affects the landscape as it moves across the terrain, including changing the
suitability of habitat for the birds and, potentially, destroying nest sites.
Movement of birds from one place to the next characterizes nesting, breeding
and feeding behaviors, based on Letcher et al.(1998). For example, the birds
can find open lands with appropriate trees for nesting and then choose these
trees as nesting sites. This decision causes a change in an attribute of the agent
(i.e., life cycle changes from non-nesting to nesting). This also affects a change
in the raster landscape (i.e., from suitable nesting site to nest).Temporal
relationships in the model are handled in the ABM asynchronously. The
model reads initial environmental data in the form of a grid and handles this
information within the ABM.The GIS is updated as events cause changes (i.e.,
asynchronously) to the attributes and locations of features and to attributes
on the grid-based landscape.The history of the processes is not saved, but the
last location and state are written to the GIS. Topological relationships, for
example when a bird evaluates nearby or all locations for possible movement,
and are handled exclusively within the ABM.
The model, like TSUNAMI, uses an ABM-centric tight coupling, using

functionality from the GIS (i.e., Java-based JeoViewer developed at Argonne
National Lab) in a model written with RePast. Like the other models,
IDLAMS maintains and updates the grid-based landscape map using spatial
analysis functions and asynchronous updating tools within RePast. Because
the history of the process is not stored asynchronous updates to the GIS do
not require time stamps, which would complicate the process. A more
integrated approach could take advantage of GIS-based functions for
updating and analyzing raster layers.

6.4 Infrastructure simulation

The goal of the infrastructure simulation suite (Infrastructure SymSuite) is to
represent the operation of interdependent infrastructure systems such as
electric power grids, natural gas systems and telecommunications networks
(Thomas et al.2003). The system models the complex interplay between
infrastructures to evaluate the effects of changes in one on the other and
overall system vulnerability (Fig. 6a)
All agents in this model (including electric power lines, power generators,

power demands, natural gas pipelines, gas sources, gas storage, gas
consumption, and telecommunications systems) have identity relationships
with spatial features (Fig. 6b). The feature attributes can change, but the
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features themselves do not move. All causal relationships, including effects of
one agent on another, are implemented within the ABM. For example,
the unexpected rupture of a natural gas main will cause a drop in pressure at
the pipe’s endpoints. This drop in pressure in turn will slow and then stop the
delivery of natural gas to the destination endpoint of the pipe. This may in turn
reduce or curtail the output of a natural gas-fired electric generator connected
to the pipe’s destination. The attributes within the GIS database of the gas
main, pipe endpoints, and generator are updated by the associated agents. The
ABM handles all temporal relationships, including asynchronous processes,
but the agents update the GIS database synchronously at fixed intervals, to
simplify the temporal data structure. The GIS database provides information
on the initial topological relationships between all features. Any changes to the
topology, e.g., a power line down, are modeled exclusively within the ABM
and are not written back to the GIS because most such changes are temporary.
The model uses tight coupling, in which updates to the GIS database and

the graphic interface are in real-time, as the model runs. The implementation
uses middleware to manage the identity mapping between agent identifiers
and spatial feature identifiers. In addition, it takes advantage of the fact that
the GIS can store topological information, in addition to features’ locations
and attributes. The topological changes, as with all of the dynamics of the
model, are integrated by the ABM, written with RePast. An earlier version of
this model, based on ArcSDE, used versioning within the GIS to allow the
ABM to store asynchronous, rather than synchronous, updates.

6.5 Future middleware development

A reasonable path for future development of such middleware is to further
develop the causal, temporal, and topological relationships described above.
For example, the application for which Infrastructure SymSuite was
developed did not require that the agents and their associated features be
able to move. An obvious extension is to allow the agents and their features
to move. Moreover, topological connections between agents are read initially
from the GIS and subsequently managed within the agent model. Another
extension, then, would be to develop more dynamic links between the
topology of the agents and the topology of the features. Similarly, many
models use neighborhood calculations on a grid-based environment, some of
which are implemented within the ABM. Because these calculations are
common within GIS, it makes sense to implement them using the GIS
platform. This extension is challenging because the common approach in
GIS to performing a grid-based operation is to update the entire map
simultaneously (i.e., synchronous updating). It is more efficient, in many
cases, for an agent to update a cell value when needed, rather than updating
all cells simultaneously. Finally, a means to communicate information about
the clock of the ABM to the GIS, for the purposes of coordinating with
agent-independent processes, if there are any, is needed.
In addition to functional extensions, the middleware approach could be

written to accommodate multiple alternative GIS and ABM platforms. Such
a general system requires a very clear specification of the generic architecture
of these linkages, which is beyond the scope of this paper.
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7 Conclusions

The integration of spatial process and data models described in this paper
can facilitate spatio-temporal inquiry into processes at the level of agents or
individuals and data about specific cases and places. For example, incorpo-
rating real spatial heterogeneity into agent-based models will improve our
ability to draw conclusions about the behavior of complex systems in realistic
environments, which may be different from conclusions drawn with artificial
environments. Model calibration and validation can be facilitated by
providing a platform to test the broad outcomes of a model and the specific
mechanisms that produce intermediate results (like the placement of a
feature at a particular point in time). Specific claims of scenarios or
predictions can gain acceptance when compared with data about specific
places. Finally, descriptions of process afforded by ABM techniques can
enrich the descriptions of form provided by GIS. For example, process
descriptions in ABM could be used to facilitate spatial-temporal interpola-
tion, to query a database for the location of feature/agent at a time in
between two times stored in the database.
Object-orientation provides new opportunities for the integration of

spatial process and data models, especially those that involve movement.
While there are many ways to achieve such integration, we have advocated
tight coupling of agent-based modeling and geographic information systems.
We have discussed the kinds of relationships that need to be considered and
implemented to achieve such coupling, and discussed issues and approaches
to implementing these relationships. Among the possible approaches to tight
integration, which include those we call ABM-centric, GIS-centric, and
integrated approaches, we focused on an integrated approach that uses
middleware to link existing GIS and ABM software systems. This approach
provides a mapping from one system to the other, takes advantage of the
past development efforts in object-oriented ABM and GIS software systems,
and may be a reasonable short-term approach to implementing models that
integrate sophisticated representations of form and process. A disadvantage
is that the approach does not fully encapsulate spatial features and their
behaviors. Among four example models that we present, one implements the
middleware approach for simulation of infrastructure. Though we acknowl-
edge that the middleware approach is not the only, nor necessarily the best,
approach to implementing integrated GIS and ABM, it offers an approach
that has practical advantages and should be pursued in parallel with other
approaches.
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