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Abstract

We apply the idea of evolution to a spatial model. Prisoners’ dilemmas or coordination games
are played repeatedly within neighbourhoods where players do not optimise but instead copy suc-
cessful strategies. Discriminative behaviour of players is introduced representing strategies as small
automata, which can be in different states against different neighbours. Extensive simulations show
that cooperation persists even in a stochastic environment, that players do not always coordinate
on risk dominant equilibria in 2× 2 coordination games, and that success among surviving strate-
gies may differ. We present two analytical models that help understanding of these phenomena.
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1. Introduction

Evolutionary models have in the last years become increasingly popular to study spatial
phenomena. These models frequently concentrate on prisoners’ dilemmas and coordination
games and often share the following assumptions: Players may not discriminate among
neighbours, have small memory and interact and learn synchronously. As we will see in the
following, the impact of these assumptions may be crucial.

We use a spatial model to describe a world where agents interact with each other to
different degrees. An example of a spatial prisoners’ dilemma is firms located in space and
competing for customers who are placed among these firms. Firms could set high prices,
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aiming at a monopoly profit if neighbouring firms set high prices as well. Firms could also
set low prices hoping to undercut prices of other firms and, thus, stimulating demand for
their own product.2

In a world without space the above example is a trivial case of Bertrand competition. In
a spatial world where all firms do not share the same market, the problem is less trivial,
since Hotelling (1929) a lot of spatial models have been specified and solved. Most of
these models assume perfect rationality. We, however, study a simple evolutionary process.
Strategies grow as long as they are successful, unsuccessful strategies vanish from the
population.3 This dynamics has a biological and a social interpretation. Biologically it
models a birth process where successful strategies produce more offspring and a death
process where unsuccessful strategies are more likely to die soon. In social contexts we
assume successful strategies more likely to be copied while unsuccessful strategies are
more likely to be abandoned. The evolutionary dynamics will be applied in a spatial context
— immobile agents play games with their neighbours and imitate successful neighbours’
strategies.

One of the issues we will discuss is the timing of interaction and learning in these
models. Most of the literature4 assumes interaction and learning to be synchronised. We
will compare this case with random and asynchronous learning and interaction. Another
issue that we will discuss is memory of players and their ability to react or to discriminate.
The literature5 usually assumes that players may not react on their opponent’s past actions
and may not distinguish among their neighbours. We will investigate the impact of this
assumption, modelling player’s strategies as small automata.

As a result, we find that a common property of non-spatial evolutionary models, equal
payoffs of surviving strategies, vanishes in space when players may discriminate among
their neighbours. We present simulation results and give a motivation with a simplified
discrete model which can be solved analytically. We compare simulation results with a
simple continuous model which reliably approximates the discrete model both for prisoner’s
dilemmas and for coordination games. We identify and study parameters that determine the
choice of strategies in prisoners’ dilemmas and coordination games. We find that players
choose equilibria in coordination games following a criterion that is between risk dominance
and Pareto dominance.

We will study a model where a network structure is given, where players are immobile
and learn through imitation. Let us briefly mention some related models that take different
approaches.

A model where the network structure emerges endogenously is studied by Ashlock et
al. (1994), who allow players to ‘refuse to play’ with undesired opponents. Their model
presupposes no spatial structure ex ante — determining the structure endogenously is one
way to allow for discriminative behaviour. In our model we take a different approach: The

2 An example for a spatial coordination game can be found similarly: Neighbouring firms could be interested in
finding common standards, meeting in the same market etc.

3 See, e.g. Maynard Smith and Price (1973) for static concepts and Taylor and Jonker (1978) and Zeeman (1981)
for a dynamic model.

4 Axelrod (1984), May and Nowak (1992, 1993), Lindgreen and Nordahl (1994) and Eshel et al. (1998).
5 May and Nowak (1992, 1993) and Eshel et al. (1998).
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interaction structure is fixed and strategies are small automata which also allow players to
treat different opponents differently.

Models where players are mobile are introduced by Sakoda (1971) and Schelling (1971)
as well as by Hegselmann (1994). These models assume that some properties of an agent
(e.g. colour of skin as in Sakoda or a risk-class as in Hegselmann) are invariably fixed but
that agents can move. These models offer an explanation for segregation of a population
into patches of agents with different types.

Ellison (1993) studies a model where players play coordination games against their
neighbours and optimise myopically. As a result these players quickly coordinate on the
risk-dominant equilibrium. We will see in Section 5.4 below that myopic imitation may
choose a different equilibrium.

The assumptions of a given network structure, immobile players and learning through im-
itation are shared by Axelrod (1984, p. 158ff.), May and Nowak (1992, 1993), Bonhoeffer et
al. (1993), Lindgreen and Nordahl (1994) and Eshel et al. (1998). What is different in our ap-
proach is the introduction of discriminative strategies together with asynchronous behaviour.

Axelrod (1984, p. 158ff.) analyses a cellular automaton where all cells are occupied
by players that are equipped with different strategies. Players obtain each period payoffs
from a tournament (which consists of 200 repetitions of the underlying stage game) against
all their neighbours. Between tournaments, players copy successful strategies from their
neighbourhood. This process gives rise to complex patterns of different strategies. Axelrod
finds that most of the surviving strategies are strategies that are also successful with global
evolution. Nevertheless some of the locally surviving strategies show only intermediate
success in Axelrod’s global model. These are strategies that get along well with themselves
but are only moderately successful against others. They can be successful in the spatial
model because they typically form clusters where they only play against themselves.

A similar model has been studied by Lindgreen and Nordahl (1994), who in contrast
to Axelrod do not analyse evolution of a set of pre-specified strategies, but instead allow
strategies to mutate and, hence, allow for a larger number of potential strategies. Similar to
Axelrod, Lindgren and Nordahl assume that reproductive success of a strategy is determined
by the average payoff of an infinite repetition of a given game against a player’s neighbours.

While Axelrod and Lindgren and Nordahl study a population with a large number of pos-
sible strategies, May and Nowak (1992) analyse a population playing a prisoners’ dilemma
where players can behave either cooperatively or non-cooperatively. They study various ini-
tial configurations and analyse the patterns of behaviour that evolve with synchronous inter-
action. Bonhoeffer et al. (1993) consider several modifications of this model: They compare
various learning rules, discrete versus continuous time and various geometries of interaction.

Eshel et al. (1998) derive analytically the behaviour of a particular cellular automaton.
The price they have to pay for the beauty of the analytical result is the restriction to a small
set of parameters. They have to assume a particular topology and neighbourhood structure.
They find that there is a range of prisoners’ dilemmas where increasing the gains from
cooperation reduces the amount of players who actually cooperate. It is not clear how their
result depends on the particular set of parameters they analyse.

In contrast to May and Nowak and Bonnhoeffer, May and Nowak we allow for dis-
criminative behaviour representing strategies as small automata that are identical for a
player, but possibly in different states against different neighbours. Introducing discrimi-
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native behaviour might seem similar to the repeated game strategies used by Axelrod and
by Lindgren and Nordahl. However, there is an important difference. Most of the litera-
ture, including Axelrod and also Lindgren and Nordahl, assumes that updates of players’
strategies as well as players’ interactions occur synchronously. As we shall see below such
a synchronisation has substantial impact on the evolutionary dynamics. In a biological ap-
plication synchronisation is naturally motivated through seasonal reproduction patterns. In
social or economic contexts synchronisations are harder to justify. We, therefore, introduce
discriminative strategies without requiring synchronisation.

That introducing asynchronous interaction and evolution might matter has also been men-
tioned by Huberman and Glance (1993), who argue that cooperation might be extinguished
through introduction of asynchronous behaviour. Bonhoeffer et al. (1993), however, argue
that introducing asynchronous behaviour matters only little. As will be seen in the follow-
ing not the mere fact of introducing asynchronous behaviour determines the amount of
cooperation. It is the way how asynchronous behaviour is introduced that determines the
persistence or breakdown of cooperation.

While the cellular automaton model of a population and the introduction of discrimi-
native behaviour incorporates more real life flavour, it is on the other hand more difficult
to analyse. We replace analytical beauty by extensive simulations. We carried out about
60 000 simulations on tori ranging from 80×80 up to 160×160 and continuing from 1000
to 1 000 000 periods. We find that most of the results vary only slightly and in an intuitive
way with the parameterisation of the model.

Section 2 describes a continuous model that can be solved analytically and that explains
growth of strategies in a spatial but continuous world. The spatial model will be presented
in Section 3. In Section 4, we start with a simplified version, a discrete model that exem-
plifies permanent exploitation among strategies — a property that is important for spatial
evolution. Simulation results will be presented in Section 5. Section 5.2 connects our re-
sults to the findings of May and Nowak (1992, 1993) by comparing several models with
non-discriminative strategies. Section 5.3 introduces discriminative behaviour, Section 5.4
extends the analysis to coordination games and Sections 5.5 and 5.6 discuss robustness of
the results. Section 6 finally draws some conclusions.

2. A continuous model

In the following we concentrate on symmetric 2×2 games and in particular on prisoners’
dilemmas. Stage game strategies are named C and D. We represent the space of all symmetric
prisoners’ dilemmas with the game shown in Fig. 1.6 To make the interpretation of the
results presented in Section 5 below easier, we will start with a continuous model that aims
to explain growth of clusters of strategies.

We will first study a model where patches of homogeneous strategies, that we will call
‘clusters’, are relatively large. We will then extend this model to capture smaller clusters
too.

6 All the dynamics of population behaviour that are discussed in the following are invariant to transformations
of payoffs like adding constants or multiplying with a positive number.
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Fig. 1. The parameterisation of the underlying prisoners’ dilemma game. The game is a prisoners’ dilemma for
0 < g < 1, h < 0 andg > 1

2 + 1
2h. We requireg < 1 andh < 0 to ensure that C is a dominated strategy of the

stage game. Then 0< g andg > 1
2 + 1

2h make certain that CC Pareto dominates both DD and cycling between
CD and DC.

We assume that players are continuously distributed along a line and interact and learn
within a radiusr. Players play the game described in Fig. 1 and copy the strategy with the
highest average payoff in their learning neighbourhood. Let us first assume that the world
consists of only two clusters that are both larger than 2r.

Let us consider a player at positionx̂ between two of these clusters. All players at position
x < x̂ play C, all players atx > x̂ play D. A player that lives at positionx meets another
C with the following probability:

pC(x) =




1 if x ≤ x̂ − r
r + x̂ − x

2r
if x ∈ (x̂ − r, x̂ + r)

0 if x ≥ x̂ + r

(1)

The probability to meet a D is 1−pC(x). Average payoffsuC anduD for the two strategies
can be calculated for the player atx̂ as

uC(x̂) = 1
4(3g + h), uD(x̂) = 1

4 (2)

A player at position̂x will imitate a C ifg > 1
3(1 − h) and a D ifg < 1

3(1 − h). In either
case clusters will grow until one strategy disappears completely.

In the above paragraph we have studied a world where strategies were allocated in two big
clusters each. In the following we will assume the world consists of a sequence of alternating
clusters of Cs and Ds. The C playing clusters have radiusnCr, wherenC ∈ [1, 2] and the D
playing clusters have radiusnDr, wherenD ∈ [1, 2]. 7 A player who lives precisely between
two clusters sees for both clusters a proportion of

F(n) = 1
4(5 − 4n + n2) (3)

(for n = nC andn = nD) playing against the respective opposite strategy. The remaining
1 − F(n) play against their fellows which are in the same cluster. Average payoffs are

uC(x̂) = (1 − F(nC))g + F(nC)h, uD(x̂) = F(nD) (4)

7 The precise analysis of even smaller clusters becomes really tedious. We think that it is reasonable to assume
that our approach approximates the behaviour of smaller clusters wheren < 1.
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The differenceuC(x̂) − uD(x̂) is a quadratic function ofnC andnD:

uC(x̂) − uD(x̂) = g + 1
4(h − g)(5 − 4nC + n2

C) − 1
4(5 − 4nD + n2

D) (5)

If uC(x̂) − uD(x̂) is positive thennC will grow while nD will shrink and vice versa. For
a given prisoners’ dilemma the region whereuC(x̂) > uD(x̂) is the interior of an ellipsis
around(nC, nD) = (2, 2). Assume that a population starts from a distribution of clusters
inside the ellipsis whereuC(x̂) > uD(x̂). ThennC will grow until at boundary of the ellipsis
uC(x̂) = uD(x̂), where we have a stable small cluster of Ds next to a large cluster of Cs.

SolvinguC(x̂) > uD(x̂) for g, we find that player̂x will become a C if

g >
−(5 − 4nD + n2

D) + h(5 − 4nC + n2
C)

1 − 4nC + n2
C

(6)

Similar to Eq. (2) also inequality (6) gives us a condition that determines when clusters of
C or D grow, shrink or remain stable. We will use these conditions below to represent our
results.

In the following we will move to a discrete model that will be described in Section 3.
Players are of discrete size, we will most of the time consider a two dimensional network
and the size of the clusters is determined endogenously. We will see that the continuous
model of the current section gives a fairly good approximation of the properties of the
discrete model that we will study in the following.

3. A discrete spatial model

3.1. Space and time

Players are assumed to live on a torus.8 The torus is represented as a rectangular network,
e.g. a huge checkerboard. The edges of this network are pasted together. Each cell on the
network is occupied by one player. Using a torus instead of a plain checkerboard avoids
boundary effects. Most simulations were carried out on a two-dimensional torus of size
80× 80. The results presented in Sections 5.5 and 5.6 show that neither the exact size of
the network nor the dimension matters significantly.

In contrast to models of global evolution and interaction we assume players to interact only
with their neighbours and learn only from their neighbours. Each player has an ‘interaction
neighbourhood’ of radiusrI as shown in Fig. 2 which determines the set of the player’s
possible opponents. In the same way we construct a ‘learning neighbourhood’ with a similar
structure, but with a possibly different radiusrL. Each player observes payoffs and strategies
within the learning neighbourhood.

We will compare synchronous with asynchronous interaction and learning. With syn-
chronous interaction players interact in each period with all their neighbours. With asyn-
chronous interaction a random draw decides in each period for each pair of neighbours

8 In Section 5.6 we investigate some other topologies where players are located on a circle, on a cube, or on a
hypercube in four dimensions.
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Fig. 2. Neighbourhoods with interaction radius 1, 2 and 3. Possible interaction partners of a player are described
as grey circles while the player itself is represented as a black circle.

whether the mutual interaction takes place. Hence, with asynchronous interaction in differ-
ent periods the composition of opponents may be different. With synchronous learning all
members of a population will learn simultaneously everytL periods. With asynchronous
learning, each strategy has an individual random ‘lifetime’tL. As soon as the lifetime of the
strategy expires, the individual player learns and possibly adopts a new strategy with again
a random lifetime which may differ from the previous one.

3.2. Strategies

Strategies may be discriminative or non-discriminative, i.e. players may or may not be able
to treat different neighbours differently. With non-discriminative strategies players either
play C against all neighbours or they play D against all of them. Discriminative strategies are
modelled as Moore automata with less than three states.9 We have done several simulations
with more complex automata and found that results do not change much when the number
of states is increased to three or four.

3.3. Relevant history for learning

To choose a strategy players have to learn. To do that they use information available in their
neighbourhood: Their neighbours’ average payoffs (per interaction) and their strategies.
We compare two extreme cases: Learning players may consider only today’s payoffs when
calculating average success of a neighbour’s strategy or learning players consider payoffs
from all periods while the neighbour used the same strategy as today. The first case will be
called ‘short memory’ and the second ‘long memory’.

9 Each ‘state’ of a Moore automaton is described with the help of a stage game strategy (C or D) and a transition
function to either the same or any other of the automaton’s states. This transition depends on the opponent’s stage
game strategy. Each automaton has one ‘initial state’ which the automaton enters when it is used for the first time.
There are two automata with only one state (one of them initially plays C and remains in this state whatever the
opponent does; the other always plays D). There are 26 automata with one or two states. For example ‘grim’ is a
two-state automaton. In the initial state it plays C. It stays there unless the opponent plays D. Then the automaton
switches to the second state, where it plays D and stays there forever. Other popular two-state automata include
‘tit-for-tat’, ‘tat-for-tit’, etc.
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3.4. Learning

We will compare two learning rules. Both are based on the assumption that players are not
fully rational, they are not able or not willing to analyse games, and they do not try to predict
their opponents’ behaviour. Instead, behaviour is guided by imitation of successful strate-
gies. ‘Copy best player’ copies the strategy of the most successful player in the neighbour-
hood.10 ‘Copy best strategy’, instead, copies the strategy that is on average (per interaction)
most successful in the neighbourhood.11 Players that continue to use their old strategy af-
ter learning took place continue to use it in which states it currently is against the different
neighbours. Players that learn a new strategy start using this strategy in the initial state.

3.5. Initial state of the population

The network is initialised randomly. First relative frequencies of the available strategies
are determined randomly (following an equal distribution over the simplex of relative fre-
quencies) and then for each location in the network an initial strategy is selected according
to the above relative frequencies of strategies. Hence, simulations start from very different
initial configurations.

4. A simple discrete model with only two strategies

Before we start presenting simulation results let us first discuss a simpler model that
allows us to understand an interesting property of the discrete model, mutual exploitation.

For the simplified model that we discuss in this section we make the following assump-
tions:
1. There are only two strategies present in the population: Grim and blinker. Grim is a

strategy that starts with C and continues to play C unless the opponent plays at least one
D. From then on grim will play D forever. Blinker alternates between C and D all the
time.

2. Players interact with each of their opponents in each period exactly once.
3. Players do not observe their neighbours’ payoffs but average payoffs of strategies over

the whole population. They use the ‘copy best strategy’ learning rule, i.e. when they learn
they copy the strategy with the highest average payoff (per interaction) in the population.

4. Players will learn very rarely. The individual learning probability in each period isε.
We assume thatε → 0.

The most crucial departure from our simulation model is assumption 3: Learning is based
on average payoffs of the whole population and not of the individual neighbourhood.
This simplifies the analysis substantially. Simulations below show that the assumption is
harmless.

10 If more than one player has highest average payoff, a random player is picked, unless the learning player is
already one of the ‘best players’. In this case the learning player’s strategy remains unchanged.
11 If more than one strategy has highest average payoff, a random strategy is picked, unless the learning player
uses already one of the ‘best strategies’. In this case the learning player’s strategy remains unchanged.
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We will denote possible states of grim withGC andGD, depending on whether grim
is in its cooperative or its non-cooperative state. Similarly we denote possible states of
blinker with BC or BD. The average payoff per interaction of grim and blinker in a given
period is denoted with̄uG andūB . In the following we will describe an evolutionary dy-
namics of a population that has a cyclical structure. We define a cyclical equilibrium as
follows:

Definition 1 (Cyclical equilibrium). A cyclical equilibrium is a sequence of states of a
population that, once such a sequence is reached, it repeats forever.

In the model that we consider below, all of our cycles have length one or two. We will
not only consider cycles of complete states of the population, but also cycles of average
payoffs or cycles of relative frequencies of strategies or pairs of strategies. We will denote
a cycle of any two objectsa andb with the symboldabe. When we mention several cycles
in the same context, likedabe anddcde, then we want to say thata happens in the same
period asc while b happens together withd. A cycle of length one can be denoted as
dae. When we mentiondae together withdbce we want to say that a population alternates
between a state wherea happens together withb and another state wherea happens together
with c.

Proposition 1. Under the above assumptions there are four possible classes of cyclical
equilibria.
1. A population that contains any proportion ofd〈GC, GC〉e andd〈GD, GD〉e is in a cyclical

equilibrium.
2. A population that contains any proportion of the cycles of pairsd〈BC, BC〉〈BD, BD〉e,

d〈BD, BD〉〈BC, BC〉e andd〈BC, BD〉e is in a cyclical equilibrium.
3. There are cyclical equilibria where in both periods average payoffs of grim and blinker

are equal.
4. There is a single cyclical equilibrium where both grim and blinker are present and have

different payoffs at least in some periods. This equilibrium has the property that payoffs
alternate between̄uG = 1

2ε(1 + 2h) < ūB = 1
2ε and ūG = 1

2 > ūB = 1
2(g + h). 12

One-fourth of the population consists of pairsd〈GD, GD〉e,half of the population consists
of a cycle of pairsd〈GD, BD〉〈GD, BC〉e and one-fourth of the population consists of a
cycle of pairsd〈BD, BD〉〈BC, BC〉e.

The proof is given in Appendix A.
The interesting case is case 4. It shows how one strategy earns substantially less than

average payoff but still does not die out. Both strategies replicate in exactly the same
number of periods and at the same speed alternating in having more than average pay-
off. For reproductive success it does not matter that one of the two strategies is only
an ε more successful when it replicates, while the other replicates with a substantial
payoff difference. We will come back to this argument in the discussion of
Fig. 8.

12 g andh are parameters of the underlying game (see Fig. 1).
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Fig. 3. Frequency of CC, CD, and DD with non-discriminative strategies. Non-discriminative strategies,pI = 1,
tL = 1, copy-best-player, short memory,rL = rI = 1, network=80× 80.

5. Simulation results

5.1. Representation of the results

To explain the representation of the results let us look at Fig. 3. The figure shows the
results of 800 different simulations, each for a different (randomly chosen) game, and each
lasting for 2000 periods. The parameterisation for games follows Fig. 1. Valuesg andh are
chosen such that most of these games are prisoners’ dilemmas. Relative frequencies of CC,
CD, and DD are represented as circles of different sizes in each of the three diagrams (one
circle for each of the 800 simulations). The position of the circle indicates the payoffsg

andh and, hence, the game. The size of the circle in the first diagram is proportional to the
average number of observed CCs during the last 50 periods of the simulation, in the second
diagram proportional to CD (and DC likewise) and in the third diagram proportional to DD.
If the frequency of CC, CD or DD is zero, no circle is drawn.

Following the discussion in Section 2 we represent the games where players at a boundary
between two clusters are indifferent with grey lines. The solid grey line corresponds to the
casenC = nD ≥ 2, the dashed grey lines representnC = nD = 1.5 andnC = nD = 1.25.
Borderline players will start cooperating above the line, below they will play D. If clusters
shrink (nC and nD are smaller) the region where players at the boundary between two
clusters are indifferent moves upwards.

For prisoners’ dilemma games this means that the smaller the clusters are, the smaller
is (ceteris paribus) the set of prisoners’ dilemmas where we should expect cooperation.
As long as cluster size remains constant for all games, we should expect the borderline of
cooperative behaviour to have a linear shape as described by inequality (6). Our simulations
in the following show that this borderline has indeed an almost linear shape.
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5.2. The case of non-discriminative strategies

In the following section we study a simple setup where strategies are non-discriminative,
i.e. players play either C against all their neighbours or they play D against all of them. We
will first apply the model of Nowak and May to a larger variety of games assuming short
memory, synchronous interaction and synchronous learning. We will then follow a critique
raised by Huberman and Glance who argue that cooperation, which survives in Nowak and
May’s model, may disappear with a stochastic context. We will replicate their finding but
we will also point out that their argument requires an additional assumption. There may be
room for cooperation even within a stochastic framework, as long as player’s memory is
large enough.

In Fig. 3 we extend Nowak and May’s analysis to a larger variety of payoffs. We see
that the cooperative area is small and close tog = 1 andh = 0, i.e. close to a range of
payoffs where cooperation does not cost too much. The borderline between cooperation and
non-cooperation follows the approximation given in Section 2 for a cluster size of about
1.2r. Local dynamics with non-discriminative strategies explain deviation from the Nash
equilibrium only to a small extent.

A small number of simulation runs end with mutual cooperation for smaller values of
h. Closer inspection shows that this is the case for special initial configurations. Most of
the simulations in this area lead to populations playing DD all the time (see the bottom
left-hand side part of Fig. 3).

Huberman and Glance (1993) criticise May and Nowak’s model arguing that due to the
synchronous dynamics the network might run into cycles that are unstable against small
perturbations. They suggest random sequential learning to model more realistic timing.
While in each period all possible interactions take place, only one single player learns in
a given period. The order in which players learn is determined randomly. In a particular
setting,13 where May and Nowak found cooperation, random sequential learning leads to
general non-cooperation. They claim that synchronisation is an artificial assumption and
can hardly be justified. In Fig. 4 we find that they are right. It is indeed sufficient to go
only a small step14 into the direction of the model proposed by Huberman and Glance to
notice that cooperation dies out almost completely with short memory and asynchronous
interaction.

However, the assumption of short memory made by Huberman and Glance is crucial.
Once long memory is introduced (see bottom part of Fig. 4) we find that in both cases,
with synchronous or with asynchronous interaction, a range of games where cooperation
survives.

We have the following intuition for this phenomenon: A cooperative player can only
learn to become a D when there is at least one D in the neighbourhood. In such a period,

13 The initial configuration, game, learning rule, etc. correspond to Fig. 3a–c of May and Nowak (1992).
14 Huberman and Glance give each period at most one player an opportunity to change the strategy and players
interact each period synchronously, i.e. each possible interaction takes place with certainty. In our setting each
possible interaction takes place with probability1

2 and players learn randomly after 20, . . . , 28 periods. As we
observe in Fig. 4, the precise way in which an asynchronous environment is modelled does not matter. Cooperation
dies out both in Huberman and Glance’s and in our simulations.
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Fig. 4. Non-discriminative strategies with ‘copy best player’. ‘Copy best player’ learning rule, network=80× 80,
r = 1. Asynchronous learning eliminates cooperation only with ‘short memory’. To save space we display only
the relative frequency of mutual cooperation for a variety of models. The top left diagram displays the relative
frequency of cooperation in May and Nowak’s model. We have shown this diagram already in Fig. 3. The top
right diagram shows the same model, but now with asynchronous learning and interaction as an approximation
to Huberman and Glance. Cooperation dies out. The two diagrams at the bottom show the case of long memory
where cooperation survives.

however, Cs are particularly unsuccessful. A C with long memory may keep in mind that
sometimes there were more Cs being more fortunate and finds C still more attractive than
D. A C with short memory only looks at current payoffs, which are bad for C at the moment
and, hence, is more likely to become a D. Hence, with short memory, cooperation is more
vulnerable.

The above simulations were done with the learning rule ‘copy best player’ since this
was also the learning rule used by Nowak and May. This particular choice is not es-
sential. In Fig. 5 we show the results for the ‘copy best strategy’ learning rule. It turns
out that changing the learning rule has little impact on the relative frequency of mutual
cooperation.

5.3. The case of discriminative strategies

The non-discriminative strategies discussed above forced players to treat their neighbours
without distinction. Either they had to play C or they had to play D against all of them. We
will now introduce discriminative behaviour. Players’ strategies will be described as small
(two-state) automata. Each player uses only one automaton, but this automaton can be in
different states against different neighbours. Results change substantially now.

We begin in Section 5.3.1 with a simple model: Synchronous interaction and learning
from short memory. Starting with this approach allows us to understand more easily an
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Fig. 5. Non-discriminative strategies with ‘copy best strategy’. ‘Copy best strategy’ learning rule, network=80×80,
r = 1. The only difference to Fig. 4 is that here players use ‘copy best strategy’ as a learning rule. Again cooperation
is eliminated only with ‘short memory’.

interesting property of spatial evolution, mutual exploitation. In Section 5.3.2 we proceed to
a model where players interact stochastically and learn from long memory.15 The dynamics
in the latter model may be harder to analyse, but is also more robust and sometimes more
convincing.

5.3.1. Synchronous interaction and short memory
In the following section we assume that learning is asynchronous but that interaction

is still synchronised. Players learn from short memory. Let us first look at Fig. 6 which
shows simulation results for a population that uses discriminative strategies. Players use
the learning rule ‘copy best strategy’ as defined in Section 3.4. We find a larger range
of games where cooperation survives with discriminative strategies (in Fig. 6) than with
non-discriminative strategies (see Fig. 5). Discriminative strategies, for instance members
of a cluster of tit-for-tats, are able to cooperate with their kin in their neighbourhood,
but will not be put-upon by Ds. Notice that the range of games where CC prevails is
mainly determined by the value ofg, i.e. by the payoff for CC. The value ofh for CD
does not have much influence. Reproduction mainly occurs upon successful CCs when
past CDs are already forgotten. This will change when we introduce long memory in
Section 5.3.2.

In Section 4 we introduced a simple analytical model that could explain how a dis-
crete world supports mutual exploitation. In the following paragraph we will corroborate

15 The intermediate case of stochastic interaction with short memory is described in Kirchkamp (1995).
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Fig. 6. Discriminative strategies,pI = 1, tL ∈ {10, . . . , 14}, copy-best-strategy, short memory,rL = rI = 1,
network=80× 80.

this finding with simulation results. We will consider a population that initially contains
all 26 discriminative strategies in random proportions. Two of them,grim and blinker,
despite their different average payoff, appear together for a wide range of games. The
left-hand part of Fig. 7 shows that bothgrim and blinker survive for a wide range of
payoffs. In the right-hand part we see that grim’s payoff is higher than average for most
games while blinker’s payoff is smaller than the average population payoff. We did not
observe this phenomenon with non-discriminative strategies, the reason being that in some
games all agents played C, in the others they all played D. Hence, they all had the same
payoff.

Notice that the above described heterogeneity of payoffs differs from the heterogeneity
of strategies pointed out by Lindgreen and Nordahl (1994). They find that spatial evolu-
tion yields in contrast to global evolution starting from a homogeneous initial state in the
long run a heterogeneous state in the sense that several different strategies are distributed
in ‘frozen patchy states’ over the network. In the current and in the following sections
we show two related things: First, even a population which has not reached a static state
(and will possibly never reach one) can exhibit stable properties, e.g. relative frequen-
cies of different strategies that may achieve a stable level. Second, in addition to strate-
gies that are distributed heterogeneously over the network, also payoffs of strategies are
heterogeneous.

As in the simple model in Section 4, we find a symbiosis of two automata where one
gains on an average substantially more payoff. Fig. 8 shows that the grim strategies alternate
between a small amount of support for their environment, playing CD, and substantial
exploitation with DC. For the above result we assumed synchronous interaction and short
memory to facilitate comparison with the simple dynamics in Section 4. We will see below
that neither synchronous interaction nor short memory is crucial for the above phenomenon.
We skip the case of asynchronous interaction with short memory (which is very similar to
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Fig. 7. Frequency and success of grim and blinker with synchronous interaction and short memory. Discriminative
strategies,pI = 1, tL ∈ {10, . . . , 14}, copy-best-strategy, short memory,rL = rI = 1, network=80 × 80.
Frequencies are shown in the left-hand side part of the figure as explained in Section 5.1. Relative success is
shown in the right-hand side of the figure in the following way: Average payoffs of strategies are calculated over
the last 50 periods of a simulation. Black circles indicate that a strategy’s average payoff is larger than population
payoff. Crossed white circles indicate that the strategy’s average payoff is smaller than average population payoff.
Sizes of the circles are proportional to the payoff difference. When all automata use the same stage game strategy
average payoffs per interaction for all automata are identical and no circles and crosses are shown.

the above case and which is discussed in Kirchkamp (1995)) and turn immediately to
asynchronous interaction with long memory in the next section.

5.3.2. Asynchronous interaction and long memory
In Section 5.3.1 we have analysed an evolutionary process with learning from short

memory and synchronous interaction. In the current section we will assume asynchronous
interaction and long memory. Fig. 9 shows relative frequencies of CC, CD and DD. With
long memory the frequency of CD is smaller for most games than with short memory (see
Fig. 6). Further the range of games where CC is played has a different shape. Let us first
explain the smaller amount of CD. With long memory past losses remain in memory. What
was successful with short memory, alternating between exploiting another strategy a lot and
supporting it only a little, no longer ensures its replication. As a result we find in Fig. 10 that a
strategy which could permanently be exploited with short memory, blinker, now disappears
for most prisoners’ dilemmas. Exploitation, however, persists. In most games where CD
is played, grim still obtains more than average payoff. Let us now turn to the shape of the
range of games where cooperation survives. With short memory this range of games was
mainly determined by the value ofg, i.e. by the payoff for CC. With long memory, however,
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Fig. 8. Frequency of CC, CD, and DD encountered by grim. Discriminative strategies,pI = 1, tL ∈ {10, . . . , 14},
copy-best-strategy, short memory,rL = rI = 1, network=80× 80, sizes of the circles are proportional to relative
frequencies of strategies. Grim strategies alternate between a small amount of support for their environment,
playing CD, and substantial exploitation with DC.

Fig. 9. Discriminative strategies with asynchronous interaction and learning from long memory. Discriminative
strategies,pI = 1

2 , tL ∈ {20, . . . , 28}, copy-best-strategy, long memory,rL = rI = 1, network=80× 80.
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Fig. 10. Frequency and success of grim and blinker with asynchronous interaction and long memory. Discriminative
strategies,pI = 1

2 , tL ∈ {20, . . . , 28}, copy-best-strategy, short memory,rL = rI = 1, network=80 × 80.
Frequencies are shown in the left-hand side part of the figure as explained in Section 5.1. Relative success is
shown in the right-hand side part. Average payoffs of strategies are calculated over the last 50 periods of a
simulation. Black circles indicate that a strategy’s average payoff is larger than population payoff. Crossed white
circles indicate that the strategy’s average payoff is smaller than average population payoff. Sizes of the circles
are proportional to the payoff difference. When all automata use the same stage game strategy average payoffs per
interaction for all automata are identical and no circles and crosses are shown.

the experience of CDs remains in memory until reproduction occurs, and hence counts for
the choice of strategies.

5.4. Coordination games

The same analysis can be applied not only to prisoners’ dilemmas, but also to coordination
games. The parameterisation for symmetric coordination games that we have chosen is
shown in Fig. 11. The game has two pure equilibria, one where both players play C, and
another where both players play D. Both players would prefer to coordinate on one of the
two. Harsanyi and Selten (1988) propose two criteria to select among these equilibria. Risk
dominance and Pareto dominance. Unfortunately these two criteria do not always pick the
same equilibrium.

Kandori et al. (1993) and Young (1993) suggest that in a global model where players
optimise myopically, evolution selects the risk dominant equilibrium in the very long run.
Ellison (1993) studies a spatial model where players optimise myopically and, hence, select
the risk dominant equilibrium even faster than in the model of Kandori et al. (1993) or
Young (1993).
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Fig. 11. Parameterisation for coordination games. The game is a coordination game forg > −1 andh < 0. In this
case the Pareto dominant equilibrium is CC ifg > 0 and DD otherwise. The risk dominant equilibrium is CC if
g > −1 − h (denoted CC>risk DD in the figure) and DD otherwise (denoted DD>risk CC in the figure).

In Section 2 we have already studied a simplified model of a continuum of players and
considered the situation of a learning player whose left neighbours all play C and whose
right neighbours all play D. A myopically optimising player calculates that chances to meet
either a C or a D are equally12 and therefore selects the risk dominant equilibrium. A player
who, however, imitates successful strategies will in the same situation become a C if

g > (1 + h)
n − 4

4 + n
(7)

wheren ≤ 2 describes the size of the cluster. Clusters with a diameter larger than two
times the neighbourhood radius can be treated asn = 2. Since coordination games favour
large clusters we concentrate on the casen = 2.16 The grey line in Fig. 12 describes
the set of games whereg = −1

3(1 + h), i.e. the case where forn = 2 we haveg =
(1 + h)(n − 4)/(4 + n). It is almost precisely the lineg = −1

3(1 + h) which divides the
region where only C is played from the region where only D is played. CDs which fail
to coordinate are extremely rare. The continuous model described in Section 2 explains
the behaviour of the discrete population substantially better than Pareto dominance or risk
dominance.

5.5. The influence of locality

So far we assumed that learning and interaction were within a neighbourhood of radius 1.
Fig. 13 shows the amount of mutual cooperation for larger neighbourhoods. Starting from
rI = rL = 1, we enlarge neighbourhoods for learning and interaction simultaneously until
we reach global interaction and learning. With less locality the range of games where CC
is played becomes gradually smaller. We have done further simulations where we keep the

16 In a prisoners’ dilemma clusters are often small since only small groups of defectors are successful. As soon
as they start growing they eliminate themselves.
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Fig. 13. Frequency of CC depending on the size of the neighbourhood.r = rI = rL , discriminative strategies,
pI = 1

2 , tL ∈ {20, 28}, copy-best-strategy, long memory, network=21× 21. The population is smaller (21× 21)
than in the other simulations. This allows us to move all the way to a global model.
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Fig. 14. Frequency of CC in one- to four-dimensional networks. Discriminative strategies,pI = 1
2 ,

tL ∈ {20, . . . , 28}, copy-best-strategy, long memory. Notice that neighbourhoods are about 10 times as large
than in the above simulations. This explains that the cooperative area is smaller than in Fig. 9.

learning radiusrL constant and vary the interaction radiusrI or vice versa and found that
both locality of evolution and locality of interaction smoothly increase the range of games
where cooperation prevails.

5.6. Other dimensions

Beyond the results that we presented above we have carried out many further simulations,
each showing that the effects that we pointed out here persist for several modifications of
the model. One possible modification is the change from a two-dimensional torus to tori
with other dimensions. Fig. 14 shows the relative frequency of mutual cooperation in one- to
four-dimensional networks. All networks have 4096 players and all neighbourhoods have
almost the same number (80, . . . , 125) of opponents. We see that the dimension of the
network has almost no effect on the size of the cooperative area.

6. Concluding remarks

We have analysed a simple model of spatial evolution where agents repeatedly play
prisoners’ dilemmas and coordination games.

We investigate the range of games where cooperative strategies survive. One might expect
cooperation to be easier to sustain if players use simple strategies. Players that are capable
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of using more complex strategies might move quicker to a more rational solution. We find,
however, that more complexity fosters cooperation.

We further observe inequality of payoffs among coexisting strategies. While global evolu-
tion predicts that strategies with lower than average payoff die out, local evolution explains
symbiosis of strategies where one strategy alternates between slightly feeding and substan-
tially exploiting the other.

We respond to a criticism raised by Huberman and Glance (1993) who argue that asyn-
chronous timing might eliminate cooperation completely. We find that their argument cru-
cially depends on their assumptions about memory of players. As soon as players have long
memory cooperation survives both with asynchronous as well as with synchronous timing.

We further extend the analysis of Huberman and Glance (1993) and Bonhoeffer et al.
(1993) allowing not only for asynchronous learning but also for asynchronous interaction.
We find that this avoids that the evolutionary process gets stuck in odd patterns of behaviour.

We find that some properties of a discrete local model can be approximated by a continu-
ous one that is easier to analyse. The approximation of the continuous model is surprisingly
accurate in particular for coordination games.

Acknowledgements

Support by the Deutsche Forschungsgemeinschaft through SFB 303 and SFB 504 is
gratefully acknowledged. I thank George Mailath, Georg Nöldeke, Karl Schlag, Avner
Shaked, Bryan Routledge, several seminar participants and two anonymous referees for
helpful comments.

Appendix A. Proof of Proposition 1

In the following we will denote a pair of two automataa andb with the symbol〈a, b〉.
For notational convenience we will make no distinction between〈a, b〉 and〈b, a〉
1. If there are only grims in the population, then only〈GC, GC〉, 〈GC, GD〉 and〈GD, GD〉

are possible.〈GC, GD〉 is unstable, thus, only〈GC, GC〉 and〈GD, GD〉 will remain in
the population. Given any relative frequency of〈GC, GC〉 and〈GD, GD〉 no player will
ever learn, since there are no alternative strategies to observe.

2. If there are only blinkers in the population, then onlyd〈BC, BC〉〈BD, BD〉e, d〈BD, BD〉
〈BC, BC〉e andd〈BC, BD〉e are possible. All of these cycles of pairs are stable. No player
will ever learn, since there are no alternative strategies to observe.

3. Trivially a state where possibly payoffs cycle, but nevertheless in all periods grim and
blinker achieve the same payoff is an equilibrium, since no player ever has any rea-
son to learn. An example for such an equilibrium is a population where1

4 are cycles
d〈BC, BC〉〈BD, BD〉e, 1

4 are cyclesd〈BD, BD〉〈BC, BC〉e, (1 + h)/4g ared〈GC, GC〉e
and(2g − 1 − h)/4g ared〈GD, GD〉e, whereg andh are parameters of the game in
Fig. 1 (of course not for all, but at least for some values ofg andh the above relative
frequencies are all in [0, 1]). In this case average payoffs of blinkers and grims is in each
period 1

2(1 + h).
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Fig. 15. Transitions of cycles of stable pairs if payoffs cycle likedūB > ūG, ūG > ūBe. Transitions with speed 2ε
are shown with double lines. Speedε is shown with single lines. Transitions that take place in the second period
are shown with dashed (single or double) lines. The first period is shown with solid lines.

This equilibrium is not stable. Change the relative frequency of a cycle that contains
blinkers only slightly and payoffs of blinkers start cycling around the average population
payoff. In the discussion of case 4 which is described below we will see that once such a
state is reached, the cycling becomes stronger and stronger until the equilibrium of case
4 is reached.

4. 〈GC, GC〉, 〈GD, GD〉, 〈GD, BD〉, 〈BD, BD〉, 〈BC, BC〉 all belong to a stable cycle in the
sense that after a limited number of transitions each pair will return to its original state.
Unstable pairs are the remaining ones〈GC, GD〉, 〈GC, BC〉and〈GC, BD〉. Unstable pairs
can only be present in a cyclical equilibrium if they are introduced through learning.
Since we take the limit of the learning rateε → 0, the relative frequency of unstable
pairs in the population will be zero as well. Thus, in a cyclical equilibrium we have only
stable pairs.

All stable pairs belong to cycles of length either one or two. Therefore average payoffs
in a cyclical equilibrium also form a cycle of length either one or two.

A cyclical equilibrium with both grim and blinker present in the population must have
average payoffs of grim and blinker belonging to a cycle of length two. Otherwise one
strategy would have always more than average payoff, which together with our learning
rule, copy always the best average strategy, leads to the extinction of the other strategy.
Let us without loss of generality assume that average payoffs form a cycle of length
two with dūB > ūG, ūG > ūBe. Thus, in the first period of each cyclēuB > ūG,
in the second̄uG > ūB . Fig. 15 shows now the dynamics of stable pairs. Let us give
one example how to determine the transitions. There is some flow away from the cycle
d〈BC, BC〉〈BD, BD〉e. In the second period of the cycle, whenūG > ūB , a〈BD, BD〉 has
with probabilityε an opportunity to learn, which will then lead (in the first period of the
next cycle) to a pair〈GC, BC〉. The pair〈GC, BC〉 is an unstable pair which becomes in
the second period of the current cycle a〈GD, BD〉. The latter is a member of the stable
cycled〈GD, BC〉〈GD, BD〉e. Since we have two blinkers in the pair〈BD, BD〉 the total
flow away from the cycled〈BC, BC〉〈BD, BD〉e has speed 2ε. Since we consider the case
ε → 0 we can neglect the case that both members of a pair learn simultaneously.
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When we consider all transitions given in Fig. 15 we see that only the three cycles
d〈GD, GD〉e, d〈GD, BD〉〈GD, BC〉e andd〈BD, BD〉〈BC, BC〉e will remain in the popula-
tion in the long run. Given the flow between these three cycles we see that1

4d〈GD, GD〉e,
1
2d〈GD, BD〉〈GD, BC〉e and 1

4 of d〈BD, BD〉〈BC, BC〉e are a stable equilibrium.
Now let us look at the payoffs. In the first period of a cycle almost all pairs play DD,

i.e. they get, given the game in Fig. 1, a payoff of zero. Nevertheless, a few pairs are
always present which actually learned a new strategy. Thus, we have1

2ε of 〈GC, GD〉
and 1

2ε of 〈GC, BD〉. Therefore payoffs are in the first period of a cycle as follows:

ūG = 1
2ε(1 + 2h) < ūB = 1

2ε

In the second period of a cycle learning players are negligible:

ūG = 1
2 > ūB = 1

2(g + h)

Thus, indeed a cycle of payoffs likedūB > ūG, ūG > ūBe exists.
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