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Using a spatial lattice model of the Iterated Prisoner's Dilemma we studied the evolution of
cooperation within the strategy space of all stochastic strategies with a memory of one round.
Comparing the spatial model with a randomly mixed model showed that (1) there is more
cooperative behaviour in a spatially structured population, (2) PAVLOV and generous
variants of it are very successful strategies in the spatial context and (3) in spatially structured
populations evolution is much less chaotic than in unstructured populations. In spatially
structured populations, generous variants of PAVLOV are found to be very successful
strategies in playing the Iterated Prisoner's Dilemma. The main weakness of PAVLOV is that
it is exploitable by defective strategies. In a spatial context this disadvantage is much less
important than the good error correction of PAVLOV, and especially of generous PAVLOV,
because in a spatially structured population successful strategies always build clusters.
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1. Introduction

The Prisoner's Dilemma is a well-known meta-
phor for the evolution of cooperation among
sel"sh individuals. It elegantly illustrates the
problems of achieving cooperation in any animal
society. The Prisoner's Dilemma is a game played
by two players who can either cooperate (C) or
defect (D). If both players cooperate they are
rewarded with R points, if they both defect they
get the punishment P. If one player defects while
the other cooperates, the defector gets the temp-
tation payo! ¹, while the other gets the sucker's
payo! S (cf. Table 1).

Now, with ¹'R'P'S and 2R'¹#S
we have an obvious dilemma: if a player plays
once against an unknown opponent, it always
pays more to defect, whatever the opponent does:
if the opponent plays C then ¹'R and if the
opponent plays D then P'S. Thus, individuals
uthor to whom correspondence should be addressed.
ail: brauchlik@ubaclu.unibas.ch

}5193/99/020405#13 $30.00/0
that play D will always be favoured by natural
selection, even though the average payo! in
a population of defectors is less than in a popula-
tion of cooperators (P(R). In terms of evolu-
tionary game theory (cf. Maynard Smith, 1982)
D is the unique evolutionary stable strategy
(ESS).

Two di!erent types of solutions to this dilem-
ma have been proposed. First, the Iterated
Prisoner1s Dilemma (IPD) was made popular by
work of Axelrod (1980, 1981, 1984) and Axelrod
& Hamilton (1981). In the IPD there is a prob-
ability w'0 that two players will meet again,
and the players can remember how they played in
previous encounters. This allows more complic-
ated strategies than the simple C or D of a non-
iterated Prisoner's Dilemma. Axelrod conducted
a computer tournament with 62 strategies sub-
mitted by scientists from all around the world
(Axelrod, 1980). He concluded from this that
successful strategies in the IPD are (1) nice:
they never defect "rst, (2) forgiving: they
restore cooperation after an accidental defection
( 1999 Academic Press



TABLE 1
Payo+ matrix of the Prisoner1s
Dilemma game. ¹he game is
de,ned by P'R'P'S. In
our simulations we use R"3,

¹"5, P"1 and S"0

C D

C R S
D ¹ P
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and (3) retaliatory: they react by playing D if their
opponent starts playing D. The most successful
strategy in Axelrod's tournament was the very
simple TIT FOR TAT (TFT), which starts by
playing C and then plays whatever its opponent
played in the previous round. Nowak & Sigmund
(1993) found another very successful strategy for
the IPD, PAVLOV, a &&win stay}lose shift'' strat-
egy, which will be discussed in detail later.

A second situation where cooperative behav-
iour can be evolutionary stable are models that
introduce some kind of spatial structure, so that
within a population all interactions are local: i.e.
individuals play against their nearest neighbours
and not against random opponents or against all
other individuals of the population. Nowak & May
(1992) have shown that such spatial struc-
ture enables the maintenance of cooperation for
the simple Prisoner's Dilemma, in contrast to
the classical, spatially unstructured Prisoner's
Dilemma where defection is always favoured.
Similarly, it was found for the Hawk}Dove game
that in spatially structured populations there are
more cooperative individuals (doves) than in non-
structured populations (Killingback & Doebeli,
1996). The main e!ect of spatial structure is that
in structured populations cooperative strategies
can build clusters in which the bene"ts of mutual
cooperation can outweigh losses against defec-
tors. Thus, clusters of cooperative strategies can
invade into populations of defectors that consti-
tute an ESS in non-spatial populations (Axelrod
& Hamilton, 1981; Nowak & May, 1992; Killing-
back & Doebeli, 1996).

An interesting combination of these two ideas,
iterated games and spatial structure, was studied
by Lindgren & Nordahl (1994). Not only did they
"nd that in structured populations there is more
cooperation, but also that di!erent strategies are
successful in spatially structured populations
than in non-structured populations. Lindgren
& Nordahl studied strategies which have a mem-
ory of 0 to n rounds and always deterministically
play either C or D, depending on the outcome of
last 0 to n rounds. Through mutations*such as
for example gene duplication*the memory
length of the strategies could be extended inde"-
nitely. However, one limitation of Lindgren
& Nordahl's set of strategy is that no probabilis-
tic strategies are possible. The importance of
probabilistic strategies is demonstrated by the
work of Nowak & Sigmund (1992) and by Grim's
(1995) work on the spatial IPD, who considered
stochastic strategies which depend only on the
opponent's last move. For example, Grim (1995)
found that in spatially structured populations
a very generous version of TFT, that responds to
defection with a retaliating defection only with
a probability of 33%, was the most successful
strategy of a "xed set of 121 strategies he con-
sidered. Among other things, we will show in this
paper that generous variants of PAVLOV are
even more successful than generous TFT in spa-
tially structured populations.

We will combine the IPD and spatial structure
in a more realistic, stochastic model in which
individuals interact only with their neighbours
and where new randomly mutated strategies can
appear at any time. In contrast to Lindgren
& Nordahl (1994), we will examine a di!erent and
in a sense more general set of strategies: we will
allow all possible stochastic strategies with
a memory of one round. We will refer to such stra-
tegies as Markov strategies. Instead of playing
either C or D with probability 1, these strategies
can play C or D*depending on the previous
round*with any probability between 0 and 1.
Markov strategies are de"ned by the four prob-
abilities (p

R
, p

T
, p

S
, p

P
) that an individual plays

C after it scored R, ¹, P, or S, respectively, in the
previous round. In populations of such Markov
strategies, in which interactions between indi-
viduals are of the form of an IPD, we will exam-
ine how spatial structure in#uences the evolution
of cooperation and what impact it has on the
evolutionary dynamics. By evolutionary dynam-
ics we are here referring to the movement of
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the population average in the four-dimensional
strategy space (p

R
, p

T
, p

S
, p

P
) .

In the next section, we will give a detailed
overview of the model used. The results of our
simulations are divided into three sections. We
will "rst look at spatial structure and the evolu-
tion of cooperative behaviour in general, then
concentrate on the role of generosity and "nally
examine the evolutionary dynamics in detail. In
the "nal section, the results are discussed.

2. The Model

The model examined in this paper consists of
a square lattice of size n]n with periodic bound-
aries, i.e. the marginal cells on one side of the
lattice are considered to be the neighbours of the
cells on the opposite margin of the lattice. Every
cell of the lattice is occupied by an individual with
a particular Markov strategy for playing the IPD.

The strategy set is taken to be all stochastic
strategies with a memory of one round. This
corresponds to the set that Nowak & Sigmund
(1993) used in a non-spatial setting. These
strategies are given by the four probabilities
(p

R
, p

T
, p

S
, p

P
) that a player cooperates in round

n#1, depending on the outcome of round n:
p
R
, p

T
, p

S
, p

P
are the conditional probabilities to

cooperate after receiving the payo! R, ¹, S or P,
respectively, in the previous round. For instance,
the winner of Axelrod's computer tournament,
TFT, which always plays C after it scored R or
¹ and D after S or P, corresponds to the strategy
given by (1, 1, 0, 0). PAVLOV, another strategy
that is very successful in the IPD (Nowak &
Sigmund, 1993), is given by (1, 0, 0, 1): PAVLOV
plays &&win stay}lose shift'', it repeats its move if it
TABL
Interpretation of the p

i
-values as strateg

that a player cooperates after it did get
the previous round of an iterated game. S

the strategies named

Strategy p
R

Cooperative (COOP) p
R
'0

Retaliator (RET) p
R
'0

Tit for Tat (TFT) p
R
'0

Generous Tit for Tat (GTFT) p
R
'0

Pavlov (PAV) p
R
'0
scored well (R or ¹) but changes after it scored
badly (S or P).

To make it easier to follow the evolutionary
dynamics, we will use the names of the four
well-known strategies TFT (1, 1, 0, 0), generous
TFT (GTFT) (1, 1, 0.33, 0), PAVLOV (1, 0, 0, 1)
and RETALIATOR (1, 0, 0, 0) not only strictly
for the single strategy they stand for, but also for
a small subset of strategies exhibiting the typical
characteristics of the original strategy. Table
2 shows precisely how these subsets of strategies
are de"ned in our context. The values of p

i
used

to de"ne the subsets of strategies in Table 2 are
chosen according to common sense understand-
ing of how the included strategies should behave.
Any reasonable alternative choice would not
yield qualitatively di!erent results. For example,
the whole group of strategies that have values of
p
R
'0.9, p

T
'0.8, p

S
(0.3 and p

P
(0.4 will be

called TFT, because they show the typical char-
acteristics of the original TFT which is strictly
only the strategy (1, 1, 0, 0). Thus, if we are talking
of PAVLOV, we usually mean the whole group
that exhibit typical Pavlovian characteristics.
The main di!erence between PAVLOV and TFT
is the value of p

T
(cf. Wedekind & Milinski, 1996).

While both strategies cooperate with each other,
PAVLOV readily exploits unconditional cooper-
ators, but is more heavily exploited by uncondi-
tional defectors. In contrast to Wedekind &
Milinski (1996), who treated all strategies with
high p

R
and low p

T
as PAVLOV, we divide the

group of cooperative strategies with low p
T

into
PAVLOV with p

P
'0.6 and RETALIATOR

with p
P
(0.4.

To eliminate unrealistic, completely error-free
behaviour there is a minimal noise level given
E 2
ies. ¹he values of p

i
are the probabilities

a payo+ of R, ¹, S or P respectively in
ee text for the interpretation of the p

i
as

in the left column

p
T

p
S

p
P

.9

.9 p
T
(0.4 p

S
(0.4 p

P
(0.4

.9 p
T
'0.8 p

S
(0.3 p

P
(0.4

.9 p
T
'0.8 p

S
'0.3 p

P
(0.4

.9 p
T
(0.4 p

S
(0.4 p

P
'0.6



FIG. 1. The average payo! in spatial (s) and non-spatial
(m) populations. One measure of cooperation is the average
payo! received by each player. The average payo! of each
player is its total payo! divided by the number of iterations
and by the number of neighbours. For all population sizes
the payo! in the spatially structured populations (s) are
higher than in the non-structured control (m) and in the
spatially structured populations the average payo! is higher
in larger populations. The "gure shows the average payo!
from 20 populations which were each run for 104 genera-
tions with a mutation rate of 0.002. The averages are taken
over the whole length of the simulations. All populations
were started from one single strategy with p

i
"(0.5, 0.5, 0.5,

0.5). (Bars indicate standard deviation between populations.)
(m) Non-spatial; (s) spatial.
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by a small e'0 and the values of p
R
, p

T
, p

S
and

p
P

are restricted to (e, 1!e). The number of
iterations per game is given by the probability of
iteration w. If one round of the simple Prisoner's
Dilemma has been played by two individuals,
there is a chance w that these two individuals will
meet again and the game is iterated for another
round. The expected number of iterations for
a probability w is 1/(1!w). It is obvious that in
such a model a key characteristic of a cooperative
strategy is that it will cooperate in round n#1
after mutual cooperation in round n. Cooperative
strategies therefore have a value of p

R
close to 1.

To model spatial structure, all individuals of
the n]n lattice play an IPD game against their
eight nearest neighbours. The payo!s of these
eight games are summed and provide the indi-
viduals' score or "tness. After every individual
has played its eight games, each cell of the lattice
is updated according to the general rules of spa-
tial evolutionary game theory (as formulated in
Killingback & Doebeli, 1996): the individual on
each cell is replaced by an o!spring of the highest
scoring individual among the former site holder
and its eight nearest neighbours. These o!spring
play the same strategy as their ancestors, except if
a mutation occurs which happens at a small
mutation rate. If a mutation occurs, the o!-
spring's strategy is not its parent's but a new
strategy chosen randomly from the whole strat-
egy space.

In order to identify the e!ects of spatial pattern
formation and self-organized behaviour, the spa-
tially structured populations will be compared
to well-mixed populations which are again
modelled by a lattice, but on which each indi-
vidual plays against eight partners that are ran-
domly chosen on the lattice, rather than against
its eight nearest neighbours. Likewise the suc-
cessor of every site is chosen among the site
holder and eight random individuals. An alterna-
tive possibility for a non-structured population
would be to work only with the frequencies of
strategies in a population (cf. Nowak & Sigmund,
1993), but then it is not straightforward to deter-
mine mutation rates and the initial frequencies of
new mutations corresponding to the spatially
structured situation.

For populations of a reasonable size this tech-
nique will lead to quite gigantic computations if
every single game has to be calculated separately.
Fortunately, there are never as many di!erent
strategies in a population as there are individuals,
because most individuals are o!spring of a few
successful players of the last generation. For
example, in a population of size 50]50 with
a mutation rate of 0.002 per individual and gen-
eration there are, in one generation, usually from
20 to 50 di!erent strategies in the whole popula-
tion. It is therefore possible to calculate the
payo! of each type of interaction a certain num-
ber of times and use the mean as the payo! for all
interactions of this type. Speci"cally, for the
populations used for Figs. 1, 2 and 4 we used the
following technical simpli"cation. In every gen-
eration the payo! for every possible type of game,
i.e. for every combination of the present strat-
egies, is calculated "ve times and the mean value
is taken as the expected payo! for every game in
which the same combination of strategies inter-
act. So, instead of calculating each of the n]n]8
games separately, the payo! for all games in
which the same two strategies interact has to
be calculated only once (i.e. the average of "ve
repetitions).



FIG. 2. Strategies present in spatial (a) and non-spatial (b) populations: The average percentage of cooperative strategies
(p

R
'0.9) in a non-structured population (a) is around 20%. Of the four groups of strategies described in Table 2,

RETALIATOR is the most frequent one in the non-spatial populations. In the spatially structured populations (b) the
percentage of cooperative strategies is much higher, especially for large populations. In contrast to the non-spatial
populations (a), in the structured populations PAVLOV is the most frequent of the strategies of Table 2 (simulations were run
as in Fig. 1). (s) COOP; ( ) RET; ( ) TFT; (e) GTFT; (m) PAV.
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For the simulations with small populations
(cf. Fig. 3) we used the program with the simpli"-
cation and also one that calculated every single
game. The results are qualitatively identical.

3. More Cooperation in Structured Populations

In a population of cooperative individuals
the average payo! per round during an iterated
game is close to R because most of the games are
cooperative. As Fig. 1 shows, the average payo!
per round in spatially structured populations of
su$cient size is very close to R. This indicates
that in these populations most of the individuals
are engaging in cooperative behaviour. Only for
small population sizes ((50]50) is the average
payo! less than R. On the other hand, the aver-
age payo! in the non-structured populations is
much smaller than R and not a!ected by the size
of the population.

As mentioned above, one basic characteristic
of a cooperative strategy is a value of p

R
close to

1, and tracking the p
R
-values of all individuals

reveals the percentage of cooperative strategies in
a population. The uppermost line in Fig. 2(a)
and (b) shows the proportion of cooperative
strategies (i.e. individuals with a value of
p
R
'0.9). In the spatially structured populations

the average frequency of cooperative strategies
during the "rst 104 generations is much higher
than in unstructured populations (spatial+0.9,
non-spatial+0.25).
A second di!erence between structured and
non-structured populations is the &&quality'' of the
most successful strategies. Of the four categories
of strategies described in Table 2, RETALIAT-
OR (RET) is the most frequent in the non-
structured populations with an average frequency
of almost 10% [Fig. 2(a)]. In the well-mixed
populations RET makes up more than a third
of all occurring cooperative strategies. RET co-
operates only if both players mutually co-
operated in the previous round. Therefore, RET
is very resistant against exploitation by mutual
defectors like ALL D, but at the same time, RET
is also very vulnerable to stochastic errors, be-
cause it has no means to re-establish cooperation
once it accidentally defected. In the spatial set-
tings things look quite di!erent. In the spatially
structure populations [Fig. 2(b)] PAVLOV is the
most successful of the strategies described in
Table 2. PAVLOV is a &&win stay}lose shift''-strat-
egy (Nowak & Sigmund, 1993), which starts by
playing C and then plays whatever it played in the
previous round if it got a good payo! (¹ or R) or it
plays the opposite of its own previous move if it
scored badly (P or S). Nowak & Sigmund (1993)
state that in a non-spatial setting the strict PAV-
LOV (1, 0, 0, 1) can be invaded by ALL D but
a slightly stochastic variant like (0.999, 0.001,
0.001, 0.995) cannot. As stated above, we use here
the term PAVLOV for a whole subset of strat-
egies that have the typical characteristics of PAV-
LOV: namely, they are (1) cooperative, p

R
'0.9
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and (2) they play C very often after a mutual
defection, p

P
'0.6, while they mainly defect

otherwise. One very clear advantage of PAVLOV
over RET is its ability to return to mutual co-
operation with other individuals playing the
same strategy, after an occasional mistake leads
to a defection (Nowak & Sigmund, 1993). This
feature is very important in a stochastic world,
where occasional errors occur. Because of this
ability PAVLOV will cooperate most of the time
when playing against itself, which is particularly
important in a spatially structured population,
where successful strategies are immediately sur-
rounded by copies of themselves.

Indeed, the fact that successful strategies build
clusters due to local reproduction is a crucial
aspect of spatial structure. In our extensive simu-
lations, we observed that many cooperative strat-
egies need to be in clusters of a certain minimal
size in order to persist over longer periods of
time. In a spatial setting, many cooperative strat-
egies are vulnerable to a single defective mutation
occurring inside a cooperative cluster. Strategies
that try to re-establish cooperation after mutual
defections (e.g. PAVLOV) are especially easily
exploited by defective mutations, because when-
ever they try to return to cooperation, they get
exploited. Usually, defective mutations cannot
invade the cooperative clusters, because as soon
as there is more than one defective individual,
they defect against each other and so score worse
than the cooperators, provided that the cooper-
ators have still enough other cooperators around
them with whom they can cooperate. For many
cooperative strategies it is therefore very impor-
tant to build large enough clusters. To illustrate
this, we simulated a limited cluster size be com-
puting very small populations (n"5 or 10).
These small populations were each started from
a single cluster of one strategy and each popula-
tion was run*with random mutations occurring
as described above*until no individual with the
initial strategy was left. Figure 3 shows the aver-
age persistence ("time until the last o!spring of
the initial strategy has disappeared) of each of the
four types of strategies described in Table 2 for
population of size 5]5 and 10]10. All the strat-
egies were observed for several levels of coopera-
tion, i.e. in six di!erent variants of the value of p

R
,

ranging from 0.91 to 0.999.
For the non-spatial situation in Fig. 3(a), we
see that RET is by far the most persistent strategy
in both population sizes. The spatially structured
situation [Fig. 3(b)], however, is di!erent. In the
smaller populations, RETALIATOR is still the
most persistent strategy for all values of p

R
.

This is particularly interesting, as a retaliator
with p

R
(w, playing against itself, receives

a rather poor payo! (;R), because after an acci-
dental defection of one partner, both partners
will very probably defect for the rest of the game
(because p

S
and p

P
are small). In the larger popu-

lations of size 10]10, however, PAVLOV is the
most persistent strategy. Especially for relatively
low values of p

R
, PAVLOV is much better than

all other strategies, because PAVLOV's ability to
re-establish cooperation after a random defection
is particularly important for low values of p

R
(+0.9), when accidental defections occur relative-
ly frequently. The point to emphasize in Fig. 3(b)
is that in spatially structured populations many
of the more forgiving strategies (like PAVLOV
and to a certain extent GTFT) that are typically
very successful in structured populations (cf.
Fig. 2), can only persist against invasion of defec-
tors (or random mutations) if they can build large
enough clusters.

As the payo! values chosen for these simula-
tions (R"3, ¹"5, S"0 and P"1), for which
2R"¹#P, are on the borderline of evolution-
ary stability for PAVLOV (Boerlijst et al., 1997),
we did run other simulations with more reward-
ing payo!s (R"3.5 or ¹"4). Although, as one
might expect, this generally yields a slight in-
crease in the frequency of cooperative strategies,
the results do not qualitatively di!er from the
results with the classical payo!s presented in this
section.

4. The Role of Generosity

Another interesting point is the role of gener-
osity by which we mean the fact that in the
structured populations many of the successful
strategies that we observed were less severe retali-
ators than the successful strategies in the unstruc-
tured populations. Grim (1995) has found in his
simulations (using a simpler set of strategies than
we use here) that in spatially structured popula-
tions a very generous variant of TIT FOR TAT,



FIG 3. The persistence of the di!erent types of strategies depends very much on the possible cluster size: (a) non-spatial;
(b) spatial. To illustrate this we simulated small cluster size by using very small populations. The populations were started
from an arti"cial situation with all individuals having the same type of strategy. We started populations from all four
strategies described in Table 2. For each type of strategy, we used six variants, which di!ered in the value of p

R
, ranging from

0.91 to 0.999: i.e. here RET is (p
R
, 0.01, 0.01, 0.01), TFT is (p

R
, 0.99, 0.01, 0.01) and so on. To give an example, the leftmost black

triangle in (b) (n"5) indicates after how many generations none of the initial (PAVLOV-) strategy, which was in this case
(0.91, 0.01, 0.01, 0.99), was left in the population. The parameters used are w"0.99 and mr"0.01, the bars indicate the
standard deviation of the ten repetitions per population. (e) GTFT; (m) PAV; ( ) RET; ( ) TFT.
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playing D only with a chance of 0.33 after its
opponent defected, is a good strategy. In our
notation, such a very generous TFT corresponds
to (1, 1, 0.66, 0.66). In non-spatial populations the
generous variant of TFT which performs best is
(1, 1, 0.33, 0.33) (Nowak & Sigmund, 1992). For
non-structured populations it is thought that
PAVLOV should not be generous (Nowak
& Sigmund, 1993), but we shall see that this
conclusion does not hold in a spatial context.

To examine the role of generosity we classify
the evolving strategies into two groups, one play-
ing TFT-like and the other playing PAVLOV-
like strategies. All strategies with values of
p
R
'0.9, p

T
'0.7 and p

S
and p

P
(0.7 are treated

as TFT-like, and strategies with p
R
'0.9, p

T
and
p
S
(0.7 and p

P
'0.7 are treated as PAVLOV-

ike. Additionally, we divided each group into
three levels of generosity: generosity is here the
value of p

S
and p

P
for TFT and p

T
and p

S
for

PAVLOV. In the non-generous level, both values
are (0.2. In the generous level, at least one value
is in (0.2, 0.5) while in the very generous level one
value is '0.5. The results (Fig. 4) show that for
the TFT-like strategies we found more or less
what could be expected from the literature
(Nowak & Sigmund, 1992; Grim, 1995). In the
unstructured populations most TFT-like strat-
egies had a generosity between 0.2 and 0.5 but
there were also pure TFT and very generous TFT.
In the spatially structured populations we found
almost no pure TFT but the generous and the very



FIG. 4. The role of generosity: (a) non-spatial; (b) spatial. Classifying the TFT-like and the PAVLOV-like strategies by
their level of generosity (cf. text) shows that generous variants are much more successful in spatial populations than in
non-spatial populations. This is especially interesting for PAVLOV-like strategies, where generous variants nearly never
established in non-spatial populations but dominated the spatial populations. The generosity level on the x-axis (1}3)
correspond to the classi"cation of non-generous, generous and very generous used in the text. (The bars indicate averages of
20 simulations as described in Fig. 1.) ( ) TFT; ( ) PAVLOV.
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generous TFT were more frequent. Surprisingly,
the di!erence between the di!erent levels of gener-
osity was much more striking with the PAVLOV-
like strategies. In the unstructured populations,
the overwhelming majority of the PAVLOV-like
strategies were not generous, whereas in the struc-
tured populations, the generous and the very
generous variants were each at least twice as
frequent as the non-generous PAVLOV.

To investigate the stability of the generous
variants of PAVLOV and TFT in structured
populations we conducted simulations similar to
those summarized in Fig. 3, starting populations
from a cluster of PAVLOV or TFT with di!erent
levels of generosity. This showed very clearly that
without spatial structure only very non-generous
PAVLOV can survive for more than a few gen-
erations, while in structured populations the gen-
erous variants did very well. In the spatial model,
generous PAVLOV with any value of p

T
and p

S
with 0(p

T
"p

S
(0.5 usually persisted for

the 1000 generations that we observed. With the
TFT-like strategies the di!erence is not that
dramatic. TFT with a generosity (0.3 usually
persisted during the 1000 generations observed
in structured as well as in unstructured popula-
tions. The more generous TFT, where both p

S
and p

P
'0.3, only persisted in the structured

populations.

5. Dynamics in Structured Populations

Besides the evolution of more cooperative and
generous behaviour, spatial structure also has
a profound e!ect on the evolutionary dynamics
of the systems studied. In Fig. 5, the average
values of p

i
in a population are plotted over 104

generations for both a structured and an unstruc-
tured population. In the spatially structured
population [Fig. 5(a)] the "rst clear strategy that
evolves is TIT FOR TAT. Then, about 400 gen-
erations later, a generous PAVLOV-like strategy
takes over until it is itself superseded by a &&gener-
ous'' RETALIATOR in generation 2000. From
generation 7000 to the end of the 104 generations
observed, there is again a generous PAVLOV. In
the non-structured population [Fig. 5(b)] there is
at the beginning a long period without coopera-
tion. From generation 2500 on, some form
of RETALIATOR is dominant. Later, at genera-
tion 6000, there is a long period of dominance
by PAVLOV and at the end of this another
&&generous'' RETALIATOR appears. We also
note that unlike the spatially structured
case [Fig. 5(a)] cooperative periods are interrup-
ted several times by periods without cooperat-
ion. Studying many such simulations shows that
once cooperation (p

R
'0.9) has evolved in

the spatial population, it is very unlikely to be
lost again. This certainly cannot be said of
the non-spatial population. Overall, in the non-
structured populations the evolutionary dynamics
show much larger and more persistent #uctu-
ations in strategy space. Thus, evolution is gener-
ally much less chaotic in spatially structured
populations.

Comparing populations of di!erent sizes reveals
more about these dynamics. To characterize the



FIG. 5. Time series showing the average value of p
i
in a spatial (a) and a non-spatial (b) population. In spatially structured

populations the dynamics are typically much less chaotic than in well-mixed populations. Comparing the PAVLOV-like
strategies in (a) from generation 7000 on with the PAVLOV in (b) from generation 6000 to 8000 demonstrates the tendency
towards more generous strategies in spatially structured populations. For the purpose of illustration, relatively small
populations of size 25]25 were used for these plots. While the spatial populations of larger size do not di!er much from the
one shown here, except that they are even more stable, larger non-structured populations become so chaotic that it is much
harder to identify certain strategies. The populations were started from (0.5, 0.5, 0.5, 0.5) with w"0.995 and mr"0.002.

TABLE 3
Average length of uninterrupted periods of co-
operation in simulations over 104 generations (to
reduce the in-uence of stochastic noise only periods
with a length of more than ,ve generations were
counted). In the spatially structured populations
these periods are much longer, which indicates that
cooperative con,gurations are more stable in
a spatially structured context. For large popula-
tions, once cooperation was established, it usually
lasted for the whole simulation. (Averages from ten

simulations with w"0.995 and mr"0.002)

Size Spatial Non-spatial

10]50 524 434
25]25 4081 216
50]50 9302 98
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dynamics we chose to look at the length of unin-
terrupted periods of cooperation. Table 3 shows
the average length of periods of cooperation. In
contrast to the de"nition of cooperation in Sec-
tion 3 (p

R
'0.9), an interval of cooperation here

means that the population average of p
R

is
p
R
'0.5 during the interval. Of course, p

R
'0.5

does not explicitly mean that a population con-
sist of mostly cooperative individuals, but as
Fig. 5 and the analysis of the raw data show, the
transitions from large to small values of p

R
are

often relatively sharp, jumping from high to
low in a very short time with nearly no intermedi-
ate values. The average value of all p

R
when

p
R
'0.5 is around 0.9, and not at 0.75 as one

would expect with a uniform random distribution.
So if p

R
'0.5 most of the individuals are usually
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cooperators. By using this threshold of p
R
"0.5

to distinguish between cooperative and non-
cooperative phases, very short stochastic distur-
bances can be "ltered out e!ectively.

In spatially structured populations, the periods
of cooperation are longer if the population size is
larger. For a population size of 50]50 or more the
length of the cooperative periods are nearly 104
generations. This shows that once cooperative
strategies have evolved in a structured populat-
ion, they are usually only superseded by other
cooperative strategies, and not by non-cooperative
strategies. In the unstructured populations, we see
quite the opposite. In large populations, the periods
of uninterrupted cooperation are even shorter than
in small populations. Two reasons can be given for
this: (1) In a large population there are more
individuals which means more mutations. There-
fore, there is a higher chance that a mutation
occurs that can exploit the present strategies. (2)
Because interactions are not restricted locally,
these new mutants can basically exploit any other
individual of the population. In Nowak &
Sigmund's (1993) simulations using the same set
of strategies as here, but with evolutionary dy-
namics based only on the frequency of the strat-
egies (no spatial structure), it was found that
stable cooperative behaviour established only on
much longer time scales than we examined
(105}107 generations). Due to the complex calcu-
lations of our simulations, it is not possible to
observe such long time-scales with our model.

It seems, however, that in the non-spatial situ-
ations the class of cooperative strategies that can
become established and persist is much more
limited than in the spatial situation. We observe
that in the spatially structured populations
stable cooperative con"gurations evolve much
faster than in non-structured populations. As il-
lustrated in Fig. 5, it usually takes only a few
hundred generations until cooperative behaviour
has evolved and is established in structured
populations. Afterwards, there is much "ne tu-
ning, but the cooperative character is not lost
thereafter. In non-structured populations, many
more generations are needed until a stable
cooperative strategy can eventually become
established (cf. Nowak & Sigmund, 1993).

Another interesting di!erence in the evolution-
ary dynamics is that in the spatially structured
populations there are often combinations of
strategies where both strategies can exploit each
other, depending on the local con"gurations. In
Fig. 5, this shows up as fast #uctuations of small
amplitude of the p

i
(e.g. generation 500}2000).

Such #uctuating con"gurations never occur in
the non-structured populations and seem very
typical of spatial structure. This phenomenon has
been found in many other spatial models (Grim,
1995; Killingback & Doebeli, 1996; Nowak
& May, 1992) and is extensively described in
Lindgren & Nordahl (1994).

6. Discussion

The idea that spatial structure facilitates the
evolution of cooperation is already well sup-
ported by the work of others (Nowak & May,
1992; Nakamaru et al., 1996; Killingback &
Doebeli, 1996; Doebeli & Knowlton, 1998). The
presence of spatial structure, however, does not
only a!ect the quantity of cooperative strategies
but also their &&quality'', meaning that in a struc-
tured population the successful strategies are not
the same as in an unstructured population. For
example, in Axelrod's (1984) work, it was found
that the most successful strategy in spatial popu-
lations was a strategy that ranked only 31st of 62
in the computer tournament. In addition, the
evolutionary dynamics of how cooperation
emerges and is maintained is very di!erent in
spatially structured populations.

One very important consequence of spatial
structure is that successful strategies tend to build
clusters of similar individuals because of local
reproduction. With such clusters some strategies
can spread in an environment in which they
could not spread without clustering. For
example, in a spatial context TIT FOR TAT can
invade a population of ALL D (Axelrod, 1984;
Nakamaru et al., 1996). Even in the simple
Prisoner's Dilemma without iteration C can in-
vade into D under certain conditions (Nowak
& May, 1992). In a two-dimensional lattice, this
is possible if a C that is at the margin of a cluster
of C is scoring higher than the D outside the
cluster of C. To illustrate the mechanism favour-
ing cooperation in spatially structured popula-
tions, let us consider a cluster of 3]3 C in a sea of
D as shown in Fig. 6. The C in the middle



FIG. 6. A cluster of C in a sea of D (cf. text). ( ) C; (h) D.

TABLE 4
Payo+ matrix for a PA<¸O< vs.
RE¹A¸IA¹OR game. ¹he interac-
tion is a Prisoner1s Dilemma where
PA< is the cooperator and RE¹ is
the defector. Averages from 104
rounds per iterated game with
PA<"(0.99, 0.01, 0.01, 0.99) and
RE¹"(0.99, 0.01, 0.01, 0.01) and
w"0.995, which gives an average of

200 iterations per game

PAV RET

PAV 2.95 1.72
RET 2.98 1.82
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of a margin of the cluster (e.g. no. 1 in Fig. 6) has
"ve C neighbours and three D. It therefore scores
5R#3S. A D outside the cluster (e.g. no. 2) can
have at most three C neighbours and will there-
fore score less than or equal to 3¹#5P. Thus, if
5R#3S'3¹#5P the D at the border will be
replaced by a C in the next generation and
the cluster of C grows into the sea of D. We
observe that similar mechanisms are operat-
ing in our stochastic model. For example, as
Table 4 shows, the interaction of PAVLOV
vs. RETALIATOR is also a Prisoner's Dilemma,
under the conditions of our model. With PAV-
LOV as the cooperator and RET as the defector,
we have ¹"2.98'R"2.95'P"1.82'
S"1.72 (and 2R'¹#P). In particular, we
have 5R#3S"19.9'3¹#5P"18.0, which
is the su$cient condition in a spatially structured
population for clusters of PAVLOV to be able to
invade into a sea of RET.

In a population that is not structured, PAV-
LOV cannot directly invade into a population of
Retaliators nor can it invade into a population
of ALL D. This does not mean that there is no
possibility for PAVLOV to evolve in a non-
structured population. Nowak & Sigmund
(1993) found that PAVLOV can invade into
a population of e.g. ALL D by succeeding other
cooperative strategies such as TIT FOR TAT,
which in turn can invade into populations of less
cooperative strategies. In their simulations,
which are more or less a mean-"eld approxima-
tion of the spatial simulations in this paper, they
found that PAVLOV also dominated the non-
spatial situation, but only on much longer time-
scales than we used (105}107 generations). In
contrast to our model, RETALIATOR played
a much less dominant role in Nowak &
Sigmund's (1993) simulations. This can be ex-
plained mainly by the fact that for computational
simplicity, Nowak & Sigmund used in"nitely it-
erated games. The reason why we use "nite
games, where the probability w that two players
will meet again and play another game satis"es
w(1, is that under the assumption of in"nite
iteration certain reasonable strategies receive
a much lower payo! than with "nite games.
For example, RET (cf. Table 2) with a value of
p
R
'w will cooperate for most of the length

of a "nite game. In an in"nitely iterated game
the "nite phase of cooperation at the start of
the game has no in#uence compared to the in"nite
phase of mutual defection that follows as soon as
one player accidentally defects. While a Retaliat-
or with p

R
'w is a cooperative strategy in "nite

games, it is a rather non-cooperative strategy in
an in"nitely iterated game. Thus, with in"nitely
iterated games a strategy with very limited error
correction (e.g. RET) scores very poorly against
itself, and therefore plays a much less prominent
role overall. With a "nite game length, the ad-
vantage of error correction is not so big and it is
much harder to supersede strategies like RET (in
the non-spatial case).

In our simulations we have seen that besides
iteration (in"nite or not) spatial structure is
another strong reason for the evolution of
error correction. The importance of an error-
correcting mechanism in a spatially structured
population is documented in Fig. 3. Provided
large enough spatial cluster are possible
(*10]10), the strategies with good error correc-
tion (PAVLOV and GTFT) score best and RET
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does worse than in the other situations
documented. The raw data even show that in the
large spatial populations (10]10), RET was
mainly displaced by other cooperative strategies.

Another way of minimizing the losses due to
accidental errors is playing more generously.
Generous Strategies will defect only with a cer-
tain probability in situations where pure, deter-
ministic strategies like TFT or PAVLOV would
always play D. Our simulations have shown that
in spatially structured populations much more
generous strategies evolve. For TFT-like strat-
egies this was also found by Nowak & Sigmund
(1992) and by Grim (1995), but in simulations
that incorporated only reactive strategies. React-
ive strategies depend solely on their opponents'
last move and do not take into account what they
have played in the last round themselves. Thus,
strategies like RET or PAVLOV did not occur in
Grim's simulations. While GTFT is also success-
ful in non-spatial populations, we found very few
generous PAVLOV in non-spatial populations.
One disadvantage of PAVLOV is that it is ex-
ploited by very non-cooperative strategies in
every second round of an iterated game. Gener-
ous variants of PAVLOV are exploited even
more. Thus, in a non-spatial setting, PAVLOV is
evolutionary stable against defectors only when
¹#wP(R#wR (Boerlijst et al., 1997). In our
simulations with the classical payo! matrix
R"3, ¹"5, S"0 and P"1 this is not the
case: as ¹#wP'R#wR except if w"1, these
payo!s are on the borderline of evolutionary
stability for PAVLOV. In simulations with
payo!s satisfying ¹#wP(R#wR, so that
cooperative ESSs are possible in the non-spatial
setup (Boerlijst et al., 1997), there is a general
tendency towards more cooperative strategies in
both spatial and non-spatial setup. Using more
rewarding payo!s with R"3.5 or ¹"4, in the
non-spatial case especially the generous variants
of PAVLOV and RETALIATOR appear more
frequently, whereas nearly no generous PAV-
LOV appear in the non-spatial set-up with the
classical payo!s (cf. Fig. 4). But also in the spatial
set-up we observed an even stronger dominance
by generous and very generous variants of
PAVLOV if R is raised to 3.5 or ¹ lowered to 4.
The interesting point, however, is that in the
spatial context cooperative strategies evolve
quite frequently even if ¹#wP(R#wR is not
satis"ed.

There is also other evidence that PAVLOV is
a very successful strategy especially in a spatial
context. Lindgren & Nordahl (1994) studied the
evolutionary dynamics in spatially structured
populations. They represent strategies using
a kind of genetic sequence which determines
whether a strategy plays C or D according to
what was played in the past n moves of a game.
These strategies are thus purely deterministic
which means for example that no &&generous''
strategies (in the sense used in this paper) are
possible. Lindgren & Nordahl start their simula-
tions with strategies with a memory of n"0. Via
genetic mutations, such as gene duplications, the
memory of the strategies can increase in
the course of evolution. When the memory of the
strategies has evolved to a length of 2*they
remember their own and their opponents
last move, which corresponds to the memory
length of the strategies in our paper*Lindgren
and Nordahl "nd that the spatial populations
are dominated by a strategy with gene sequence
1001. This 1001 strategy plays C after receiving
payo! R or P and plays D after ¹ or S, which is
exactly PAVLOV. Only when the memory has
evolved to a length of 4 are there other more
complicated strategies which supersede 1001.
However, the successful memory 4 strategies that
evolve are basically more sophisticated versions
of PAVLOV which return to cooperation only
after a series of two mutual defections or
when a mutual defection follows a mutual co-
operation. They compare the spatial situation
with a mean-"eld model, where they "nd that
the strategy 0001 dominates much of the initial
phase of the populations, when the memory of
strategies has length two. In our terminology,
this 0001-strategy is RETALIATOR. Interesting-
ly, for the non-spatial set-up these results corres-
pond well with the Wedekind & Milinski (1996)
observations of human cooperation in the
Prisoner's Dilemma. The most frequent strategy
they found examining "rst year biology students'
behaviour in playing the Iterated Prisoner's
Dilemma corresponds, in our terminology,
best to a moderately generous RETALIATOR
(p

R
+0.7, p

T,S,P
+0.2), although Wedekind

& Milinsli preferred to call it PAVLOV.
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Those strategies which exhibit TIT FOR TAT-
like behaviour (e.g. TFT and GTFT), which are
classically regarded as particularly important
strategies in the Iterated Prisoner's Dilemma
(Axelrod & Hamilton, 1981; Nowak & Sigmund,
1992; Grim, 1995), play a surprisingly small
role in our investigations. An important disad-
vantage of TFT-like behaviour is that TFT lacks
the ability to exploit unconditional cooperators.
TFT for example tolerates the invasion of ALL
C by neutral drift. But if there are too many ALL
C, then the TFT/ALL C-clusters can be easily
invaded by strategies that exploit the ALL C and
thereby supersede TFT. This de"ciency of TFT-
like strategies is more serious in the spatial IPD
than in the non-spatial case as many strategies
close to ALL C can survive in the spatial game,
whereas they would be unable to do so in the
non-spatial game. PAVLOV, on the other hand,
does not su!er from this de"ciency. Once it de-
tects unconditional cooperators by chance, it can
exploit them and prevent them from drifting into
a PAVLOV-cluster (Nowak & Sigmund, 1993).
This ability is particularly valuable in a spatial
context.

In conclusion, using a relatively realistic,
stochastic model, with a general strategy-space of
all stochastic strategies with a memory of one
round, we investigated some aspects of the evolu-
tion of cooperation. We found*as other work
has suggested for models with simpler sets of
strategies (Nowak & May, 1992; Grim, 1995;
Lindgren & Nordahl, 1994; Killingback
& Doebeli, 1996)*that spatial structure greatly
in#uences the evolution of cooperation. By com-
paring populations with a well-de"ned spatial
structure with populations where interactions
and dispersion of individuals are random, we
observed the following e!ects of spatial structure:
(1) spatial structure greatly facilitates the evolu-
tion of cooperative behaviour; there are more
cooperative individuals in a spatially structured
population and cooperation evolves faster. (2) In
structured populations qualitatively di!erent
strategies evolve than in non-structured popula-
tions: in the spatial context, we found a strong
tendency towards more generous strategies and
generous variants of PAVLOV dominated many
of the simulations. In contrast, the non-struc-
tured populations were mainly dominated by
RETALIATOR. (3) Spatial structure has a strong
stabilizing e!ect on evolutionary dynamics. Clus-
tering, as it occurs in spatially structured popula-
tions of su$cient size, is a very strong reason for
the evolution of strategies with a good error
correction. In our context these are strategies like
PAVLOV and generous PAVLOV.

We would like to thank Karl Sigmund for critical
comments on the manuscript.
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