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Abstract

Social dilemmas and the evolutionary conundrum of cooperation are traditionally studied through various kinds of game theoretical

models such as the prisoner’s dilemma, public goods games, snowdrift games or by-product mutualism. All of them exemplify situations

which are characterized by different degrees of conflicting interests between the individuals and the community. In groups of interacting

individuals, cooperators produce a common good benefitting the entire group at some cost to themselves, whereas defectors attempt to

exploit the resource by avoiding the costly contributions. Based on synergistic or discounted accumulation of cooperative benefits a

unifying theoretical framework was recently introduced that encompasses all games that have traditionally been studied separately

(Hauert, Michor, Nowak, Doebeli, 2005. Synergy and discounting of cooperation in social dilemmas. J. Theor. Biol., in press.). Within

this framework we investigate the effects of spatial structure with limited local interactions on the evolutionary fate of cooperators and

defectors. The quantitative effects of space turn out to be quite sensitive to the underlying microscopic update mechanisms but, more

general, we demonstrate that in prisoner’s dilemma type interactions spatial structure benefits cooperation—although the parameter

range is quite limited—whereas in snowdrift type interactions spatial structure may be beneficial too, but often turns out to be

detrimental to cooperation.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Social dilemmas capture the fundamental puzzle of the
evolution of cooperation. Ever since Darwin (1859) the
evolution and maintenance of cooperation has been a
major challenge in evolutionary biology and behavioral
sciences. In spite of the inherent risk of exploitation by
cheaters, cooperation is abundant in nature and, in fact, it
can be argued that all major transitions in evolution
(Maynard Smith and Szathmáry, 1995) can be reduced to
successful resolutions of social dilemmas under Darwinian
selection.

Social dilemmas occur whenever conflicts of interest
arise between the preferences of individuals as compared to
the preferences of the community (Dawes, 1980). The
simplest and most general definition of a social dilemma
consists of two conditions imposed on situations where
e front matter r 2005 Elsevier Ltd. All rights reserved.
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cooperators produce a valuable and publicly accessible
public good b at some cost c to themselves with b4c while
defectors attempt to free ride on the benefits of the
common resource without bearing the costs of cooperation:
(i)
 Groups of cooperators outperform groups of defectors
because the former profits from the public good
whereas the latter foregoes the opportunity of mutually
beneficial interactions.
(ii)
 In every mixed group, defectors outperform coopera-
tors because they avoid the costs of cooperation.
Condition (i) states that from the community perspective it
is clearly advantageous to cooperate but condition (ii)
dictates that individuals should opt for defection in order
to maximize their profit. Hence the dilemma. Situations
that meet these two conditions are abundant in nature and
range from bacterial colonies to human interactions
(Dugatkin, 1997). For example, yeast cells secrete an
enzyme that lyses their environment, thus creating a
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publicly available food resource. Naturally, this resource
can be exploited by other cells that do not produce the
enzyme (Greig and Travisano, 2004). Other famous
examples include alarm calls in merkats (Clutton-Brock
et al., 1999), predator inspection behavior in fish (Milinski,
1987), blood sharing in vampire bats (Wilkinson, 1984) or
public goods experiments with students (Fehr and Gächter,
2002).

Evolutionary game theory has long established as
powerful mathematical framework to analyse social
dilemmas (Maynard Smith and Price, 1973; Nowak and
Sigmund, 2004). The single most famous mathematical
metaphor for a social dilemma denotes the prisoner’s
dilemma (Axelrod and Hamilton, 1981). Other well studied
models include public goods games (Kagel and Roth,
1995), which essentially represent a generalization of the
pairwise prisoner’s dilemma to interactions in groups of
arbitrary size (Hauert and Szabó, 2003), the snowdrift
game (Hauert and Doebeli, 2004; Sugden, 1986) (or
chicken or hawk–dove game, Maynard Smith, 1982) as
well as by-product mutualism (Connor, 1995). All these
models address the problem of cooperation under different
biologically plausible conditions and all are aiming at
removing the apparent dilemma in social dilemmas.

Over the last decades several mechanisms have been
proposed to successfully overcome the dilemma. Pioneer-
ing work goes back to Hamilton’s kin selection theory
(Hamilton, 1964) and Triver’s concept of reciprocal
altruism or direct reciprocity (Trivers, 1971). Boosted by
Axelrod’s computer tournaments (Axelrod, 1984) direct
reciprocity attracted most attention. Only more recently
alternative approaches are gaining momentum. This
includes models of conditional strategies based on reputa-
tion which can establish cooperation either through
indirect reciprocity (Nowak and Sigmund, 1998) or
through punishment (Boyd and Richerson, 1992; Fehr
and Gächter, 2002; Henrich et al., 2001; Sigmund et al.,
2001), voluntary participation in social dilemmas (Hauert
et al., 2002) or by introducing structured populations e.g.
to account for spatial extensions (Nowak and May, 1992).

This last scenario represents the main topic of this article
applied to a generalized framework of cooperation that
embeds all the above models for social dilemmas. This
emphasizes the common underlying structure of the
different approaches and demonstrates the continuous
transitions from one scenario to another when varying
biologically meaningful parameters. In accordance with
earlier results it turns out that spatial structure is not
necessarily beneficial for cooperation and, in fact, often
turns out to be detrimental as compared to well-mixed
populations with random encounters.

2. Model

Recently a generalized theoretical framework to model
any kind of social dilemmas in arbitrarily sized groups of N

interacting individuals was introduced (Hauert et al.,
2005). A summary of this framework follows to set the
stage for investigations on effects arising in spatially
structured populations. Each cooperator produces a
benefit b that is equally shared among all N members of
the group (including the individual itself). However, in
groups containing several cooperators, the actual value of
the accumulated benefits must not necessarily increase
linearly with increasing numbers of cooperators. Instead,
each additional benefit may be discounted or synergistically
enhanced by a factor w. More precisely, assuming that

PDðkÞ ¼
b

N
ð1þ wþ w2 þ � � � þ wk�1Þ

¼
b

N

1� wk

1� w
, ð1aÞ

PCðkÞ ¼ PDðkÞ � c (1b)

states that the first cooperator provides a benefit b=N to
everyone, the second increases the value of everyone’s
benefit by wb=N and so on to the last cooperator k

augmenting the value by wk�1b=N. Note that for defectors
k runs from zero to N � 1, whereas for cooperators k runs
from one to N. If w ¼ 1, all cooperators provide the same
benefit b=N. For wo1, the value of additional provisions
of benefits is discounted. For example, in the aforemen-
tioned yeast cells, the food resource provided by the first
cooperator may be vital for the survival for all group
members but in particular for the cooperator itself.
However, the value of additional food decreases until
further increases become essentially useless because of the
cell’s limited capabilities of food intake. Conversely, if
w41, the value of additional benefits is synergistically
enhanced. This occurs, for example, in situations where
cooperators produce substances for chemical reactions.
The efficiency of the reaction is generally sensitive to the
concentration of reactive compounds and can increase
faster than linear (Fersht, 1977; Hammes, 1982). In nature,
such situations can occur not only in foraging yeast and
chemical reactions but essentially whenever individuals
create any kind of common good (see e.g. Doebeli and
Hauert, 2005), be it in the form of replication enzymes in
viruses (Huang and Baltimore, 1977) or in the form of
information gained from predator inspection behavior in
fish (Magurran and Higham, 1988).
In well-mixed populations, interaction groups of size N

are randomly formed according to binomial sampling such
that the fitness of cooperators and defectors becomes

f C ¼
b

Nð1� wÞ
ð1� wð1� xþ wxÞN�1Þ � c, (2a)

f D ¼
b

Nð1� wÞ
ð1� ð1� xþ wxÞN�1Þ, (2b)

where x denotes the frequency of cooperators (Hauert et al.,
2005). The growth (or decline) of cooperators is then given
by the replicator dynamics (Hofbauer and Sigmund, 1998)

_x ¼ xð f C � f̄ Þ,
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where f̄ ¼ xf C þ ð1� xÞf D denotes the average fitness
of the population, such that strategies (here cooperators)
that perform better than the population on average ð f C4f̄ Þ

will increase in abundance and decrease otherwise. In
the case of two strategies the replicator equation simp-
lifies to

_x ¼ xð1� xÞð f C � f DÞ.

The dynamics has two trivial fixed points x�0 ¼ 0 and x�1 ¼ 1
as well as at most one interior non-trivial equilibrium

x� ¼ ½1� ðcN=bÞ1=ðN�1Þ�=½1� w�.

x� exists (i.e. lies in the interval ð0; 1Þ) if 14cN=b4wN�1 or
wN�14cN=b41. It turns out that variations of the
parameters b; c;N and w change the severity of the
social dilemma which leads to four dynamical regions (see
Fig. 1):
(a)
 Dominant defection ðcN=b41; cN=b4wN�1Þ: Coop-
erators are doomed and vanish regardless of their
initial frequency. x�0 is the only stable equilibrium. This
regime represents the strictest form of a social dilemma
and corresponds to the prisoner’s dilemma or, more
generally, to public goods games.
(b)
 Co-existence ð14cN=b4wN�1Þ: The interior fixed
point x� is the only stable equilibrium indicating a
stable mixture of cooperators and defectors. This
regime represents a generalized form of the snowdrift
game for groups of arbitrary size. The social dilemma is
relaxed because in groups of defectors it pays to switch
to cooperation but groups of cooperators remain prone
to exploitation by cheaters. The social dilemma is also
reflected in the fact that a population at the equilibrium
x� has a lower payoff than a homogenous population
of cooperators.
(c)
 Dominant cooperation ðcN=bo1; cN=bowN�1Þ: In this
regime the social dilemma is completely relaxed such
that cheating no longer poses a threat to cooperation.
Even though defectors continue to outperform coop-
erators in mixed groups, they could do even better by
also switching to cooperation. In that sense, coopera-
tion merely occurs as a by-product of an otherwise
selfish act (Connor, 1995).
(d)
 Bi-stability (wN�14cN=b41): In this regime the
two homogenous states x�0 and x�1 are both stable
and the interior fixed point x� is unstable. Consequen-
tially the evolutionary outcome depends on the initial
configuration of the population. For initial frequencies
x04x� cooperation evolves, whereas for x0ox� co-
operation vanishes. In that situation the social dilemma
presents itself as a coordination problem.
These analytical results provide a useful baseline to discuss
the effects on cooperation arising in individual based
models and, in particular, due to population structures
leading to limited local interactions.
3. Global interactions

In individual based models, the propagation and
spreading of strategies within a population can be defined
in various ways. In general, Darwinian selection only
requires that individuals with a higher fitness (payoff) have
an increased propensity to proliferate and transmit their
strategy either in terms of reproduction or through
imitation by other individuals. Here we consider two basic
approaches: a straightforward application of the replicator
dynamics to finite populations and the Moran (1962)
process applied to evolutionary game theory (Nowak et al.,
2004).
In terms of the replicator dynamics, one particularly

simple implementation considers a randomly selected focal
individual that is updated as follows: first, the payoff of the
focal individuals is determined from an interaction in a
randomly formed group of size N (including the individual
itself). Second, a model individual is chosen at random and
its payoff is determined in the same way. Finally, the two
payoffs are compared and the focal individual adopts the
model’s strategy with a probability proportional to the
payoff difference provided that it is positive and with
probability zero otherwise. Because individuals never
adopt strategies of worse performing players stochastic
effects are largely reduced. In fact, if the payoff of both the
focal and the model individuals is determined over many
interactions prior to payoff comparisons, this update rule
becomes deterministic in direction but stochastic in time. A
closely related approach would be that the focal individual
adopts the strategy of an equally well performing model
with probability 1

2
and linearly increases (decreases) this

probability for better (worse) performing models. In that
case the dynamics becomes fully stochastic but still
recovers the replicator dynamics in the limit of infinite
population sizes. However, since the Moran process also
leads to stochastic dynamics the latter approach will not be
pursued further.
In the Moran process, a focal individual is randomly

chosen for reproduction with a probability proportional to
its fitness. As above, the fitness of each individual is
determined from an interaction in a randomly formed
group of N individuals. Then, another randomly chosen
individual (independent of its fitness) is eliminated and
replaced by offspring of the focal individual. Thus, all
individuals have the same average lifespan but fitter
individuals tend to have higher reproductive output. This
represents a specific balance between selection and drift:
fitter individuals have higher chances—but no guarantee—
of reproduction, whereas less fit individuals are likely—but
again, no guarantee—to be eliminated.
In principle, the fact that the Moran process has two

absorbing states (either all cooperators or all defectors)
prohibits any other stable equilibrium states. Practically,
however, transient times often become exceedingly long
such that properties of meta-stable states become
relevant.
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Fig. 1. Comparisons of analytical predictions and individual based simulations. The top row depicts phase-plane diagrams for the synergy/discount factor

w and the cost-to-benefit ratio cN=b for a constant group size N ¼ 5. The bottom row shows the phase-plane for w and the group size N for a constant

cost-to-benefit ratio c=b ¼ 0:2. The dash-dotted line separates discounting ðwo1Þ and synergy ðw41Þ. The phase planes are divided into four different

dynamical regimes (i)–(iv), which relate to different kinds of social dilemmas: (i) dominant defection, (ii) co-existence, (iii) dominant cooperation, (iv) bi-

stability (see, Section 2 for details). The solid lines delimit the regions of all cooperation and all defection. The dashed line indicates parameters for which

the interior fixed point x� corresponds to equal proportions of cooperators and defectors. x� is stable in (ii) but unstable in (iv). (a) shows the analytically

expected levels of cooperation where red indicates no cooperation, blue full cooperation and intermediate levels are indicated in orange, yellow, green and

light blue for increasing fractions of cooperators. In the case of bi-stability (iv), the colors indicate the size of the basin of attraction leading to the

evolutionary end states of all cooperation or all defection, i.e. bluish colors indicate that only a small fraction of cooperators is needed to establish

cooperation, whereas in reddish areas a large fraction of cooperators is required. (b) illustrates the differences between the analytical results and individual

based simulations inspired by the replicator dynamics. Regions where cooperators are better off in the simulations are colored blue and those favoring

defectors are colored red. The saturation of blue and red indicates the strength of the effect. In addition, contour lines mark differences of �0:5% and

�1% to highlight systematic deviations in region (ii) (see text). Parameters: random initial configuration with 50% cooperators and 50% defectors;

relaxation time 5000 generations; frequencies averaged over 1000 generations; data grid 41� 41 (top row) and 41� 8 (bottom row).
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The traditional formulation of the Moran process
represents a birth–death process. Conversely, one could
assume a death–birth process where first a randomly
selected individual is eliminated and only then another
individual is randomly chosen for reproduction with a
probability proportional to its fitness (Ohtsuki et al., 2005).
It is quite obvious that the two processes become identical
in the limit of infinite population sizes. Interestingly,
however, considerable differences occur between birth–
death and death–birth processes in structured populations.
In fact, it turns out that the death–birth process tends to
support cooperation. Similar distinctions have been made
referring to fertility versus mortality selection (Irwin and
Taylor, 2001; Nakamaru et al., 1997, 1998).
One major difference between the approach based on the
replicator dynamics and the Moran process is that the
latter requires global information. What matters in the
replicator dynamics is the performance of a strategy as
compared to the average population payoff. In the
individual based formulation, however, the average popu-
lation payoff does not explicitly enter the calculations.
Instead, the average population payoff is estimated by
randomly sampling a single model member and comparing
the focal individual’s payoff to the payoff of the model.
Obviously this sampling process could be improved by
comparisons to an increased number of model members.
However, in biological settings, increases of sampling size
would often be associated with costs e.g. in terms of
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searching time. In contrast, strictly speaking, the Moran
process requires complete information of every individual’s
fitness in order to randomly select one for reproduction.
This is certainly a very strong requirement but in return it
makes certain problems such as fixation probabilities
analytically tractable (Imhof et al., 2005; Lieberman
et al., 2005; Nowak et al., 2004; Taylor et al., 2004).

The simulation results for all three processes (local
replicator update, the birth–death and the death–birth
processes) are in excellent agreement with the analytical
predictions. In Fig. 1 this is illustrated for the local
replicator update. Weak but systematic deviations occur in
region (ii) where cooperators and defectors co-exist.
Individual based simulations return slightly lower equili-
brium fractions of cooperators than analytical predictions.
This difference can be related to different selection
gradients above and below the equilibrium composition
in finite populations (Ficici and Pollack, 2000). The results
for the two Moran type processes are essentially identical
except for minor deviations along the boundary of region
(ii) where either cooperators or defectors persist only at
very low frequencies and occasionally disappear due to
fluctuations.

Fig. 1 highlights the smooth transitions between the
different social dilemmas. For example, given a prisoner’s
dilemma type interaction (region (i)), decreasing the group
size N relaxes the dilemma and transforms it to a snowdrift
type interaction (ii). Further decreases of N increase the
equilibrium fraction of cooperators and eventually may
transform the interaction to by-product mutualism. Simi-
larly, reducing the discounting (increasing w) promotes
cooperation and transforms a snowdrift type interaction
(ii) into by-product mutualism (iii) for cN=bo1 and a
prisoner’s dilemma type interaction (i) into a coordination
game (iv) for cN=b41. Note that neither co-existence nor
bi-stability are possible for w ¼ 1. This is important,
because the traditional formulation of public goods
interactions corresponds to w ¼ 1.

4. Local interactions

Assuming well-mixed populations with random forma-
tion of interaction groups has the significant advantage to
allow for analytical solutions. For more realistic ap-
proaches, however, it is important to take population
structures into account which result in limited local
interactions rather than random global interactions. In
the simplest case this can be modeled by considering lattice
populations where every individual is confined to one
lattice site. Individuals interact and compete only within
their respective local neighborhood. For example, consider
a rectangular lattice where each individual interacts with its
eight neighbors reachable by a chess-kings-move (Moore
neighborhood). The update rules introduced above for
well-mixed populations can be easily adapted to structured
populations with local interactions by two simple changes:
(i) to determine each individuals fitness, the N � 1 other
members of the interaction group are randomly selected
among the individual’s neighbors. Naturally, the neighbor-
hood size puts an upper bound on the size of the
interaction group, e.g. Np9 for the Moore neighborhood.
(ii) The model individual is a randomly chosen neighbor of
the focal individual. For an intuitive understanding of the
evolutionary dynamics of games in structured populations,
the VirtualLabs (Hauert, 2005) provide a collection of
interactive on-line tutorials on the evolutionary game
theory in general, and synergy and discounting, in
particular. It is easy to see that the complete graph, where
every individual is connected to every other member of the
population, recovers the process described in well-mixed
populations.
In structured populations the death–birth process

slightly favors cooperation as compared to the birth–death
process (Irwin and Taylor, 2001; Nakamaru and Iwasa,
2005). The intuitive reason is that in the birth–death
process a cooperator–defector pair competing for repro-
duction are necessarily neighbors which means that the
cooperator has directly contributed to the fitness of its
defecting competitor and thus decreased its own chances to
produce offspring. Conversely, in the death–birth process,
cooperators and defectors compete to recolonize a vacant
site and hence they are usually not direct neighbors, which
largely prevents cooperators from nourishing their oppo-
nents.
Population structures generally favor the evolution and

persistence of cooperation because this enables cooperators
to form clusters, thereby reducing exploitation by defec-
tors. This has been confirmed by extensive studies based on
the prisoner’s dilemma or public goods games (Hauert and
Szabó, 2003; Killingback et al., 1999; Nowak et al., 1994;
Nowak and May, 1992). However, it is important to keep
in mind that the clustering advantage is rather limited. For
example, persistence of cooperation in the spatial prison-
er’s dilemma generally requires that the net benefits of
mutual cooperation exceed the tenfold costs with some
variation depending on the update rule (Doebeli and
Hauert, 2005; Szabó and Hauert, 2002). In addition, recent
results indicate that under the relaxed conditions for
cooperation in the snowdrift game, spatial structure is
often even detrimental resulting in lower equilibrium
frequencies of cooperators than expected from well-mixed
populations (Hauert and Doebeli, 2004).
These general results remain valid for interactions in

social dilemmas for groups of larger sizes. For public goods
or prisoner’s dilemma type interactions ðcN=b41; cN=b4
wN�1Þ, defection dominates in well-mixed populations but
the clustering advantages arising from the spatial structure
enables cooperators to survive. However, the clustering
advantages are limited which confines persistence of
cooperation to a small area of the parameter range. This
is illustrated in parameter region (i) of Figs. 2–5 for the
different update rules referring to the replicator approach
as well as the birth–death and death–birth approaches
based on the Moran process. The differences between the
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Fig. 2. Effects of spatial structure on cooperation in social dilemmas for population updates based on the replicator dynamics. Top and bottom row depict

the phase-plane diagrams of two transects through parameter space (see legend to Fig. 1 for details). Column (a) shows the equilibrium fraction of

cooperators in individual based simulations for well-mixed populations. Red indicates no cooperation, blue full cooperation and orange, yellow, green and

light blue specify intermediate levels of cooperation. The solid and dashed lines indicate the analytical predictions and separate the dynamical domains

relating to different kinds of social dilemmas (see legend to Fig. 1 for details). The middle column (b) shows the frequency of cooperators derived from

simulations with local interactions on rectangular lattices. Each individual has eight neighbors (Moore neighborhood) which form the basis for randomly

sampling N � 1 interaction partners. The solid lines indicate the 1% and 99% levels of cooperation and along the dashed line equal proportions of

cooperators and defectors are observed. Finally, column (c) shows the difference between the previous two, i.e. emphasizes the effects of spatial structure.

In reddish areas, space reduces the equilibrium fraction of cooperators and in bluish regions space promotes cooperation by increasing the equilibrium

fraction. The saturation indicates the strength of the effect. In addition, red contours mark the reduction of cooperators in increments of 2% and blue

contours the increase of cooperators in increments of 10%. In the top row, the dots marked a, b, c and d refer to the respective snapshots of the lattice as

depicted in Fig. 3. The right column clearly shows that in regions (i) and (iv), spatial structure has considerable effects and leads to substantial increases of

cooperation. In particular, spatial structure alone enables cooperators to thrive in prisoner’s dilemma type interactions (region (i)). In contrast, for the

relaxed conditions of snowdrift type interactions, the effects of space are less clear. While space can still be favorable for cooperation under milder

conditions (less discounting, larger w), it often turns out to be detrimental and actually reduces the equilibrium fraction of cooperators. For dominant

cooperation (region (iii)) nothing changes. Parameters: 100� 100 lattice with periodic boundary conditions; other parameters same as in Fig. 1.
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three update types are quite striking in this region as
illustrated in Figs. 3d and 6d. The panels show a typical
snapshot of the spatial configuration of the lattice for equal
parameters. For the replicator approach roughly one-third
are cooperators clumped in fairly large compact clusters
(Fig. 3d). In contrast, for the birth–death process, only
around 18% cooperators are able to survive, whereas for
the death–birth process 90% cooperate leaving only
patches of defectors (Fig. 6d). The effects of spatial
structure are summarized in the frequency distribution of
the number of cooperators in each interaction group for
the replicator approach. Cooperators interact significantly
more frequently in groups of all cooperators than expected
from random binomial sampling. Similarly, defectors have
substantially less chances to exploit cooperators and often
forgo the benefits of the common enterprise in interactions
among defectors only (Fig. 3d).

In the other extreme where cooperation dominates
ðcN=bo1; cN=bowN�1Þ, which relates to by-product mu-
tualism, spatial structure does not affect the equilibrium
state and cooperation continues to dominate. This situa-
tion refers to parameter region (iii) of Figs. 2, 4, 5 again for
the three different update rules.
Clearly, the most intriguing effects of spatial structure

occur for the parameter range where cooperators and
defectors co-exist ð14cN=b4wN�1Þ. This corresponds to
generalizations of snowdrift type interactions to groups of
arbitrary size and refers to parameter region (ii) of Figs. 2,
4, 5. For stronger discounting (w small) as well as upon
increasing costs or decreasing benefits (cN=b approaching
one) spatial structure is detrimental to cooperation, i.e.
shifting the equilibrium fraction of cooperators in favor of
defectors as compared to unstructured, well-mixed popula-
tions. All these changes increase the severity of the social
dilemma. This is equally reflected in the decreasing
frequency of cooperators in well-mixed populations, but
spatial structure further amplifies the deleterious effects.
On the other hand, for weaker discounting (w approaching
one) and more favorable cost-to-benefit ratios, spatial
structure is again beneficial and the frequency of coopera-
tors is enhanced as compared to well-mixed populations.
These general patterns are observed for all three update
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Fig. 3. Snapshots of typical equilibrium lattice configurations of cooperators (blue) and defectors (red) together with the corresponding probability

distribution for the number of cooperators in each interaction group. (a)–(c) refer to region (ii) where cooperators and defectors co-exist (c.f. Fig. 2). In

well-mixed populations, all three parameter combinations result in equal proportions of cooperators and defectors. In (a) spatial structure decreases the

fraction of cooperators to about one-third, (b) leaves the fraction of cooperators essentially unchanged and in (c) cooperators thrive and leave only patches

of defectors. (d) refers to region (i) and corresponds to prisoner’s dilemma type interactions. In well-mixed populations cooperators go extinct but spatial

structures enable cooperators to form clusters thereby reducing exploitation by defectors. The probability distribution of finding a certain number of

cooperators in a group (bottom row) illustrates that spatial structure can lead to assortative or disassortative interactions among the two strategic types—

the former enhances cooperation, whereas the latter inhibits cooperation. The histograms depict the actually observed fraction of interactions with certain

numbers of cooperators (blue), the binomial distribution for the observed frequency of cooperators (black) and, as a reference, the binomial distribution

for equal proportions of cooperators and defectors (white). (a) Disassortative interactions are indicated by the bias towards fewer cooperators as well as

the sharper peak (blue) than the binomial distribution (black). (b) Even though the strategy frequency is unaffected by the spatial structure, interactions

are clearly assortative, i.e. the distribution (blue) is considerably wider and homogenous groups occur substantially more frequently than in binomial

sampling (black). (c) The pronounced peak at five (blue) again indicates assortative interactions. (d) Assortativity is most pronounced in prisoner’s

dilemma type interactions as indicated by the U-shape distribution (blue) as compared to the unimodal binomial (black). Parameters: 70� 70 lattice,

periodic boundaries; Moore neighborhood, N ¼ 5; (a) w ¼ 0; cN=b ¼ 0:0625; (b) w ¼ 0:5; cN=b ¼ 0:316; (c) w ¼ 0:8; cN=b ¼ 0:656; (d) w ¼ 0:9; cN=b ¼

1:15 (marked in Fig. 2c).
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rules but the deleterious effects are less pronounced for the
derivatives of the Moran process and actually almost
vanish for the death–birth process (see Fig. 5).

Typical snapshots of equilibrium lattice configurations
are shown in Figs. 3, 6a–c for parameters where theory
predicts equal proportions of cooperators and defectors in
well-mixed populations. For the replicator approach,
spatial structure can lead to filament like cluster formation
that results in an overall decrease of cooperation (Fig. 3a),
leave the equilibrium frequencies essentially unchanged
(Fig. 3b) or promote cooperators (Fig. 3c). In contrast, for
the same parameters, the Moran type updates invariably
promote cooperation (Fig. 6a–c)—an effect that is margin-
ally more pronounced in the death–birth approach.

Finally, for bi-stability ðwN�14cN=b41Þ, spatial struc-
ture is clearly in favor of cooperators. For all three update
types, the basin of attraction of cooperators is considerably
enhanced.

5. Conclusions

The evolutionary success of cooperators in social
dilemmas is substantially altered in spatially extended
settings with limited local interactions. For the most
stringent form of social dilemmas, as represented by
prisoner’s dilemma (or public goods) type interactions,
spatial structure enables cooperators to thrive by forming
clusters and thereby reducing exploitation by defectors.
However, this clustering advantage is rather limited. To
illustrate this, consider the net cost to net benefit ratio of
mutual cooperation r: the net benefits are given by PCðNÞ

and the net costs by �PCð1Þ. Note that the latter must
be positive for prisoner’s dilemma type interactions (c.f.
Eq. (1a)). For w ¼ 1 this ratio becomes particularly
simple with

r ¼
N � 1

N � cN
b

� 1. (3)

The condition for dominant defection requires cN=b41
and the simulation results (region (i) in top row of Figs. 2,
4, 5) indicate that for N ¼ 5 cooperators survive only if
cN=bt2 holds. Thus, persistence of cooperation requires
0oro 1

3
, i.e. the net benefits of cooperation must exceed the

threefold net costs, or similarly, this restricts feasible cost
and benefit values to a small parameter range 1

5
oc=bo 2

5
.

Note that the upper bound of r varies with N and may
become as small as � 1

10
for pairwise interactions (Doebeli

and Hauert, 2005). At the same time, it is only marginally
affected by the microscopic update mechanism.
Under the relaxed conditions for cooperation as

described by snowdrift type interactions, spatial structure
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Fig. 4. Effects of spatial structure on cooperation in social dilemmas for population updates based on the Moran process and implemented as a

birth–death process. As in Fig. 2, the top and bottom row display the phase-plane diagrams of two different transects through parameter space. The

equilibrium fraction of cooperators is depicted as a function of the discount/synergy factor w and the cost-to-benefit ratio cN=b (top) with N ¼ 5 fixed and

as a function of w and the group size N (bottom) with c=b ¼ 0:2 fixed. For further details, see legend to Fig. 2. (a) shows the fraction of cooperators in well-

mixed populations, (b) their frequency in lattice populations and (c) displays the difference between the two, emphasizing the changes arising from local

interactions and the spatial arrangement of the individuals. The results are very similar to those for the update based on the replicator dynamics (c.f.

Fig. 2): spatial structure increases the parameter range where cooperators thrive (shades of blue) in regions (i) and (iv), has no effect in region (iii) and may

either favor or hinder (shades of red) cooperation in region (ii). Quantitatively, cooperators draw less profit from the spatial structure in regions (i) and (iv)

for the birth–death process. At the same time, the birth–death process supports cooperation in the region of co-existence (ii) and significantly decreases the

region where spatial structure has detrimental effects on cooperation. To illustrate this Fig. 6 depicts typical snapshots of the equilibrium configuration of

the lattice for the parameters indicated by the points labeled a, b, c and d in the top panel of the right column.
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can both enhance or inhibit cooperation as compared to
the equilibrium fraction of cooperators in well-mixed
populations with random group formation. This observa-
tion cautions against the traditional viewpoint that local
interactions always benefit cooperation (Hauert and
Doebeli, 2004). Moreover, the equilibrium state of the
spatial system sensitively depends on the underlying local
update mechanism. The replicator approach results in a
large parameter range where spatial structure reduces
cooperation, whereas for the death–birth process the
deleterious effects almost vanish. The intuitive reason
why cooperation is promoted in the case of the death–birth
process is based on the fact that by first eliminating an
individual, i.e. vacating a site, the relation among the
competitors changes. More precisely, competing coopera-
tors and defectors are generally not nearest neighbors
themselves but rather separated by the vacant site. Thus,
and in contrast to the other mechanisms, the benefits
produced by the cooperator do not accrue to the defector,
i.e. cooperators no longer support their competitors and
thus become better competitors themselves.

The detrimental effects of spatial structure do not extend
into the realms of by-product mutualism or bi-stability.
For by-product mutualism, cooperation continues to
dominate and remains unaffected by the population
structure. For bi-stability, spatial structure again benefits
cooperators by substantially increasing the basin of
attraction of the cooperative state, i.e. a much smaller
initial fraction of cooperators is required in spatial settings
to end up in a state with all cooperators than in well-mixed
populations.
In summary, the problem of cooperation in any kind of

social dilemma can be phrased in terms of four biologicallly
meaningful parameters: costs and benefits of cooperation,
interaction group size as well as a factor determining the
discounted or synergistically enhanced value of accumu-
lated benefits (Hauert, 2005; Hauert et al., 2005). This
unifying framework encompasses various types of coop-
erative interactions that have been traditionally studied
separately. For spatially extended systems the results
confirm that limited local interactions and clustering
opportunities tend to reduce exploitation and thereby
support and promote cooperation. However, they also
caution against the common belief that spatial structure is
necessarily beneficial for cooperation because the clustering
benefits are limited to a small parameter range and,
moreover, for snowdrift type interactions spatial structure
may even become detrimental to cooperation.
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Fig. 5. Effects of spatial structure on cooperation in social dilemmas for population updates based on the Moran process and implemented as a

death–birth process. The same transects through parameter space are shown as in Fig. 2 for the update rule based on the replicator dynamics and in Fig. 4

for the birth–death process. (a) shows the frequency of cooperators in well-mixed populations, (b) in spatially structured lattice populations and (c) shows

the difference between the two. The previous qualitative results remain unchanged by the death–birth update rule but quantitatively it is clearly the most

favorable for cooperators. Not only does it lead to the most pronounced increases of cooperator frequency (shades of blue) in regions (i) and (iv), but also

the parameter range where spatial structure is deleterious (shades of red) in the region of co-existence (ii) is essentially displaced by substantial increases of

the parameter range that benefits cooperation. This shift in favor of cooperators is also illustrated in Fig. 6 depicting snapshots of typical equilibrium

lattice configurations with parameters as indicated by the points labeled a, b, c and d in the top panel of the right column.

Fig. 6. Snapshots of typical equilibrium configurations for update rules based on the Moran process. The upper row shows the results for the birth–death

process and the lower row for the death–birth process. (a)–(c) refer to the region of co-existence (ii) and in well-mixed populations these parameter settings

would lead to equal proportions of cooperators and defectors. The results for the two processes are essentially indistinguishable but as compared to well-

mixed populations they both substantially enhance cooperation. In (a) the contrast is even more striking when comparing to the update rule based on the

replicator dynamics (c.g. Fig. 3a), where spatial structure had detrimental effects on cooperation. (d) refers to region (i) for prisoner’s dilemma type

interactions. Because the persistence of cooperators crucially hinges on the cooperators’ ability to reduce exploitation through cluster formation, their

success is particularly sensitive to changes in the update rule for this strictest form of social dilemmas. Here the favorable effects of the death–birth process

on cooperation result in around 90% cooperators as compared to around 18% for the birth–death process. Same parameters as in Fig. 3 and as marked in

Figs. 4c and 5c.
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