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Abstract

To investigate the genotype—phenotype link in a polyclonal cancer cell population, here we introduce evolutionary game theory
into our previously developed agent-based brain tumor model. We model the heterogeneous cell population as a mixture of two
distinct genotypes: the more proliferative Type A and the more migratory Type B. Our agent-based simulations reveal a phase
transition in the tumor’s velocity of spatial expansion linking the tumor fitness to genotypic composition. Specifically, velocity
initially falls as rising payoffs reward the interactions among the more stationary Type A cells, but unexpectedly accelerates again
when these A—A payoffs increase even further. At this latter accelerating stage, fewer migratory Type B cells appear to confer a
competitive advantage in terms of the tumor’s spatial aggression over the overall numerically dominating Type A cells, which in turn
leads to an acceleration of the overall tumor dynamics while its surface roughness declines. We discuss potential implications of our

findings for cancer research.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This manuscript proposes a game-theory framework
to extend our previously developed spatio-temporal
agent-based model of brain tumor cells (Mansury and
Deisboeck 2003, 2004). In addition to rapid tissue
invasion (Giese et al., 1996), these neoplasms are
characterized by extensive heterogeneity (Shapiro,
1986), which contributes to the failure of current
treatment modalities. Since integrating a game-theory
module allows the modeling of cell—cell interactions in a
polyclonal population of tumor cells, this step is, from a
tumor biology perspective, a logical extension from our
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previously ‘monoclonal’ model that focused on pheno-
typic alterations. In particular, here we have a hetero-
genous population of tumor cells with two
subpopulations that can be distinguished based on their
distinct genotypes. The interactions among tumor cells
and between cells and environment create the diame-
trically opposing forces of cooperation and competition,
which can lead to nonlinear dynamics and complex
spatial pattern. Cooperation emerges when a group of
tumor cells together generate a synergistic effect in the
form of higher fitness levels than those of individually
isolated cells. At the same time, however, these cells also
spatially compete with each other to occupy more
permissive locations characterized by nutrient abun-
dance. The discreteness of our agent-based model, where
the smallest unit of observation is an individual tumor
cell, naturally complements a game-theory module.
Such a module focuses on pairwise cell—cell interactions,
which require a spatially explicit model because they
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lead to insightful complex dynamics that cease to exist in
a non-spatial paradigm (Sole and Bascompte, 1992;
Gonzalez-Garcia et al., 2002). Additionally, a temporal
framework is necessary when the long-term outcome
likely does not settle into Nash equilibrium' (Nowak
and Sigmund, 1989; Nowak and May, 1995), which
often happens when the current outcome depends
dynamically on the previous frequency distribution,
i.e. the relative proportions of the existing genotypes? in
the tumor cell population.

‘Game theory’ originated within the field of social
sciences in an effort to deal with the problem of
interdependencies among interacting agents. Evolution-
ary biologists (e.g. Hamilton, 1967; Smith and Price,
1973) subsequently adopted the game-theory framework
to model local cell-cell interactions. Since then, the
number of papers that employ game theory to examine
biological problems is in thousands (see Dugatkin and
Reeve, 1998). The fundamental principal is that the
actions of one individual have an impact on the ‘fitness’
of others, which in turn affect the evolutionary
dynamics of the entire system. In the context of tumors,
‘players’ in a game-theory framework correspond to
cells whose phenotypic behavior depends on both the
genotypes of the cells they interact with (i.e., their ‘co-
players’) and the microenvironment they face. Incorpor-
ating a game-theory framework is useful in a model that
examines the feedback effects between tumors and their
environment (Nowak and Sigmund, 2004). Experimen-
tally, Roskelley and Bissel (2002) identified microenvir-
onmental factors that can trigger genetic abnormalities,
hence promoting the emergence of breast and ovarian
cancer. Simulations have also shown that the relative
frequencies of distinct genotypes in the tumor cell
population depend on the environment (Kansal et al.,
2001). This causal mechanism, however, captures only
one-half of the evolutionary dynamics. The feedback
loop closes when the environment itself adapts as a
result of the changing population configuration.

A novel contribution of our paper is the explicit link
between the genotypes of individual cells and their
expressed phenotypical behavior. Previous evolutionary
game-theory studies have been formulated exclusively in
terms of phenotypes (Nowak and Sigmund, 2004),
thereby ignoring the complexity of the genotype—pheno-
type link. The neglect is due to the lack of experimental
evidence mapping ‘allele’ space to a ‘trait’ space. Our

"Nash equilibrium in this context here corresponds to a set of
genotypes with the property that no group of monoclonal cells can
benefit (i.e. obtaining higher average fitness payoffs as a group) by
altering the genotype of their offspring, e.g. through mutation. The set
of such genotypes and the corresponding payoffs constitute the Nash
Equilibrium.

2Genotypes here refer to the (fixed) genetic constitution of a tumor
cell, which is distinct from the cell’s expressed behavioral ‘traits’, or
phenotypes, that can alternate.

simulation model thus provides the starting point for
exploring such a genotype—phenotype relationship and
for hypotheses testing as more data become available in
the future.

In the following, we briefly review previous works
that specifically employ game-theoretic approaches to
model local interactions in a heterogeneous population
of cancer cells.

2. Previous studies

To our knowledge, Tomlinson (1997) first proposed a
game-theory model of interacting tumor cells. However,
he defines the strategy space based only on the
production rates of cytotoxic metabolites that a tumor
cell produces. This work focuses entirely on the cell—cell
interactions between different genotypes of cancer cells
and does not account for the interactions between
cancer cells and the surrounding environment. In related
work, Tomlinson and Bodmer (1997) developed a game-
theory model of a cancer cell population consisting of
two types of cells. They show that polymorphism (i.e.
stable coexistence of two distinct genotypes) emerges if
the benefits of angiogenesis are greater than the costs.
Their model is continuous and non-spatial, but again
they do not consider the interactions between cancer
cells and their environment. More recently, Bach et al.
(2001) introduced an agglomeration effect into Tomlin-
son and Bodmer’s (1997) game-theory model of inter-
acting tumor cells. Specifically, the authors assume that
at any given time a cell can interact with up to two local
neighbors. To gain a proliferative advantage, at least
one of the cell’s neighbors must be of the same genotype.
Although their model is inspired by the impact of spatial
heterogeneity, they do not explicitly propose a spatial
model, nor do they consider the interplay between the
cells and the environment. Conversely, Gatenby and
Vincent (2003a) explicitly consider the cell-environment
interactions in their game-theory model of colorectal
carcinogenesis. Their work specifies that cells proliferate
only if nutrient uptake exceeds the threshold metabolic
requirements. These authors use a system of augmented
Lotka—Volterra equations to convert nutrient uptake
into new daughter cells. In a parallel work, Gatenby and
Vincent (2003b) propose game-theoretic interactions
between tumor and normal cells to examine the efficacy
of various therapeutic strategies. In this line of Gate-
nby’s works there is no geography in the model. In their
previous work, Gatenby and Gawlinski (1996) and
Gonzalez-Garcia et al. (2002) introduced spatial com-
petition by adding a diffusion term to the system of
Lotka—Volterra equations. Taken together, such con-
tinuum spatial models are most useful to model
relatively large tumors consisting of a sizeable popula-
tion of cells. However, a continuum approach may not
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be suitable during the crucial early stages of tumorigen-
esis characterized by a small, discrete number of tumor
cells. Yet, from a systems perspective, it is arguably the
spatio-temporal behavior of this initially relatively small
number of tumor cells that subsequently establishes the
evolutionary trajectory of the tumor (see, e.g. Mansury
and Deisboeck, 2003, 2004). Specifically, the tumor’s
average spatial velocity determines how quickly cancer
cells invade their surrounding brain parenchyma, which
in turn often determines the patient’s prognosis.

The following section details the game-theory module
extending our previously developed agent-based model
of malignant brain cancer (Mansury and Deisboeck,
2003, 2004). As in our previous works, we also
hypothesize here that migrating tumor cells® are biased
random walkers guided by the presence of environ-
mental stimuli when they invade the (virtual) brain
parenchyma. However, here we choose to include only
nutrient gradients as the pertinent environmental factors
while excluding toxic metabolites and mechanical
confinements. Such a simplified setup allows us to
establish the cause—effect link between the tumor and its
microenvironment more transparently.

3. Model
3.1. Game-theory module

‘Strategic’ interactions among virtual cancer cells can
be represented by a simple model of evolutionary game
theory. Such a framework means that an interaction
between two cells confers certain ‘payoffs’ whose specific
value depends on the genotypes of the interacting cancer
cells. In turn, these payoffs determine the cells’
phenotypic behavior, thus completing the genotype—
phenotype mapping. Here we will consider local inter-
actions only: a cancer cell can interact only with its
neighbor cells located in an adjacent location one lattice
site away sharing a common border.

The game-theory features of our model are as follows:
Initially at time ¢ =0 there are two equal-size sub-
populations of cancer cells that can be distinguished
based on their genotypes: A and B. We assume that the
genetic makeups, resulting from mutational events, are
such that genotype A is highly proliferative and exhibits
higher inclination to communicate with other cells via
gap junctions, while genotype B is highly migratory
and performs lesser gap junction communications (see
Table 1). We emphasize here that genotype A can also
migrate (and genotype B can also proliferate); however,
under the same environmental conditions genotype A

3Although we are aware of the 2D/3D distinction between cell
migration and invasion, in here, we have used these two terms
interchangeably to merely describe cell motility.

Table 1

The distinctions between genotypes A and B in terms of their
genetically encoded capability to proliferate, migrate, and commu-
nicate with other cells via gap junctions

Genetic composition

Type A Highly proliferative genotype
High number of gap junctions
Type B Highly migratory genotype

Low number of gap junctions

has higher probability to proliferate than genotype B
(while genotype B has higher probability to migrate).
For now, neglecting further mutational events, these
genotypes are fixed properties that never change during
the lifetime of these virtual tumor cells.

Given the two genotypes, there are thus three possible
pairs of interacting cells, namely A—A, A-B, and B-B.
Let N ={1,2,...,n} be the set of all viable cells in the
population, which can be broken down into n4 , cells of
Type A and np, cells of Type B, np+ng=mn. The
relative proportions (i.e. frequencies) of these distinct
genotypes in the total population are therefore [, =
ng/nand fzp=1—f, for Type A and B, respectively.
When a pair of cells interacts, each cell is rewarded with
certain ‘payoffs’, which affect their phenotypic behavior
in terms of growth or migratory activities. In contrast to
genotypic composition, phenotypic behavior can alter
depending on the cell’s partner of interaction and on the
environmental factors. A payoff matrix summarizes the
rewards for cell interactions affecting their phenotypes,
but whose magnitude depends on the genotypes of the
interacting cells, thus establishing the genotype—pheno-
type link.

The left-most column in Table 2 indicates the
genotypes receiving the rewards (i.e. the ‘player’)
whereas the top row represents the genotypes of
the cells they are interacting with (i.e. the ‘co-player’).
Table 2 thus indicates that when two cells of Type A
meet, each cell is rewarded with payoffs o. Similarly
when two cells of Type B interact, each receives
payoffs 7. An interesting event occurs when cells of
different genotypes interact because the outcome can be
asymmetric. In this case when a Type A and a Type B
meet, the former is rewarded with f and the latter with
0. The expected payoff for an individual Type A cell is
then

Eq=f 041 —f b, (1
and for a Type B
Ep=fgy+(1—[p)o. 2)

If greater phenotypic payoffs in terms of proliferation as
well as migratory activities correspond to higher fitness
levels, then the average fitness of the entire tumor system
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Table 2
Generic phenotypic payoff matrix of interactions between tumor cell
genotypes A and B

Encounter with

Type A genotype Type B genotype

Type A p
Type B J y

Payoffs to

R

population can be computed as

Er zw ((n;>oc+n,4n3(ﬁ+y)+ (n;)é).

)

That is, the average fitness of the tumor system depends
on the relative proportions of genotypes A and B in the
total multicellular population of size n. Having derived
this period’s expected fitness, we can compute the next
period’s relative proportions of the existing genotypes in
the population using the following difference equation:

E E
S 4 :fA,tﬂ and [, :fB,t—I:Z' 4)

T E

Eq. (4) shows that the population dynamics of the
tumor system can be characterized by path dependency,
i.e. the next period’s genotypic composition depends on
the current genotype composition, which in turn
depends on the last period’s genotypic composition,
and so on. Depending on the particular parameter
values, in the absence of spatial constraint this model
has three alternative and stable outcomes: (i) Coex-
istence. Here, genotypes A and B coexist with stable
proportions if 6>o and >7v. In this case, game theory
predicts that cell population will consist of a roughly
50-50 stable mixture of both genotypes A and B cells.
(i) Domination. Type A will emerge as the sole
dominant genotype if > and f>7. That is, regardless
of the population’s genotypic composition, it always
pays more to be a Type A. By contrast, Type B will
dominate the cell population and drive Type A to
extinction if d>o and y> f. (iii) Bistability. If o> yet
y>f3, then either Type A or B vanishes depending on the
initial mixture since cells fare best when matched with
another cell of the same genotype.

It is important to realize that the payoff values above
are only defined for every pair of cells. If we allow for
the simultaneous interactions of more than two cells,
then payoff values will depend on the genotypic
composition in the cell’s neighborhood. In these more
general cases, the outcomes cannot be determined
without recourse to numerical simulations. A simulation
platform is also warranted if we want to consider
explicitly the feedback effects between the tumor cells

and their heterogeneous microenvironment. In that case,
the cells’ fitness levels depend not only on the genotypes
of their peers, but also on environmental factors. This
leads to a tumor system that evolves due to not only
population dynamics but also the adaptive environment.
Additionally, in the context of brain tumor growth in
vivo, space serves as a key constraint because cell
migration is limited locally (per unit of time) and
cell—cell interactions (e.g. gap junctional communica-
tions, paracrine growth factor effects) are relatively
short range. In that case, geography matters. To
quantify the performance of an evolving tumor system
that exhibits these three components—path dependency,
dynamic feedbacks, and local interactions—a numerical
model is required.

Different from the standard game-theory approach
for tumor modeling that defines the payoffs only in
terms of the promotion of a cell’s proliferation activity,
a novel feature of our numerical spatio-temporal model
here is the notion of genetic differences defined not only
in terms of (i) proliferative capability, but, in addition,
also in terms of (ii) cell-cell communication and (iii)
migratory capability (see Table 1). These genetic
differences in turn translate into three categories of
phenotypic payoffs: namely, in terms of gap—junction
communication (GJC), proliferation activity, and mi-
gration activity.

Following Table 1, we assume that the highly
proliferative Type A cells perform extensive GJC,
inspired by in vivo experiments (Ghosh and Singh,
1997) showing that rapidly proliferating glioma cells
(i.e., Type A cells here) exhibit a high density of
gap—junctional channels. In this case, we define genetic
differences in terms of distinct capabilities in GJCs
conferring a certain degree of information processing
within the tumor system. Simplified, GJC represent
anatomical channels through the surface membrane
that, if aligned, enable direct chemical signal transmis-
sion in between two neighboring cells (Kumar and
Gilula, 1996).

To link cells’ genotypes to their phenotypes, which in
turn affect the tumor’s fitness levels, we hypothesize that
the extent of cell-cell GJ communication that depends
on each cell’s genotype affects its phenotypic behavior,
i.e. whether a cell remains quiescent, proliferates, or
migrates. Table 3 shows the phenotypic payoffs of
cell—cell interactions in terms of GJC.

Specifically, according to Table 3, when a pair of
cells interact within a spatially local neighborhood,
the phenotypic payoffs in terms of the extent of
cell-cell communication between these two cells
becomes (i) very high (111) if both cells are of
Type A, (i) high (1) if Type A meets Type B, and
(ii1)) normal (1) if both cells are of Type B. In game-
theoretic terms, the level of cooperation is highest among
Type A cells.
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Table 3
Gap junction (GJC) matrix specifies the phenotypic ‘cell-cell commu-
nication’ payoffs represented in a game-theory matrix format

Cell—cell communication Type A genotype  Type B genotype

Table 5

The ‘migration’ payoffs measure the inverse relationship between
gap—junction cell—cell interaction and the migration activities of the
individual cells

payoffs Migration payoffs Type A genotype Type B genotype
Type A T " Type A T i

Type B " T Type B I T

Table 4

The ‘growth’ payoffs measure the negative impact of gap—junction
cell—cell interaction on the reproductive activities of the individual cells

Proliferation payoffs Type A genotype Type B genotype

Type A L I
Type B 1 1

The implications of these payoffs in terms of the cells’
proliferation activities are as follows. As shown by the in
vitro experiments of Zhu et al. (1992), lower prolifera-
tion activities correspond to a higher level of GJC. In
particular, the authors show that overexpression of the
GJC protein connexin 43 significantly reduces cell
proliferation. Therefore, in Table 4 we link the extent
of GJ communication to the (negative) payoffs of
cell-cell interactions in terms of their phenotypic
proliferation activities.

According to Table 4, since Type A cells exhibit the
highest degree of intercellular coupling (see Table 3), the
extent of this growth retardation is greatest when both
cells are of Type A (1), high when a Type A meets a
Type B (| ), and limited when both cells are of Type B
({). Note that even though a Type A cell experiences the
highest reduction in proliferation activities when it
interacts with its own type, we assume that the reduction
is bounded from below such that Type A’s proliferation
activities (which are much higher than Type B’s to begin
with) never fall below those of Type B. Let 7; represent
Type 1’s extent of proliferation activity for an isolated
cell, and Am;; the negative payoffs in terms of the decline
in proliferation activities when two cells of types i and j
meet. Our boundary condition then guarantees that
Min7n/, = ny — MaxAny;>np, i = A4, B.

The aforementioned study focuses exclusively on
proliferative activities. Glioma cells, however, also
actively migrate and rapidly invade the surrounding
brain parenchyma (Deisboeck et al., 2001). In a study
that links GJC to the migratory behavior of glioma cells,
McDonough et al. (1999) found that the fastest
migrating cells are those expressing the least amount
of connexin 43. Accordingly, Table 5 describes the
extent to which GJ communication affects payoffs of
cell-cell interactions in terms of their phenotypic

migratory activity, thus linking Table 3 to cell migration
activities.

Specifically in Table 5, Type A cells exhibit the highest
GJC (see Table 3); hence, the phenotypic migration
payoffs are low when both cells are of Type A (1),
medium when a Type A meets a Type B (11), and high
when both cells are of Type B (111).

3.2. Agent-based model

As stated earlier, our study here merges the afore-
mentioned game-theory module with a previously-
developed agent-based model (Mansury and Deisboeck,
2003, 2004), allowing the introduction of a heteroge-
neous population of tumor cells with distinct genotypes.
Specifically, we link the genotype-dependent payoff
values with the tumor cells’ phenotypic activities of
proliferation and migration. First, it is important to
note the role of geography in our model: within each
subpopulation (Type i€ {A,B}), cancer cells have
identical genotypes, but can still exhibit different
phenotypic behavior because of spatial modulations in
the environmental conditions as well as a result of
cell—cell interactions. As such, the model considers both
genetic and epigenetic heterogeneity.

To focus on cell heterogeneity, our environmental
factors consist only of nutrient supplies, while disregard-
ing the impact of toxic metabolites and mechanical
confinements, which we have elaborated in our previous
works. Thus, there is no cell death linked to the
accumulation of toxicity. Instead, here cells can perform
one of these actions: proliferate, invade, or turn
quiescent. In addition, we also assume here that both
proliferation and migration occur within the same time
scale as in our previous works. This simplification is due
to the lack of experimental data detailing the precise
time scales for different phenotypic behavior in the same
setting.

For a tumor cell to either proliferate or migrate, its
location must be on the tumor surface and at the same
time satisfy minimum nutrient requirements reflecting
the cell’s metabolic demand. Specifically, the onset of
both proliferation and migration must satisfy the
threshold levels of nutrients, (¢, ¢y), such that a
tumor cell in surface location ¢ proliferates if its onsite
nutrient level exceeds the upper threshold, ¢,> ¢, or
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migrates to the surrounding parenchyma whenever
¢ <d,<¢dy. Alive tumor cells that are trapped inside
the tumor (hence are incapable of either proliferating or
moving) or reside in locations with inadequate nutrients
less than the lower threshold, ¢, < ¢;, enter a reversible,
quiescent state.

3.2.1. Cell proliferation

The link between the game-theory module and the
cells’ proliferative activity is established the following
way. We propose that the probability to proliferate for a
Type i cell, i € {4, B}, in location ¢ is determined in the
following way:

Prproliferale,j = ¢€/(¢f + kprolif,i)»i € {A» B}, (5)

where the parameter k. controls the extent of
proliferation activity such that the higher its magnitude,
the less likely proliferation can occur. Eq. (5) can be
interpreted as the fitness generating functions of a Type i
cell (Brown and Vincent, 1992), which specifies how an
individual cell’s proliferative activity relates to both the
genotype of its neighbor (via ks, i € {4, B}) and the
location-specific environmental factor (i.e. the onsite
levels of nutrients ¢,). As we have assumed in Table 1,
Type A cells are highly proliferative genetically right
from their origin (i.e., kproir,4 <kproir,n). Because of the
experimentally proven phenotypic dichotomy between
growth and migration (Giese et al., 1996; Mariani et al.,
2001) that is built into our agent-based algorithm,
during their lifetime genetically more proliferative (and
thus epigenetically, more proliferative active) Type A
cells will also have lower probability (phenotypically) to
migrate to the surrounding parenchyma. It is important
to note here that in our model a cell with a specific
genotype (either 4 or B) over its lifetime is capable of
both proliferating and migrating, yet at any given
moment if the cell is non-quiescent, then it can only
either proliferate or migrate, but not both at the same
time. For example, at time ¢+ 1 a cell that migrated in
previous time ¢ can certainly proliferate if certain
environmental and spatial conditions are satisfied (see
the Algorithm Implementation section below for specific
details of these conditions), and vice versa.

In the absence of more specific experimental data, we
assume for now a negative, linear link between the
extent of GJ communication (Table 3) and phenotypic
proliferation activities: k;m,if’l- = Wi Kprolif i i,J € {4, B}.
That is, the payoffs n;; adjust downward the prolif-
erative activity of a tumor cell whenever cell—cell
interaction occurs. In particular, following Table 4,
T44>T4p>Tpp With myp = np 4. For example, a Type
A cell experiences the largest reduction in proliferative
activities when it meets another Type A, whereas a Type
B cell meeting a same-type cell experiences the least
reduction. At any given time, however, a cell can
interact with all its neighbors sharing a common border

in the West, Northwest, North, Northeast, East, South-
east, South, and Southwest (i.e. the so-called ‘Moore
neighborhood’). When multiple interactions occur
simultaneously, we assume a multiplicative rule:

/
prolif i = prolif i H Ty, (6)
J

where i,j € {A, B} and cell j € i’s neighborhood.

3.2.2. Cell migration

Migrating cells compare the strength of chemical,
diffusive signals that their local neighbors transmit. This
modeling concept follows earlier works by Sander and
Deisboeck (2002) arguing that ‘homotype’ attractor
signals aid the emergence of branch-like migration
patterns seen in experimental setups (Deisboeck et al.,
2001). Such signals represent, e.g., the protein ligand
TGF-a, which, after being secreted by the tumor cells
themselves, acts paracrine in that it binds to the tumor
cells” epidermal growth factor receptor. Specifically, the
magnitude of the signal S, that a cell k transmits from
location ¢ at time ¢ is a function of the current onsite
level of nutrients, augmented by the signals transmitted
by the cell’s neighbors at time ¢ — 1:

Si(®) = fIpeD] + > wmSm(t — 1), @)

m=0

where m € k’s set of nearest neighbors and w,,
denotes the distance-dependent weight. We define
flo, (D)1 =1—1/¢,(¢), implying 0f/0¢p>0, i.e. higher
nutrient levels amplify the magnitude of these paracrine
signals, and hence guide the migration trajectory of
tumor cells along the chemotactic path of ‘highest
attraction’ (for this concept, see Deisboeck et al.,
2001). We detail the numerical method calculating the
signal weights in Eq. (11). Furthermore, we argue here
that lower levels of GJ communication are associated
with higher activities of migration phenotypically as
mediated by the stronger signal Sj: SﬁczuiJSk,
i,j € {4,B}, and p;;>1. This inverse relationship
follows McDonough et al. (1999), who argue that
suppressing connexin-43 expression (i.e. lower GJ
communication) allows glioma cells to detach
from their neighbors, which in turn should accelerate
migration. Following Table 5, we assume that
Upp>Myp>Hy4 1.€. a B-B interaction triggers cell
motility  through  significant amplification, g p,
of the signal strength that guides migration. Note,
however, that since we have the same time scale for
both proliferation and migration in the current
setting, this signal amplification mechanism has a
lesser impact on B-B interactions than would be
expected otherwise. Again a multiplicative rule
prevails when a cell interacts with several local
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neighbors simultaneously:
Si =S ][ m- @®)
J

where i,j € {4, B}. An cligible cell m invades a neighbor-
ing location that transmits the strongest signal, art max
S}, k € m’s set of nearest neighbors.

3.2.3. Microenvironment

Finally, nutrient sources ¢, evolve dynamically and
spatially according to the following partial differential
equation:

0
a—q: = g¢d> + V. (Dd,Vd)) — TN, 9)

in which ¢,(¢) stands for the nutrient levels at location ¢
and time 7, g, is the rate of nutrient replenishment, D,
the nutrient diffusion coefficient, r4, the rate of nutrient
depletion, n.(t) the onsite population of tumor cells, and
V the spatial gradient operator. Biological examples for
such extrinsic nutrient molecules include glucose and
oxygen.

3.2.4. Surface roughness

We compute the roughness of the virtual tumor
surface to track changes in the tumor’s structural
pattern. In this study here, surface roughness determines
the variability of the tumor’s diameter, measured as the
distance between two opposing points on the tumor
surface separated by a rotation of 180°. Extensive
branching pattern imprinted mostly by migrating tumor
cells thus should correspond to a higher degree of
surface roughening. We compute surface roughness as
the average squared deviations of the surface cell’s
distance from the average:

Ny
() =Y (d —(d))’/N,, (10)
n=1

where N, denotes the number of cells occupying the
tumor surface.

The following section details the algorithm imple-
mentation of our mathematical model.

4. Algorithm implementation

Here, our spatial framework is a 500 x 500 grid lattice
corresponding to a 2D virtual brain tissue section.
Initially, in that space we place two replenished nutrient
sources (representing, e.g. cerebral blood vessels) at the
grid center [i.e. at x—y coordinates (250,250)] and in the
middle of the northeast (NE) quadrant [i.e. at (375,375)],
respectively. We define Region 1 as the set of locations
that is r; units of distance away from the grid center,
ri < Ry, and Region 2 as those r, units away from
the middle of the NE quadrant, r, < R,, with

Ry + R, =125. To establish a strong chemotactic
gradient, the nutrient peak at Region 2 is set up to be
5 times higher than that at Region 1. As the simulation
progresses, the nutrient level ¢,(¢) at location £ and time
t is updated according to Eq. (9). At the beginning of
every simulation, we place 5 virtual cells of Type A and
an equal number of Type B at the grid center. The
current state of the virtual tumor cells at every step in
the simulation is updated by the implementation of the
following steps: (i) update paracrine-mediated cell
signals, (ii) enable game-theory interactions, (iii) deter-
mine which cells proliferate, (iv) determine which cells
migrate within the local neighborhood, and (v) deter-
mine which cells turn quiescent. Note that at any given
time, a lattice site can be either empty or occupied by at
most one single tumor cell. Also note that for a tumor
cell to either proliferate or migrate, it must be located on
the tumor surface; else it will turn quiescent (Freyer and
Sutherland, 1986).

(1) Update signal: The strength of a tumor cell k’s
current signal Sy is calculated as a function of both
the onsite nutrient levels and the weighted average
of signals coming from the cell’s neighboring
locations. First, the distance weight w,, is calculated
such that signals from nearby locations are assigned
greater weights than those coming from distant
locations:

_ dk,m
Wy = 1.0 (dk,m mn rs), (11)

where m € k’s set of nearest neighbors, dj. ,, denotes
the distance separating cells k and m, and rg is a
constant positive parameter. Having determined the
weights wy’s, a cell’s new signal for the next time
period is calculated according to Eq. (7).

(i1) Game-theory interactions: The details of game-
theory cell—cell interactions follow the descriptions
specified above in the modeling section. As a result
of these interactions, cells’ proliferation parameter,
Kprotif,i» and their signal strength, Sy, are adjusted
based on the payoff matrices (see Tables 4 and 5).

(iii) Determine cell proliferation: A cell in location ¢ is
allowed to proliferate if these conditions are met: (i)
¢, > ¢y and (i) there must be available locations
for the new offspring to be placed adjacent to the
parent cell (i.e. the parent cell must reside on the
‘surface’ of the tumor or cluster). If these conditions
are met, then the tumor cell is allowed to proliferate
with the probability determined by Eq. (5). Because
proliferation is a probabilistic event, there will be a
number of tumor cells that are eligible to proliferate
but are not selected to do so at a given step.

(iv) Determine cell migration. A cell is allowed to
migrate if (i) either it is eligible to proliferate but
does not because of random chance, or its onsite
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nutrient levels are lower yet sufficiently high to
migrate: ¢; <¢d,<¢y, and (ii) there is at least one
unoccupied, adjacent location for the cell to invade
that is one lattice site away. If these criteria are met,
then an eligible tumor cell migrates and follows the
direction of the strongest signal, S;, as defined in
Eq. (7).

(v) Determine cell quiescence. Cells that do not pro-
liferate or migrate automatically enter a reversible,
quiescent state.

5. Results

In the following, we show results from varying the
payoffs for A—A cell-cell interactions in terms of their
phenotypic proliferative activities (see Table 4). Recall
from our modeling section that interactions between a
pair of A—A cells result in the steepest reduction of the
proliferation activity for both cells involved. We have
also experimented with various migration payoffs for
B-B interactions, yet as expected we did not find a
discernible pattern in their spatio-temporal performance
due to our current setup of equal time-scale for both
proliferation and migration, which implies that during
either proliferation or migration, the tumor expands to a
vacant lattice site that is one unit of distance away from
the parent’s location for the former or the migrating
cell’s original location for the latter.

5.1. Average velocity

Here, average velocity serves as a measure for the
tumor’s overall performance. Fig. 1 shows that as on the
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Fig. 1. Plot of the time to the second nutrient source (i.e. the inverse of
the tumor’s average velocity) versus various payoff values conferred to
A-A intercellular interaction. The error bars indicate the standard
deviations from performing 10 Monte Carlo simulations for each value
of payoffs for A—A interactions.
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Fig. 2. Plot of various payoff values conferred to A—A intercellular
interaction versus surface roughness (open squares, left y-axis) and
frequency of genotype A in the population (closed circles, right y-axis).
The error bars indicate the standard deviations from performing 10
Monte Carlo simulations for each payoff value conferred to A-A
interactions.

x-axis the payoffs conferred to A—A interaction increase
in terms of lesser reduction of Type A’s proliferative
activities, unexpectedly the average velocity of the
tumor’s spatial expansion exhibits a phase transition.
That is, initially the time to the second nutrient source
rises, representing declining velocity, as the A—A payoffs
increase. But then it appears to reach a minimum
velocity at a payoff of approximately 0.83 before it rises
again, as Type A cells become the numerically dominat-
ing genotype (see the right y-axis in Fig. 2) in the total
population (i.e. including proliferating, migrating, and
quiescent cancer cells) at a payoff of 1.00.

5.2. Structural patterns and genotypic robustness

Fig. 2 shows that as the payoffs conferred to A—A
cell—cell interaction increase, surface roughness declines
continuously (left y-axis). At the same time, the
frequency of genotype A (right y-axis) in the total
population increases monotonically, i.e. becomes more
robust. That is, as the more proliferative yet less
migratory Type A becomes dominant, surface roughness
declines. Conversely, surface roughness rises as the more
migratory Type B becomes the dominating genotype (at
lower A—A payoffs), consistent with our previous study
examining ‘structural-pattern’ relationship (Mansury
and Deisboeck, 2004) showing a positive correlation
between fractal dimensions of the tumor surface and the
number of migrating cells.

5.3. Time series and spatial profile of tumor genotypes

To better understand the evolution of the tumor
cells over time, here we examine the time series of
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migrating and proliferating cells broken down by
genotypes. Figs. 3(a)—(c) show the results from varying
the payoffs conferred to A—A interactions. In Fig. 3(a),
when the A-A payoffs are low (=0.73, i.e. large
reduction in proliferation activity of A cells), as expected
genotype B dominates both migration and prolifera-
tion over time and across regions. Note that these
results correspond to “Point 17 in Fig. 1, where the
tumor’s velocity is relatively high (i.e. lesser time to
reach source 2).

When the A-A payoffs rise to 0.83 (i.e. smaller
reduction in proliferative activity, Fig. 3(b)), as expected
genotype A now starts to dominate both migration and
proliferation. An oscillating pattern emerges here for the
time series of proliferating cells, with initially increasing
dominance of genotype A just before the tumor crosses
the border between Regions 1 and 2. However, as the
tumor crosses the border of Region 2 (at r = 157), the
proportion of genotype A decreases, reaching a 50-50
composition as it approaches the center of source 2.
Fig. 3(b) thus shows that the dominant genotype can
change based on alterations in the environmental
conditions, in this case the rising supplies of nutrient
in Region 2 that is up to 5 times higher than in Region 1.
Note that A-A payoffs = 0.83 corresponds to the

slowest velocity of the tumor’s spatial expansion, i.e.
‘Point 2’ in Fig. 1.

Finally, increasing the A—A payoffs further to 1.00
(Fig. 3(c)) leads to a diametrically opposite and rather
unexpected result, namely genotype B returns to
completely dominate the composition of both migrating
and proliferating cells, despite genotype A dominating
the total population (see Fig. 2). Thus, at high A-A
payoffs, Type A numerically dominates the entire cell
population; however, the majority of this genotype
comprises quiescent cells (data not shown here), which
leads to Type B dominating both proliferation and
migration activities. These results correspond to ‘Point
3’ in Fig. 1, where the tumor’s velocity is again relatively
high.

6. Discussion

Here, we have integrated a game-theory module into
our previously developed agent-based model of ‘mono-
clonal’ brain tumors (Mansury and Deisboeck, 2003,
2004). This game-theory module not only specifies the
impact of intercellular communications but also extends
the agent-based framework to the more realistic case of
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Fig. 3. Time series of a number of tumor cells for various payoff values conferred to A—A interactions. (a) A—A payoffs = 0.73, (b) A-A
payoffs = 0.83, (c) A—A payoffs = 1.00. The top figures show the time series of migrating cells broken down by genotypes as a proportion of total
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circles represent Type A cells in Region 1, closed circles in Region 2. Open squares represent Type B cells in Region 1, closed squares in Region 2.
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polyclonal tumor cell populations. Among such hetero-
geneous cell populations, competitive selection pressure
favors the ‘fittest’ clone. To simplify our analysis, as a
starting point we assume that the tumor population
consists of two static genotypes A and B, although we
are aware that in reality new cancer genotypes
continuously evolve over time. Having established a
simulation platform here, in future works we can allow
the emergence of new subpopulations through either e.g.
mutation.

What is not clear a priori is whether higher fitness, in
this case measured as spatio-temporal expansion velo-
city, corresponds to the more proliferative genotype A
or to the more migratory genotype B. To establish the
link between the tumor fitness and genotypes, we
examined the impact of changing the A—A payoffs on
the tumor’s average velocity. These payoffs affect the
phenotypic behavior of the A cells, yet the values of
these payoffs depend on the genotypes of the interacting
cells.

With regard to the overall performance of the tumor,
we found a phase transition in the average velocity of
the tumor’s spatiotemporal expansion. That is, velocity
initially falls as the payoffs to A—A interactions increase,
but rises again when the payoffs increase further. This
phase transition is rather surprising because at the
individual cellular level, Type A cells are highly
proliferative yet less migratory, and thus without
running the simulations one would expect the velocity
to decline continuously as the stationary Type A
becomes the dominating genotype in the total popula-
tion, on the numerical expense of the spatially more
aggressive, highly migratory Type B clone.

On the structural side, we found that surface rough-
ness increases as the A—A payoffs decrease, accompany-
ing a monotone decrease of the genotype A cells in the
total population (i.e. including proliferating, migrating,
and quiescent cells, in all regions). Taking Figs. 1 and 2
together, one can therefore conclude that lesser A—A
phenotypic payoffs (Table 4) expectedly (i.e. due to
spatial competition) promote a higher frequency of the
more migratory Type B, which in turn leads to both the
roughening of the tumor’s surface through largely
migratory cell branches and, consequently, an accelerat-
ing spatio-temporal expansion. Point 1 in Fig. 1 thus
represents a ‘migration’-driven velocity optimum and
the corresponding time series indeed confirms that at
low A—A payoffs, genotype B is the dominant tumor cell
clone in both Regions 1 and 2.

Now, as the A—A payoffs rise further, as expected the
more proliferative Type A increases its population
frequency and becomes the dominating clone in both
migration and proliferation. Hence, Fig. 1’s Point 2
corresponds to a ‘proliferation’-driven spatial expan-
sion, resulting in both fewer migratory cell branches and
thus an overall smoother tumor surface. Interestingly,

this intermediate value of A—A payoffs associated with
the lowest average velocity corresponds to a 50-50
coexisting, bi-clonal population where neither genotype
dominates. In terms of Eq. (3), if we accept the notion
that a higher competitive advantage of the tumor and
thus its fitness is associated with faster spatial expansion
into the surrounding environment, then Et (i.e. the
tumor’s overall fitness) is a direct and positive function
of the tumor’s average velocity. In this particular
setting, clonal coexistence thus yields a competitive
disadvantage in terms of spatial aggression. However,
one can expect this to change once therapeutic impact
comes to play, where a more heterogeneous tumor cell
composition should prove to confer a distinct compe-
titive benefit.

Finally, as the A—A payoffs increase even further,
genotype B again returns to lead both migration and
proliferation and that is despite the fact that genotype A
dominates the total population composition (right y-axis
of Fig. 2). The result is a relatively high average velocity
(Point 3 in Fig. 1), yet, intriguingly, accompanied by a
lesser extent of surface roughening. As this point of high
A-A payoffs fosters more Type A cells and (again, due
to spatial competition) concomitantly less of Type B, the
number of Type B cells in the total population per se
does not appear to be as crucial for the overall tumor
dynamics as their number among actively proliferating
and migrating cells (Figs. 3a and c). One can argue that
the rapid transition of proliferative to quiescent stage
accounts for the relative increase of Type A in the total
population while ensuring a relative increase in Type B
among actively proliferative and migratory cells. Thus,
less Type B cells in the total cancer cell population gain
more importance for the overall tumor behavior. Surface
roughening does not occur as extensively, precisely
because of the lesser proportion of the spatially more
aggressive Type B cells in the overall population.

Even at this early stage, our results already may have
potentially useful implications for cancer research. For
instance, the finding that environmental, i.e. anatomical,
conditions can effectively alter the dominant genotype
or clone within a heterogeneous population is both
intriguing and instructive, as this seems to confirm the
need for a geographic array of tissue biopsies, rather
than rely on a single one, in order to achieve reasonable
predictive power for the behavior of the entire neo-
plasm. Secondly, one would expect a Type A-dominated
highly proliferative tumor cell population to lead to a
lower malignant tumor with reduced migratory ability.
However, as our results show, spatially highly aggressive
malignant behavior can emerge unexpectedly from a
Type A-dominated heterogeneous cancer cell popula-
tion as well. In other words, that more invasiveness
sustains a more aggressive tumor growth pattern is
commonly accepted; however, that under some circum-
stances a smaller number of migratory cells (in the total
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population) can come to dominate the tumor’s emergent
dynamics, potentially without even causing noticeable
structural changes, is rather alarming given that
cancerous structures need to reach a certain size to
become detectable on image, a prerequisite for image-
guided biopsies in clinics.

In a future work, we plan among other extensions to
specify different time scales along with allowing more
than one cell per lattice site for proliferation and
migration, thus allowing B-B migration payoffs to
generate distinct spatiotemporal patterns. Adding muta-
tional events in order to trigger progressive changes of
the currently static genotypes will render the framework
biologically more realistic and should provide a starting
point to explore the coupling between proliferation
capabilities and mutation rates for glioma cells, as
Sasaki and Nowak (2003) have done for the general
theoretical case. Another potential extension would be
to include other environmental variables, such as toxic
metabolites and mechanical confinements, and to
examine the impact of the former on cell death and
the latter on varying cell densities.

In summary, this model and its future iterations
should prove useful in our effort to better understand
the underlying mechanisms of tumorigenesis based on
the genotypic—phenotypic link, and thus support the
claim that game theory approaches will soon gain an
essential role in interdisciplinary cancer research.
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