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Abstract

The evolutionionary origin of inter- and intra-specific cooperation among non-related individuals has been a great challenge for

biologists for decades. Recently, the continuous prisoner’s dilemma game has been introduced to study this problem. In function of

previous payoffs, individuals can change their cooperative investment iteratively in this model system. Killingback and Doebeli

(Am. Nat. 160 (2002) 421–438) have shown analytically that intra-specific cooperation can emerge in this model system from

originally non-cooperating individuals living in a non-structured population. However, it is also known from an earlier numerical

work that inter-specific cooperation (mutualism) cannot evolve in a very similar model. The only difference here is that cooperation

occurs among individuals of different species. Based on the model framework used by Killingback and Doebeli (2002), this Note

proves analytically that mutualism indeed cannot emerge in this model system. Since numerical results have revealed that mutualism

can evolve in this model system if individuals interact in a spatially structured manner, our work emphasizes indirectly the role of

spatial structure of populations in the origin of mutualism.

r 2004 Elsevier Ltd. All rights reserved.
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Mutualistic interactions between members of different
species are widespread and play a central role in
ecosystems (Boucher et al., 1982; Bronstein, 2001a, b).
However, the evolution of mutualism has been a great
challenge for theoreticians for decades. How can
mutualist individuals emerge in populations where all
the others are non-mutualists, and how can mutualists
prevent cheaters from spreading in the population?
The classical theoretical framework for studying

cooperation of unrelated individuals within a species is
the Prisoner’s Dilemma Game (Trivers, 1971), in which
partners can choose either a defective (cheating) or a
cooperative strategy. If both partners defect, they get a
smaller fitness than if both cooperate, but a defector has
an even higher fitness value if its opponent cooperates.
e front matter r 2004 Elsevier Ltd. All rights reserved.
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However, the cheated cooperator receives the smallest
fitness if its opponent is a defector. It is easy to see that
defection is the only evolutionary stable state in this
model, and cooperators cannot spread in a defecting
population. On the other hand, defectors can invade and
destroy cooperation in a cooperative population (Tri-
vers, 1971; Axelrod and Hamilton, 1981). Cooperative
strategies emerge and are stable against the invasion of
defective ones if individuals can interact with each
others repeatedly (Axelrod and Hamilton, 1981; Nowak
and Sigmund, 1992, 1993). The general conclusions of
intensive work in this field are that the successful
strategies are either those that punish defector and
reward cooperation in repeated encounters (Tit-for-Tat,
Generous Tit-for-Tat) or those that retain their previous
successful strategy (Pavlov).
Doebeli and Knowlton (1998) realized that there is no

way for individuals to vary the degree of cooperation in
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these model systems, which is an unrealistic assumption
in many biological situations. Therefore, they intro-
duced an interspecific prisoner’s dilemma game where
the payoffs can change according to the investments
made by the partners. The level of investment Ih by a
host individual involves a cost CðIhÞ to the host and
gives a benefit BðIhÞ to its symbiont partner. (Naturally,
if the investment is zero then the cost and the benefit are
zero too.) Thus if the symbiont partner invests Is then
the payoff for the host is SðIh; I sÞ ¼ BðIsÞ � CðIhÞ and
similarly, the payoff of the symbiont is SðIs; IhÞ ¼

BðIhÞ � CðIsÞ: (Species are called ‘‘host’’ and ‘‘sym-
biont’’ only for convenience, but they have a completely
symmetrical role in the mutualistic interaction.) In the
special case when one of them makes no investment to
the interaction we retrieve the classical prisoner’s
dilemma game again (Table 1).
Mutualistic connections were considered by Doebeli

and Knowlton (1998) as a series of prisoner’s dilemma
games with variable investment, where the investment of
a partner depends on its payoff received in the previous
round. Interaction is a general phrase covering different
kinds of exchange of commodities (Bronstein, 2001a, b).
The investment decision is determined by two para-
meters: a; the initial offer, and b; the reward rate or the
rate of increase of investment depending on the payoff S

in the preceding round. So the investment of a host in
round k þ 1 is

I
ðkþ1Þ
h ¼ ah þ bhSðI

ðkÞ
h ; I ðkÞs Þ; (1)

where SðI
ðkÞ
h ; I ðkÞs Þ is the payoff of the host individual

in round k, if it invested I
ðkÞ
h and its symbiont oppo-

nent invested I ðkÞs in the previous interaction. To
avoid negative investment I

ðkþ1Þ
h is set to zero if

SðI
ðkÞ
h ; I ðkÞs Þo� ah=bh: Similarly, the opponent’s invest-

ment in the k þ 1-th round is

I ðkþ1Þs ¼ as þ bsSðI
ðkÞ
s ; I ðkÞh Þ; (2)

where as and bs are initial offer and reward rate of the
opponent. Since benefit generally increases less at
higher investment (see e.g. Altmann, 1979; Schulman
and Rubenstein, 1983), Doebeli and Knowlton
(1998) used a concave function for BðIÞ; namely BðIÞ ¼

B0½1� expð�B1IÞ�: They assumed that cost increases
Table 1

Payoff matrix when the cooperative (C) strategy invests I40 and the
defective (D) does not invest into the interaction

C D

C R ¼ BðIÞ � CðIÞ S ¼ �CðIÞ

D T ¼ BðIÞ P ¼ 0

The matrix describes the classical prisoner’s dilemma game if

T4R4P4S and 2R4ðT þ SÞ; which is valid if BðIÞ4CðIÞ:
linearly, that is CðIÞ ¼ C0I : The parameters B0;B1 and
C0 are positive constants describing the cost–benefit
relations for all individuals. It is worth investing in the
interaction only if B04C0; and therefore this relation is
assumed in the following. There are a fixed number of
mutualistic interactions between two generations, and
the fitness of an individual is the sum of payoffs
collected in each round.
The partners, independent of which species they

belong to, have an initial phenotype ða;bÞ; so initially
all of them have the same fitness. However, slightly
different mutant phenotypes can emerge by chance in
both populations in every generation. If a mutant has a
higher fitness than the resident type, the latter is
replaced by the mutant phenotype. Invasion is thus
assumed to imply fixation (Doebeli and Knowlton,
1998). Mutualism emerges if the originally very small,
but positive a and b phenotypic traits evolve towards
higher positive values.
However, according to numerical simulations mutu-

alism cannot evolve if the partners live in ‘‘well-mixed’’
populations without spatial structure (Doebeli and
Knowlton, 1998). Well-mixedness means that the prob-
ability of interactions between different phenotypes is
equal to the product of their relative frequencies, and is
assumed here for both intraspecific competition and
interspecific mutualism. This assumption makes the
model more tractable, but neglects the spatial structure
present in most populations. It has been known for
some time that spatially structured evolutionary games
behave differently and in a more complex manner than
‘‘well-mixed’’ models (Nowak and May, 1992). It is thus
not surprising that Doebeli and Knowlton (1998) placed
the individuals of interacting species on the grid points
of separate lattices. An individual in the first population
can interact with the individual on the same grid point
of the other lattice. The fitness of each individual is
given by the sum of payoffs received in the interspecific

interactions, which determines the competitive success
with their local neighbors within the species. The
phenotype which has the highest fitness among the
neighbors (including the focal individual itself) will enter
the next generation at the chosen site. It has been shown
numerically that mutualism can emerge in this spatially
explicit system, particularly if dispersion is absent or
limited, and some stochasticity is present in the
competition or selection processes (Doebeli and Knowl-
ton, 1998). One of the crucial difference between the
‘‘well-mixed’’ and lattice models that the successful
strategies spread by growing patches in the latter case.
Thus the similar (or identical) strategies interact with
each other with a high probability in the spatially
structured models, while to meet a similar (e.g.
cooperative) strategy depends on their relative frequen-
cies in the well-mixed systems. This ‘‘viscosity’’ of
spatial models enhance the benefit of cooperative
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strategies in a similar way as kin-selection acts on the
evolution of cooperation in well-mixed models (van
Baalen and Rand, 1998).
Variable investment is also a fruitful concept in

studying cooperation among non-related individuals
that belong to the same species. The model of this
problem is very similar to that introduced above, but
now the partners are members of the same population.
Killingback et al. (1999) considered a population where
individuals live on a two-dimensional lattice and play a
non-iterated prisoner’s dilemma game with variable
investment. Partners interact with their eight nearest
neighbors. The fitness of each individual is given by the
sum of payoffs received in the interactions with all
neighbors. Similar to the two species case, the phenotype
which has the highest fitness among the neighbors will
enter the next generation. If phenotypes are allowed to
change their investment by mutations, the population
evolves to cooperation in this spatially structured model
despite there being no iteration of investment (Killing-
back et al., 1999). Furthermore, cooperation emerges
and is stable against the invasion of defectors even in a
well-mixed population (Killingback and Doebeli, 2002)
assuming that investment can change according to the
iteration process described above. The latter was
confirmed by analytical results. Killingback and Doebeli
(2002) have shown that if the initial reward rate b
exceeds a critical level bc ¼ C0ð0Þ=½B0ð0Þ2 � C0ð0Þ2� where
C0ð0Þ;B0ð0Þ means the derivative of cost and benefit at
zero investment, then both a and b evolve towards
higher positive values. Evolution thus leads to coopera-
tion in all cases, independently of the initial offer
if the initial reward rate is high enough. The higher the
benefit is compared to the cost at low investment,
the lower the threshold bc which must be exceeded.
However, as we have stressed above, simulations
suggest that there is no way for interspecific mutualism
in a well-mixed population to evolve, even if iterated
investment is built into the model. What is the difference
between within species cooperation and inter-
specific mutualism, that can lead to such different
behavior? The differences are intuitively clear: indivi-
duals compete with the con-specifics and cooperate with
the inter-specifics in the mutualistic case, while coopera-
tion and selection occur within the same species in
intraspecific cooperation. Based on the analysis of
Killingback and Doebeli (2002) we show analytically
that this difference indeed implies that neither the small
initial offer nor the reward rate can increase by variable
investment, except at very special and biologically
irrelevant combinations of parameters. Evolution of
mutualism is thus essentiallyimpossible in spatially non-
structured version of the Doebeli and Knowlton’s (1998)
model.
We are interested in whether the initially small

and positive parameters ai and bi (i ¼ h; s) can increase
in the iterated investment game model of mutualism.
For small values of these parameters the investment I

determined by Eqs. (1), (2) are also small. Therefore
it is enough to consider the linear approximations
of CðIÞ and BðIÞ; that is CðIÞ ¼ C0I and BðIÞ ¼ B0I ;
where C0 ¼ C0ð0Þ and B0 ¼ B0ð0Þ are the derivatives
of the functions at I ¼ 0 (Killingback and Doebeli,
2002).
Let us assume that a small e fraction of individuals

mutate to a0i; b0i phenotypes in both species. Using
Eqs. (1), (2) and the linear approximations of the cost
and benefit functions, we obtain a recursive equation for
the payoffs of resident and mutant phenotypes for both
species

S
ðkþ1Þ
h ¼ B0½ð1� ehÞðas þ bsS

ðkÞ
s Þ þ ehða0s þ b0sS

0
s
ðkÞ
Þ�

� C0ðah þ bhS
ðkÞ
h Þ;

S0
h
ðkþ1Þ

¼ B0½ð1� ehÞðas þ bsS
ðkÞ
s Þ þ ehða0s þ b0sS

0
s
ðkÞ
Þ�

� C0ða0h þ b0hS0
h
ðkÞ
Þ;

Sðkþ1Þ
s ¼ B0½ð1� esÞðah þ bhS

ðkÞ
h Þ þ esða0h þ b0hS0

h
ðkÞ
Þ�

� C0ðas þ bsS
ðkÞ
s Þ;

S0
s
ðkþ1Þ

¼ B0½ð1� esÞðah þ bhS
ðkÞ
h Þ þ esða0h þ b0hS0

h
ðkÞ
Þ�

� C0ða0s þ b0sS
0
s
ðkÞ
Þ: ð3Þ

Here we assumed that an ðai; bi) strategy obtains an
average benefit from its mutualistic partner proportional
to the frequency of the strategies present in that
population, that is, there is a ‘‘playing the field’’
situation in well-mixed populations (Maynard Smith,
1982). Killingback and Doebeli (2002) restricted their
attention to the infinitely large population limit (ei ¼ 0),
thus their model is generalized here to the case eh; esa0:
If there are high numbers of interactions between two
generations (kb1), then S

ðkÞ
i and S0ðkÞ

i can be considered
as the Si; S0

i fixed points of Eqs. (3). Thus, the fitness of a
strategy (ai;bi) is approximately kSi: Since the fitnesses
of both the resident and the mutant strategies are
multiplied with the same constant k, it is enough to
consider the Si; S0

i fixed points in the following
(Killingback and Doebeli, 2002). The fixed points can
be computed from the linear recursion system (3), but
they are too complex to display here (but see Appendix
A). The relevant points here are that the fixed points
exist, and they are asymptotically stable if bi and b0i are
sufficiently small (Appendix B). To make the stability
analysis tractable we assume here and in the following
that eh ¼ es ¼ e:
Since the initial offer (ai) and reward rate (bi) are

continuous variables, it is convenient to use
adaptive dynamics to investigate the evolution of
mutualism (Hofbauer and Sigmund, 1990; Geritz et
al., 1998; Metz et al., 1992; Killingback and Doebeli,
2002). According to this framework, the dynamics of
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phenotypic traits are

_ai ¼
@S0

i

@a0i

����
ða0

i
¼ai ;b0i¼biÞ

;

_bi ¼
@S0

i

@b0i

����
ða0

i
¼ai ;b0i¼biÞ

; ð4Þ

where i denotes either the host (h) or the symbiont (s)
species. Since our analysis is restricted to the invasion of
rare mutants we can assume that e51; thus we can
consider the linear approximation of S0

i in e (see
Appendix A). Thus we obtain a relatively simple form
from Eq. (4)

_ai ¼
1

1þ C0bi

�C0 þ
B20bj

G
e

 !
;

_bi ¼
Li

ð1þ C0biÞG
�C0 þ

B20bj

G
e

 !
; ð5Þ

where G ¼ 1þ C0ðbs þ bhÞ þ ðC20 � B20Þbsbh; Li ¼

ai½�C0 þ ðB20 � C20Þbj� þ B0aj ; and i, j indexes denote h

or s respectively. Mutualism emerges if the originally
small ai and bi increase, that is if the right-hand sides of
(5) are positive (Killingback and Doebeli, 2002).
It can be seen from Eqs. (5) that the originally small ai

decreases further at the infinite population size limit
(e ¼ 0). The parameters bi can increase when Li=G is
negative. Since bi is small for both partners, G can be
considered a positive number in this limit. However, if

bio
C0

B20�C20
¼ bc and ai is sufficiently smaller than aj then

Li can be negative. In this case bi increases, until it
reaches a limit which is definitely smaller than bc:
Consequently, the initial offer (ai) decreases, the reward
rates (bi) either increases or decreases initially, but
cannot exceed the bc; thus there is no way for evolution
of mutualism in the infinite population size limit.
Now let us analyse the case when the population is

finite and mutants are rare (0oe51). Remember that b
could not be arbitrarily close to zero to increase even in
the single species cooperative model, so it is possible that
reasonable small thresholds exist here as well, above
which ai and bi will increase. Observe, that if G remains
positive, but it is close to zero then the expressions in the
parentheses of Eqs. (5) can be positive. Since we focus
on the emergence of mutualistic interactions from a non-
mutualistic state we assume that ai and bi are close to
zero initially. Further, we assume that the initial
propensity to the mutualistic interaction are roughly
the same for both species (ah 	 as and bh 	 bs) and for
the phenotypic traits (ai 	 bi) too. Naturally, this is not
sufficiently the case, but without these assumptions the
analysis become hopelessly complex. To make the
estimation more tractable, let us assume in the future
that initially ai ¼ bi ¼ b: The expressions in the
parentheses of Eqs. (5) can be positive if 0oG51 which
relations are valid if b is close to but still smaller than
btr ¼ 1=ðB0 � C0Þ: (If b41=ðB0 � C0Þ then Go0; and
thus ai will decrease if G is a large positive number then
the second term can be neglected in the parentheses of
Eqs. (5), and this ai will decrease again). To satisfy this
condition we assume thatb ¼ ð1� dÞbtr; where 0odo1
measures the deviation from the threshold btr:Using this
notation and assuming that d25d we conclude that G 	
2dB0

B0�C0
in the d neighborhood of btr: Substituting these

values of b and G into the first equation of Eqs. (5) and
rearranging the expression in the parentheses, we
conclude that ai increases if

do
B0e

B0eþ 2C0
¼ dtr: (6)

The same condition for d guarantees that the expression
in the parentheses in the second equation of Eqs. (5) is
positive as well, but _bi will be positive only if Li40 at
the same time. Substituting ð1� dÞbtr for b yields Li ¼

1� dþ B0þC0
B0�C0

ð1� 2dÞ; which is positive, at least if d is
not too close to one. We thus conclude that the
parameters ai and bi will increase if

ð1� dÞbtrobobtr: (7)

The evolution of mutualism is possible if both btr and dtr

are not very close to zero. In this case, the initially small
ai;bi trait values will increase in a relatively wide interval
of a and b (see Eqs. (6) and (7)). The parameter btr is not
too small if B0 is not much higher than C0: However,
since e is a small number, thus dtr is close to zero in this
case. That is, ai and bi can increase only in a restricted
interval of b around a relatively high value (see Eq. (7)).
According to Eq. (6) the parameter dtr can be relatively
large if B0bC0; but then btr51: Consequently, this
analysis confirms the numerical results of Doebeli and
Knowlton (Doebeli and Knowlton, 1998): that it is
highly improbable that mutualistic interaction would
emerge in this model system. We emphasize here that
our analysis is restricted only to the large population
limit (e51), which could not exclude the evolution of
mutualism in small populations. Similarly, our conclu-
sion does not exclude the possibility of the emergence of
mutualism in cases when the initial ai and bi values
differ to each other meaningfully (e.g. ah=as51;
bh=bs51; etc.), although these conditions seems to be
biologically less relevant. On the other side, this Letter
emphasizes indirectly the important role of spatial
structures in the evolution of mutualism.
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Appendix A. The fixed point

The fixed points of Eq. (3) are

Si ¼
1

1þ C0bi

C0ðai � a0iÞ þ Fi

Yi

;

S0
i ¼

B20C0ð1� eÞða0i � aiÞbi½eðbj � b0jÞ � bjð1þ C0b
0
jÞ� þ Fi

Yi

;

ðA:1Þ

where i denotes either the host or the symbiont. Fi and
Yi are

Fi ¼ B20biC0ð1� eÞða0i � aiÞ½eðbj � b0jÞ � bj � C0bjb
0
j �þ

ð1þ C0b
0
jÞbjB0ðe� 1Þ ½C0aj � B0aiðð1� eÞ þ ea0i� þ ð1þ

C0biÞ½B0ajðe� 1Þ � Bea0j þ C0a0iÞ�ð1þ C0b
0
jÞ;

Yi ¼ ð1þ C0b
0
iÞbiB

2
0ð1� eÞ½eb0j þ bjð1� eÞ þ C0b

0
j � þ

ð1þ C0biÞ½B
2
0ð1� eÞebjb

0
i ð1þ C0b

0
jÞ þ ð1þ C0bjÞ

ðB20e
2b0jb

0
i � ð1þ C0b

0
jÞð1þ C0b

0
iÞÞ�; where the i,j indexes

denote different species.
To determine the adaptive dynamics of ai and bi

we have to differentiate the fixed points within respect
to these variables. This operation yields another
complex expression, which can be simplified by using
that e51: Considering the linear approximation of the
derivatives in the function of e we arrive at Eq. (4). The
calculations have been performed by the software
Mathematica 3.0.
Appendix B. The stability of the fixed point

The analysis of the stability of the fixed points in the
two-species case is not as simple as in the one species
case (Killingback and Doebeli, 2002), but is still
tractable. Ae; the Jacobian matrix of (3) can be
considered as Aþ eB; where

A ¼

�C0bh 0 B0bs 0

0 �C0b
0
h B0bs 0

B0bh 0 �C0bs 0

B0bh 0 0 �C0b
0
s

0
BBBBB@

1
CCCCCA;

B ¼

0 0 �B0bs B0b
0
s

0 0 �B0bs B0b
0
s

�B0bh B0b
0
h 0 0

�B0bh B0b
0
h 0 0

0
BBBBB@

1
CCCCCA:

To determine the eigenvalues of the Jacobian matrix is a
hopeless task, but since e51 it can be considered as a
perturbation of matrix A: The eigenvalues of A are

�C0b
0
h;
1
2
ð�C0ðbh þ bsÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðB20 � C20Þ þ C20ðbh þ bsÞ

2
q

Þ;

1
2
ð�C0ðbh þ bsÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðB20 � C20Þ þ C20ðbh þ bsÞ

2
q

Þ;�C0b
0
s:
It is known that if Ae ¼ Aþ eB where e is a small
number then j liðAÞ � liðAeÞ j pcondðSÞkBke (Kato,
1980). The matrix S diagonalizes A; that is S�1AS ¼

diagðliðAÞÞ: condðSÞ ¼ kS�1kkSk is the condition num-
ber of S: Since the eigenvectors of A are not closely
parallel, the condition number of S cannot be high, and
therefore the estimation is not ill-conditioned (Demmel,
1997). Using the euclidean norm for B it can be shown
that

j liðAÞ � liðAeÞ j

pcondðSÞ
ffiffiffi
2

p
B0 max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2h þ b02h

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2s þ b02s

q� 

e: ðB:1Þ

Thus the condition of j liðAÞ j o1 gives a
good estimation for j liðAeÞ j to be smaller than one,
which guarantees the stability of the fixed points. It
follows from simple calculations that j liðAÞ j o1 is
valid if b0ho1=C0; b0So1=C0; and 241þ bhbsðC

2
0 �

B20Þ4ðbh þ bsÞC0; which is true if bi and b0i are small
enough.
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