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Evolutionary game models of cellular interactions have shown that heterogeneity in the cellular
genotypic composition is maintained through evolution to stable coexistence of growth-promoting and
non-promoting cell types. We generalise these mean-field models and relax the assumption of perfect
mixing of cells by instead implementing an individual-based model that includes the stochastic and
spatial effects likely to occur in tumours. The scope for coexistence of genotypic strategies changed
with the inclusion of explicit space and stochasticity. The spatial models show some interesting
deviations from their mean-field counterparts, for example the possibility of altruistic (paracrine) cell
strategies to thrive. Such effects can however, be highly sensitive to model implementation and the
more realistic models with semi-synchronous and stochastic updating do not show evolution of
altruism. We do find some important and consistent differences between the spatial and mean-field
models, in particular that the parameter regime for coexistence of growth-promoting and non-
promoting cell types is narrowed. For certain parameters in the model a selective collapse of a generic
growth promoter occurs, hence the evolutionary dynamics mimics observable in vivo tumour
phenomena such as (therapy induced) relapse behaviour. Our modelling approach differs from many of
those previously applied in understanding growth of cancerous tumours in that it attempts to account for
natural selection at a cellular level. This study thus points a new direction towards more plausible
spatial tumour modelling and the understanding of cancerous growth.

Keywords: Tumour cells; Evolutionary game theory; Individual-based model; Frequency-dependent
interaction; Payoff matrices; Cellular interaction

INTRODUCTION

While there have been many mathematical models of

cancerous tumours which attempt to characterise their

growth (see for example Qi et al., 1993; Kansal et al.,

2000; Sherratt and Chaplain, 2002) few, if any, of these

models account for the frequency-dependent selection

which acts on the cells inside a cancerous tumour. This

situation is in sharp contrast with that in ecology where

it is widely acknowledged that the growth of, for

example, animal populations are determined both by the

processes of diffusion, aggregation, overcrowding, etc.

and by the action of natural selection as phenotypes

competes. Evolutionary models have previously shown

that natural selection may lead to self-limitation or

extinction of groups of aggressive phenotypic strategies

(Riechert and Hammerstein, 1983). Such phenomena

may also be observable in tumours since the selective

process on the cellular level is similar to selection

among genotypes in a population of animals or other

organisms (Nowell, 1976; Tomlinson, 1993; Mora et al.,

2001). Furthermore, Tomlinson et al. (1996) showed that

selection can be more important than the increased

mutation rate often observed in connection with

cancerous growth. Clinical observations such as

spontaneous regression of tumour growth (Challis and

Stam, 1990; Papac, 1996) give the intriguing idea that

models accounting for the frequency-dependent selection

could demonstrate that phenomena such as tumour

regression can arise through internal selective forces on

the tumour itself. Indeed, it is highly plausible that

internal evolutionary dynamics could, as is the case in
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theoretical ecology, lead to an improved understanding

of cancerous growth as a complex adaptive system

(Dieckmann, 1997).

Cancer cells in tumours typically show a variety of

biochemically mediated mutual in uences on cell

proliferation. Therefore, local selection regimes, and

hence the evolutionary dynamics can strongly depend on

the nature of such cellular interactions (Tomlinson, 1997;

Tomlinson and Bodmer, 1997). Given the high genotypic

diversity found in tumours it may be crucial, in relation to

therapy, to understand the evolutionary dynamics within

tumours, especially if frequency-dependent cell inter-

actions profoundly affect the dynamics (Bach et al., 2001).

Traditional chemotherapy, and to some extent ionising

radiotherapy, often operate by inhibiting the nucleic acid

synthesis of the cells, which in turn mainly affect the

exceedingly proliferating cells (Boyer and Tannock,

1998). Unfortunately, a well-known disadvantage of

such an approach is the detrimental effect on those healthy

cell types that naturally divide at a high rate. During the

last decade, however, our understanding of the genetic

abnormalities underlying the development of cancer has

improved dramatically (Hanahan, 2000). Together with

the recent reports of the first draft of the human genome

sequence and the development of a large number of novel

technologies to analyse it, a new field — pharmacoge-

nomics — has emerged (Onyango, 2002). One of the aims

of pharmacogenomics is to design drugs for molecular

specificity providing a high degree of genotype specific

selection pressure.

Interaction metaphors such as the Dilemma games, the

Hawk–Dove game, and the Ultimatum game have been

widely used to model evolution of co-operation and

frequency-dependent selection in evolutionary ecology

(Maynard-Smith and Price, 1973; Axelrod and Hamilton,

1981; Hofbauer and Sigmund, 1988). The same way of

accounting for interactions may be exploited when

describing the behaviour of interacting units on lower

hierarchical levels. Applying the same basic game

theoretic ideas to the growth of cancerous cells, Tomlinson

and Bodmer (1997) showed that stable polymorphisms of

different cellular strategies can persist, not merely as

transient phenomena, but as stable states maintained

without requiring external causal explanations (Tomlin-

son, 1997; Tomlinson and Bodmer, 1997). However, as

pointed out by the authors, resting on assumptions of

random encounters and perfect mixing the mean-field

approximation neglects any local effects and spatial

correlations and the cells interact exclusively in terms of

global frequencies (Tomlinson and Bodmer, 1997). (For a

more general discussion of local effects and discreteness

see, e.g. Durrett and Levin, 1994; McGlade, 1999, and

references therein.) Allowing for spatial explicitness in,

for example, the Prisoner’s Dilemma game, the Hawk–

Dove game, and more recently the Ultimatum game and

the Public Goods game gave highly different results

compared to corresponding non-spatial mean-field

representations (Nowak and May, 1992; Herz, 1994;

Lindgren and Nordahl, 1994; Killingback and Doebeli,

1996; Page et al., 2000; Hauert, 2002; Szabo and Hauert,

2002). These models lead to the conclusion that space

generally facilitates the invasion and persistence of co-

operative strategies because spatial correlations inhibit the

possibility for non-co-operators to exploit and outcompete

co-operators (see also, Koella, 2000). Moreover, spatial

frequency-dependent interactions also seem to favour

coexistence when mean-field models tend to predict

competitive exclusion (Molofsky et al., 1999).

In this paper, we make a step towards spatial models of

cancerous growth that include selective forces. We extend

Tomlinson and Bodmer’s (TB) model to allow for a

greater range of cell–cell interactions and thus encompass

many of the types of interactions seen in real tumours.

We discuss how these interactions affect cell proliferation

in the general context of two-player games. We then

employ a range of spatial individual-based, or cellular

automata type, models to investigate the effect of spatially

local interactions between cells. The effect of stochasticity

and the importance of local random drift of the cell

genotype frequencies are also explored. Bearing in mind

the fixed positions of cells in solid tissue tumours, we

believe that the significance of spatial effects in tumour

cell interactions is importunately relevant for further

progress in tumour modelling. The models, we present, are

at this stage far from being predictive medical tools but we

see our contribution as a “growth promoting factor” in the

further development of mathematical models to under-

stand tumour growth.

MEAN-FIELD EVOLUTIONARY GAME MODELS

In order to determine the evolutionary dynamics of tumour

cells, the different genotypic strategies adopted by the

cells can be expressed as a two-player game theory model.

One such scenario, presented by Tomlinson and Bodmer

(1997), defines a cellular genotypic strategy, hereafter

called a “growth promoter” or “co-operator”, where a

costly growth factor is produced. This factor conveys a

benefit to the cell itself as well as to any neighbouring or

interacting cells. The alternative strategy is the “non-

promoter” or “defector” strategy. Such cells produce no

growth factor, and hence incur no cost, but do benefit

when interacting with a growth promoter cell. This model

corresponds, for instance, to processes such as neo-

angiogenesis, which is the aberrant reformation of blood

vessels in tumours. Here, the reformation relies on a joint

effort in the biochemical stimulation of existing blood

vessels to form new vascularisation (Boehm et al., 1997;

Carmeliet and Jain, 2000). In such cases cells that do not

produce stimulating chemicals may be considered as

“defectors”, while those producing the chemicals may be

thought of as “co-operators”.

The payoff matrix for TB model is given in Table Ia.

This table defines how the fitness of each of the genotypic

strategies depends on its interaction with other strategies,
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in terms of the benefit b . 0 and cost 0 , c , b of

producing the growth promoting factor. Note that the

autocrine effect implies that the benefit is always obtained

by a growth promoter (even when interacting with non-

promoters, i.e. top right entry of Table I). Such payoff

tables can be used to define a replicator equation for the

different genotypic strategies (Hofbauer and Sigmund,

1988). The replicator equation determines — in the case of

a well-mixed population of cells (i.e. when encounters

between cells occur entirely at random) — the

evolutionarily stable population of strategies. In the case

of the TB model the replicator equation for the number of

growth promoting cells, xt, is

xtþ1 ¼
ð1 2 c þ bÞxt

ð1 2 c þ bÞxt þ ð1 þ bxtÞð1 2 xtÞ
ð1Þ

and can be shown to have a single stable equilibrium at

x� ¼ 1 2 c=b ð2Þ

growth promoting cells. The TB model thus predicts, in

the well mixed case at least, that growth promoter

and non-promoter cells will coexist (Tomlinson and

Bodmer, 1997).

The TB model is in fact a specific instance of a general

set of two-player games which can be expressed in terms

of reward R (C–C interaction), suckers payoff S (C–D

interaction), temptation T (D–C interaction) and punish-

ment P (D–D interaction). The payoffs for such games

can be normalised so that R ¼ 1 and P ¼ 0. As a result,

each of these two player games may be categorised in

terms of the values of S and T (Hauert, 2001, and

references therein). The replicator equation for these

games is then

xtþ1 ¼
xt þ Sð1 2 xtÞ

ðxt þ Sð1 2 xtÞÞxt þ ðTxt þ 1 2 xtÞð1 2 xtÞ
xt:

Table Ib gives S and T for the TB model. In terms of

the S–T classification of two-player games, the TB game

lies on the boundary between the Leader game (where

S . 1 and T . 1; see Rapoport et al., 1976; Binmore,

1996) and the Hawk–Dove game (also known as the

Chicken game or Biker’s dilemma, where S , 1 and T .

1; (see Binmore, 1996; Svenstrup and Christiansen, 2000

for details).

Since S ¼ 1 in the TB game, it cannot be considered a

particularly general model of growth promoting inter-

actions. Indeed, if we again return to the biological basis

for the model and consider how different cell genotypes

may promote and inhibit growth we can produce a more

general description of the interaction process. Specifically,

we can introduce the additional biological observation that

growth promoting cells are likely to obtain an additional

benefit from interacting with another growth promoting

cells, over and above the autocrine self-benefit, b. We will

denote this extra benefit as e $ 0 (note that e ¼ 0 gives the

original TB model). In defining a more general model, it is

also useful to think of the benefit to non-promoting cells as

being a parameter d . 0 which may be changed

TABLE I Payoff matrix modified from Tomlinson and Bodmer (1997)

Gr þ and Gr 2 are the growth promoting and non-promoting strategies, respectively. In a game theoretical context Gr þ corresponds to co-operation (C) and Gr 2 to
defection (D). The values in the matrix describe for a given cell type the payoff obtained depending on the strategy of itself as well as that of the interaction partner it
encounters. Note that in the mean-field, such matrix serve as the basis for calculating the mean fitness of a given strategy depending on the composition of the global
population described by a single state variable in form of the real value fraction of one of the strategies. (a) Interactions defined in terms of the mutual effects of cancerous
proliferation strategies. The parameters describe the benefits b and costs c of a generic growth promoter. A passive non-promoter can also obtain b when it encounters a
growth promoter, otherwise it is left with base line proliferation, i.e. a payoff of unity. (b) Identical to (a) but normalised following Hauert (2001) such that R ¼ 1 and P ¼ 0.

TABLE II Payoff matrix for the general model Gr þ / C and Gr 2 / D are growth promoter/cooporator and non-promoter/defector, respectively

(a) Biologically defined interactions in a population consisting of a generic growth promoter, which can obtain the benefits b, and e and experience the cost c. The non-
promoter will obtain the benefit d from interacting with a growth promoter, whereas interaction with another non-promoter only yields a payoff of unity, i.e. base line
proliferation. (b) Identical to (a) but rearranged following Hauert (2002) such that R ¼ 1 and P ¼ 0.
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independently of the costs and benefits to the growth

promoting cells. This gives payoff Table IIa.

We can now use the payoff Table II, that relates

parameters b, c, d and e to S (the C–D interaction) and T

(the D–C interaction), to determine for the wellmixed

case the resultant proportions of growth promoters and

non-promoters. We see that when the benefit to a non-

promoter from the chemical compound is greater than the

total benefit minus the cost to the growth promoter, i.e.

d . b þ e 2 c; and the benefit to the growth promoter

outweighs the cost it pays, i.e. b . c we have a Hawk–

Dove game (i.e. T . 1 and 0 , S , 1). The replicator

equation for proportion of growth promoting cells is then

xtþ1 ¼
ð1 2 c þ b þ extÞxt

ð1 2 c þ b þ extÞxt þ ð1 þ dxtÞð1 2 xtÞ
: ð3Þ

The equilibrium proportion of growth promoters in the

case where b . c and d . b þ e 2 c is

x� ¼ ðb 2 cÞ=ðd 2 eÞ: ð4Þ

It appears, therefore, that the additional benefit, e does

not change the general conclusion that the production of

costly angiogenic factors is selected for amongst the cells.

However, the equilibrium number of growth promoting

cells is increased as the extra benefit increases (Maynard-

Smith, 1982).

Other models of cell interactions are encompassed by

the model in Table II. For example, Tomlinson and

Bodmer (1997) also consider competition between cells

which produce a factor to prevent programmed cell death

in a purely paracrine fashion (i.e. no effect on producer)

against cells which produce growth factor in a purely

autocrine fashion (i.e. benefit to self but not to

neighbours). By defining b 2 c , 0 the autocrine strategy

now represents a purely “altruistic” act on the part of the

growth promoter, as d and e remain constant. We see that

T . 1 but S , 0; giving the well-known Prisoner’s

Dilemma game. Here, the interesting result is that

although these “altruistic” cells would thrive in a pure

population of growth promoters, in the well-mixed case,

an invading non-promoting cell would reproduce and take

over the entire population. This is seen by finding an

equilibrium for the replicator equation (3) when c . b:
In this case, the proportion of growth promoting cells is

x� ¼ 0 corresponding to the defecting or non-promoting

strategy being an evolutionary stable strategy (Hofbauer

and Sigmund, 1988).

SPATIAL EVOLUTIONARY GAME MODELS

Spatial patterns undoubtedly arise in the growth of

cancerous tumours, for the simple reason that offspring

cells grow adjacent to the parent cell. It is important,

therefore, that spatial effects are accounted for when

attempting to determine the growth and changing

genotypic composition of tumours. Indeed, the fact that

the Prisoner’s Dilemma naturally arises out of cell

interactions points to the intriguing possibility that spatial

arrangements of cells may allow for truly altruistic effects

on proliferation. That is, we may see the evolution of

purely paracrine cells. The results of Nowak and May

(1992) and others show that true altruism can arise in the

Prisoner’s Dilemma when players are arranged in a two

dimensional array (Nowak and May, 1992; Nakamuru

et al., 1997). Hauert (2001; 2002) has recently presented

an extensive study of general two-player S–T spatial

games with nearest neighbour interactions. He has shown

that for many games, space has an important role in

determining the equilibrium proportion of defectors and

co-operators. In general, discrepancies are almost always

found between results from the mean-field replicator

equation and nearest neighbour interaction models.

We now propose a variety of simple two dimensional

lattice simulation models to determine the behaviour of

such cell interaction dynamics (Wolfram, 1984; Nowak

and May, 1992). Each simulation model begins with a

100 £ 100 array of cells, a proportion of which are growth

promoting (C strategy) and some of which are non-

promoting (D strategy). The basic protocol for updating

the cells on each generation is as follows: First, a certain

number of cells will be removed from the lattice (the

number depends on whether updating is synchronous,

semi-synchronous or asynchronous, see below for

details). The neighbours of the removed cells will then

compete to occupy the empty cells. Each non-empty

neighbour to the empty cell will perform a two-player

interaction with each of its neighbours and hence receive a

payoff. The payoff to reach interaction is determined

according to the specified payoff matrix (in our case we

use payoff Tables I and II). The obtained payoffs from

each interaction are summed to yield the neighbour cell’s

total payoff or fitness, which in turn is used in order to

determine which of the candidate neighbour cells will be

selected to reproduce (the reproduction may be determi-

nistic where the cell with the highest fitness reproduces or

probabilistic where reproduction is proportional to fitness,

again see below for details). The “winning” neighbour

cell is subsequently copied into the empty site. Hence, an

empty site always becomes re-occupied by the prolifer-

ation of the cell which wins a local competition. Figure 1

gives a diagrammatic representation of the update scheme

for a single removed cell.

FIGURE 1 A diagrammatic representation of the cell update process.
First a cell is selected to be removed (in this case the C marked in bold in
the configuration on the left). Then the four neighbouring cells all assess
their fitness (middle configuration). The cell with the highest fitness then
reproduces into the empty space (configuration on the right).
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The model description above remains ambiguous.

There are now a number of design decisions that must

be made in the implementation of lattice simulation

models. Results from simulations can be highly dependent

on whether updates are synchronous or asynchronous,

probabilistic or deterministic, as well as depending upon

the size of neighbourhood, or spatial scale, on which cells

interact. We thus choose to implement a variety of models

and compare the results. These considerations, which may

appear at first to be purely technical, will prove to have

profound implications for the biological interpretation of

our model. We now outline each of the design decisions in

detail. Appendix A provides a complete algorithmic

description in the form of pseudo code, for each of the

simulation models.

Synchronous, Asynchronous or Semi-synchronous

Updating

Synchronous updating means that all the cells die

simultaneously, and they are replaced dependent on the

strategy of their neighbours before dying. Al- though

synchronous updating is often the choice of implemen-

tation in spatial evolutionary game models it presents

some problems. Synchronous updating assumes a global

controller of the system, which ensures that all sites are

updated exactly once in each iteration. This assumption,

which gives a very coarse temporal granularity may be

violated in a range of natural situations, particularly in the

case of cell populations of a considerable size (Huberman

and Glance, 1993). Since mortality and the subsequent

reproduction of cancerous cells occur sporadically, it is

biologically most plausible to have at least some degree of

asynchronous updating of cells.

Asynchronous updating of cells means that on each

generation a single cell, chosen at random, dies and is

replaced. Asynchronous updating presents its own

problems, however. The fact that at most one cellular

site is updated in any given iteration means that any two

adjacent sites can never be updated simultaneously since

updating is strictly sequential. This in turn makes the

disappearance of small clusters of cells impossible.

Phenomena such as local episodes of low oxygen tension

giving rise to apoptotic or necrotic areas with several

adjacent cells dying necessitates the consideration of how

a relaxation of the assumption of strict sequentiality will

affect the system.

We therefore, adopt an additional Semi-synchronous

updating rule, which does not assume strict sequentiality in

the turnover of cells and thus does not suffer the problems

of such assumptions. Semi-synchronous updating rep-

resents an intermediate and more realistic temporal

granularity between the extreme synchronous and extreme

asynchronous updating. In the semi-synchronous scenarios

presented here individual cellular mortality is 0.1, i.e. one

tenth of the cells die and are replaced on each generation.

Thus, with a probability of 0.01 any two adjacent cells will

be updated concurrently. This method of updating allows

for the biologically realistic situation that occasionally

more than one local site is available for exploitation by

proliferating neighbour cells.

Neighbourhood Size

A strong criticism of spatial game theory models is that

results can be strongly dependent on the type of

neighbourhood rules adopted. Indeed, the thorough

investigation of Hauert (2002) showed that very different

results are obtained for the von Neumann neighbourhood

(where the four adjacent neighbours on a lattice are

considered) than for the Moore neighbourhood (where

eight adjacent neighbours are considered). We thus,

provide simulation results for both of these neighbour-

hoods, as well as an extended Moore neighbourhood with

24 neighbours (i.e. a Moore neighbourhood with a radius

of two cells).

Deterministic or Probabilistic Updating

Two different schemes of competition for local reproduc-

tion are used in order to disclose possible effects of

determinism vs stochasticity in the local competition for

reproduction. The deterministic updating corresponds to

the competitive situation where the “winner takes it all”.

The score of each individual is compared to all of its

neighbours and only the cells with the highest local

maximum score are allowed to reproduce. In case of a tie

between two competitors a random cell is chosen. This

means that whether or not a local cluster configuration of

growth promoters will expand or diminish is governed by

deterministic rules.

In order to avoid the determinism and discreteness of

the “winner takes it all” updating method an alternative

implementation was designed. The individual’s pro-

bability of reproduction is in the probabilistic updating

defined in terms of its relative local payoff score. The

probability of reproduction is given by the scaled value of

own score divided by total score in the neighbourhood.

Such local competition allows cellular strategies with

lower fitness to have a chance of reproducing, especially

when they are locally superior in numbers. In contrast to

the deterministic reproduction this implies an effect of

local density as to which strategy succeeds in proliferat-

ing. A strategy, which in numbers dominates the local

neighbourhood can, albeit being inferior in terms of

individual payoff, have a higher collective probability of

occupying an empty site than, e.g. a single representative

of the superior strategy. Inferentially, this effect becomes

more pronounced the closer the payoff values of the

competing strategies are.

RESULTS

Semi-synchronous simulations were run for 20,000

generation whereas asynchronous realisations were run
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for 200,000 generations in order to ensure that a stable

genotype distribution had been reached. The results shown

are averaged over 2,000 and 20,000 generations for the

semi-synchronous and the asynchronous scenarios,

respectively. Figures 2–4 show the effect of parameters

b or d on the equilibrium proportion of growth promoters

and replicated simulations showed highly consistent and

practically identical results (not shown). In the TB and

Hawk–Dove scenarios the initial proportion of growth

promoters was 0.1. However, other initial conditions were

explored (not shown) indicating that the equilibrium

proportion of growth promoters was robust to initial

conditions, as was the case in the analytical results of the

non spatial models. (Coexistence obviously requires the

initial presence of both strategies in the population.)

Following Hauert (2002), the Prisoner’s Dilemma

FIGURE 2 (a) Spatial simulation with payoff conditions corresponding
to the scenario of Tomlinson and Bodmer (1997) see Table I. The
equilibrium proportion of growth promoters (Gr þ ) is depicted as a
function of the benefit b, while c is fixed at unity. Competition for
reproduction is fully deterministic and updating is semi-synchronous
with individual mortality 0.1. Thin solid line shows the mean field result
according to Eq. (2). Thick solid, dashed, and dotted lines represent
simulation results from the von Neuman neighbourhood, the Moore
neighbourhood, the extended Moore neighbourhood, respectively. (b) As
in Fig. 2a but with probabilistic reproduction. (c) As in Fig. 2a but with
probabilistic reproduction and asynchronous updating.

FIGURE 3 (a) Hawk–Dove interaction scenario obtained according to
Table II with parameters b ¼ 1; c ¼ 0:5; and e ¼ 1. The equilibrium
proportion of growth promoters (Gr þ ) in the population is depicted as a
function of increasing values of d. Competition for reproduction is fully
deterministic and updating is semi-synchronous with individual mortality
0.1. The population was initiated with a proportion of growth promoters
of 0.1. Thin solid line shows the mean field result according to Eq. (4).
Thick solid, dashed, and dotted lines represent the von Neuman
neighbourhood, the Moore neighbourhood, and the extended Moore
neighbourhood, respectively. (b) As in Fig. 3a but probabilistic
reproduction. (c) As in Fig. 3a but probabilistic reproduction and
asynchronous updating.
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scenarios were initialised with frequencies of growth

promoters of 0.2 as well as 0.8 since the equilibrium

proportion of strategies in this case is sensitive to initial

conditions. Furthermore, for some parameter values the

Prisoner’s Dilemma scenario gave rise to multiple

evolutionary outcomes inspite of identical initial pro-

portion of growth promoters. Therefore, ten replications

were run for each parameter value in all of the Prisoner’s

Dilemma scenarios.

The Tomlinson and Bodmer Scenario

The simulations based on the TB scenario (Table Ia) was

investigated for varying values of b while c was kept

constant at unity (Fig. 2a–c). The solution of the replicator

equation, given in Eq. (2), is 1 2 c/b so as b increases the

proportion of growth promoters saturates at 1 (thin solid

line in Fig. 2a–c). Figure 2a shows that the deterministic

rule of reproductive competition exhibits drastic discrete

shifts in the proportion of growth promoters and non-

promoters (regardless of the level of synchronousity,

therefore only semi-synchronous results are shown).

Reproductive competition by probabilistic updating (see

Fig. 2b and c), however, show a smooth relationship

between b and the dynamic equilibria. Moreover, in

contrast to deterministic reproduction the probabilistic

reproduction turned out to be sensitive to the level of

temporal synchronousity. Semi-synchronous updating

gives a confined region of coexistence, as opposed to the

asynchronous case, which lies closer to the mean-field

result as seen in Fig. 2b and c.

Deterministic and probabilistic updating also differ in

terms of effect of neighbourhood size. In the deterministic

case the Moore and extended Moore neighbourhoods

consistently showed lower equilibria of growth promoters

for the entire parameter space. This is not the case in

simulations applying probabilistic updating. Here, all

spatial scenarios gave equlilibria in some cases above and

in other cases below the mean-field prediction. In terms of

the parameter values for which transitions in the dynamic

equilibria occur, these reflect transitions in the local

growth dynamics. For example the population level

transition for b ¼ 2 as seen from Fig. 2a, can be explained

by a transition in local growth conditions for the exact

same parameter value. For a given cell in a von Neumann

neighbourhood, which is surrounded by two growth

promoters and two non-promoters and with b . 2; the

payoff values of a non-promoter exceeds that of a growth

promoter. Now that a non-promoter wins the local

competition for proliferation a local triplet of growth

promoters can no longer expand (and vice versa for

b , 2). Thus, the local transition when b . 2 give rise to

the emergence of a transition on the global level, e.g. for b

going from ,2 to .2 the dynamic equilibrium settles on a

different dynamic state of a considerably larger proportion

of growth promoters (Fig. 2a).

The Hawk–Dove Scenario

When a growth promoter interacting with another growth

promoter is allowed to obtain the additional benefit (e) the

scenario becomes identical to a Hawk–Dove game. By

letting e ¼ 1; ðb 2 cÞ ¼ 0:5; and varying d, only the payoff

of a non-promoter encountering a promoter (D–C

interaction) is allowed to vary. The thin solid lines on

Fig. 3a–c show the mean-field prediction according to

Eq. (4). As in the spatial simulations of the TB model, the

case of deterministic updating shows the same character-

FIGURE 4 (a) Prisoner’s Dilemma scenario simulated in a von Neuman
neighbourhood according to Table II with parameters b ¼ 1; c ¼ 1:5; and
e ¼ 1. The equilibrium proportion of growth promoters (Gr þ ) in the
population is depicted as a function of increasing values of d. Then
simulations have been repeated ten times for each parameter value.
Competition for reproduction is fully deterministic and updating is semi-
synchronous with individual mortality 0.1. The population was initiated
with a proportion of growth promoters of 0.2. (Note that the mean field
scenario predicts zero growth promoters for these parameter values.) (b)
As in Fig. 4a but based on a Moore neighbourhood. (c) As in Fig. 4a but
based on the extended Moore neighbourhood.
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istic pattern of drastic transitions in the state of the quasi

equilibria. Also, in this case there is no effect of temporal

synchronousity on the dynamics when reproduction is

deterministic (therefore, only the semi-synchronous

realisations are shown in Fig. 3a). Moreover, in line with

the findings of Killingback and Doebeli (1996) we find the

counter intuitive result that when the Hawk–Dove scenario

is implemented with the Moore and extended Moore

neighbourhoods there are incidents of increasing levels of

co-operation/growth promotion for increasing values of

the payoff for non-promoters exploiting promoters (D–C

interaction), see Fig. 3a. Interestingly, this is not the case

for a von Neumann neighbourhood and such system

behaviour is never seen in the probabilistic models Fig. 3b

and c, which suggest that the phenomenon may be an

artefact of determinism specific to certain neighbourhoods

(Moore and extended Moore).

Again, we see that for probabilistic reproduction and

asynchronous updating the results tend to approach the

mean-field description. However, allowing another

element of realism with the semi-synchronous implemen-

tation, the discrepancies between the spatial and mean-

field description are greatly amplified. This can be seen

from the steeper slope and sigmoid shape of the curve in

Fig. 3b compared to Fig. 3c.

The Prisoner’s Dilemma Scenario

The parameter setting describing growth promotion as a

truly altruistic act, hence the Prisoner’s Dilemma scenario,

showed, in contrast to the mean-field result, that clusters of

growth promoters, i.e. co-operators, indeed can persist

when c . b: Figure 4a–c show for deterministic updating

the final proportion of growth promoters as d is increased

while e ¼ 1 and ðb 2 cÞ ¼ 20:5 when starting with a

population of 20% growth promoters. As in the above pay

off scenarios the implementations with deterministic

competition for reproduction show the characteristic

discrete transitions in the parameter space. As seen in

Fig. 4c a low initial fraction of growth promoters entirely

fail to thrive in an extended Moore neighbourhood. In

simulations based on the other neighbourhoods the system

exhibits multiple evolutionary outcomes with either zero

growth promoters or a polymorph population (see

replications in Fig. 4a and b). In such case the fate of

the growth promoters critically depends on the size of

clusters initially present, which in turn determines whether

growth promoters gain foothold or go extinct. Figure 5a–c

show how this effect is less pronounced when the

population is initialised with 80% growth promoters

because most likely at least one cluster of the critical size

will be present initially. The evolutionary bi-stability has

the interesting implication that established (tumour)

clusters in this area of the parameter space will be harder

to treat subsequent to establishment by changing the cost-

benefit weighting compared to those cells which are not

yet established as clusters. Moreover, this effect could

only be observed in the Prisoner’s Dilemma scenario with

true altruism ðc . bÞ; where spatial correlations are

critical for the co-operators. Since the asynchronous and

semi-synchronous simulations showed identical dynamics

only the latter are shown in Figs. 4a–c and 5a–c.

In order to ascertain the robustness of these results

similar simulations were conducted with the following

parameter values: e ¼ 1:4; ðb 2 cÞ ¼ 20:1 and e ¼ 1:25;
ðb 2 cÞ ¼ 20:25: The same pattern emerged as for the

results shown in Figs. 4 and 5 including the drastic

transitions among states. The scope for pure co-operation

and polymorph states seemed even more pronounced for

these parameter values as they represent scenarios closer

to the Hawk–Dove scenario. As in Figs. 4 and 5 the

system also showed bi-stability in the evolutionary

FIGURE 5 (a) As in Fig. 4a but simulations were initiated with a
proportion of growth promoters of 0.8. (b) As in Fig. 5a but based on a
Moore neighbourhood. (c) As in Fig. 5a but based on the extended Moore
neighbourhood.
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outcome for these parameters indicating that sensitivity is

a general phenomenon in the parameter region represent-

ing the Prisoner’s Dilemma scenario.

In contrast to the deterministic cases, when updating was

probabilistic, growth promoters always went entirely

extinct regardless of the initial conditions and the temporal

granularity (results not shown). Hence, both the sequen-

tially asynchronous and semi-synchronous realisations of

probabilistic reproduction gave populations exclusively

consisting of non-promoters. Local stochasticity as in the

probabilistic competition for reproduction allows no

possibility for persistence of clusters of “altruistic” growth

promoters regardless of the level of synchronicity. In the

probabilistic scenario clusters of growth promoters will be

invaded by non-promoters. Hence with local stochasticity

clusters of growth promoters are no longer immune to

exploitation. Therefore, given enough time, such clusters

will eventually vanish due to local exploitation in spite of

spatial correlations.

DISCUSSION AND CONCLUSION

As might be expected from previous studies, the spatially

extended interaction models showed markedly different

results compared to their mean-field counterparts. Space

seemed to amplify the proportion of growth promoters in

many but not in all of our simulations. However, the

spatial simulations were highly sensitive to the specific

implementation, which in turn limits the scope for general

statements about spatial effects. Because, we consider the

probabilistic competition for reproduction and the semi-

synchronous updating more realistic than the correspond-

ing deterministic and asynchronous representations, the

conclusion from previous evolutionary models that space

generally favours co-operative strategies does in our view

not necessarily apply for populations of cells (Nowak and

May, 1992). Indeed, our results indicate that the truly

altruistic co-operative strategies thrive poorly among non-

altruists in the domain of a spatial Prisoner’s Dilemma

scenario except for the (special) case of deterministic

competition for reproduction. Even with 80% growth

promoters in the initial population these will eventually be

out-competed by non-promoters when realistic local

competition is considered.

There are in general, however, significant deviations

from the mean-field predictions in our spatial models.

These seem to be exacerbated by small neighbourhood

sizes: both the deterministic and probabilistic updating

scenarios show larger deviations in simulations assuming

the von Neumann neighbourhood. Moreover, when

probabilistic updating is considered, deviations from the

mean-field predictions are highly dependent on whether or

not concurrent updates of neighbours are permitted, i.e.

semi-synchronous or synchronous updating. Our findings

do not fully comply with Hauert’s (2002) conclusion,

that stochasticity on the level of updating causes

equilibrium frequencies to approach the mean-field result.

The biologically motivated probabilistic semi-synchro-

nous scenario showed a pronounced deviation from the

mean-field result, in particular in the TB scenario. Indeed,

the “window of coexistence” between growth promoting

and non-promoting cells is smaller for semi-synchronous

than synchronous updating (seen by comparing Figs. 2b–c

and 3b–c). Such effects were again more pronounced in the

smaller von Neumann neighbourhood. Hence, the degree

and level of operation of stochasticity play a non-trivial role

concerning the deviation from the mean-field results (see

for another example Molofsky et al., 1999).

The effect of neighbourhood size on the deviation from

the mean field approximation depends on the level of

growth promoters in the population. For example when

conditions permit the growth promoting strategy to thrive

at a large proportion in the population the smaller

neighbourhood size seem to ameliorate further the

conditions for growth promoters (see Figs. 2a–c and

3a–c). Thus, longer interaction ranges of the growth

factors facilitate the non-promoters’ exploitation of the

growth promoters, hence it becomes increasingly difficult

for the growth promoters to outcompete the non-

promoters completely. Inferentially, a therapeutic inter-

vention inhibiting a putative biochemical growth

promoter, (e.g. by lowering its half-life and thereby

decreasing the spatial reach) may actually risk to further

increase the number of growth promoters. Conversely

however, increasing the interaction range of the cells may

limit the success of growth promoting strategies.

In both the mean-field and spatial models (with the

exception of the deterministic scenario), once across the

b ¼ c line then growth promoters will disappear entirely

from the population. Thus, increasing sufficiently the cost

of promoting growth and being aggressive could cause

selection to drive such genotypic strategies out of the

population. Furthermore, an interesting implication of the

spatial models is that as the benefit of the growth promoter

is decreased the proportion of growth promoting cells may

change dramatically (Fig. 2b and to a lesser extent Fig. 3b)

compared to the mean-field models. These dramatic shifts

can occur even when b . c: Such selective collapse of a

growth promoting genotype cannot be excluded as a

possible scenario explaining the phenomenon of spon-

taneous regression. In some cases the organism’s immune

system could be thought to naturally increase the

efficiency towards cancerous cells, hence increasing c.

However, it should be noted that a number of other

explanations for this phenomenon have been suggested.

The most common cases of spontaneous regression occur

for certain malignant tumours in very young children (,1

year of age) and presumably correlate with a general

decrease in the production of growth factors (Papac,

1996). Similarly, breast carcinomas that are dependent on

hormonal stimulation can regress at the onset of

menopause (Papac, 1996).

Recent advances in the understanding of genetic

abnormalities in cancer cells have led to an exciting

development of new treatment modalities that might
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directly affect the values of c(ost) and b(enefit). When

surgery is inadequate or impossible, cancer cells have

traditionally been hit with agents that basically target any

living cell that has a very high metabolic rate and is

rapidly dividing. Today, drugs or agents are being

exquisitely designed for molecular specificity (or geno-

type specificity) by targeting various signalling molecules

and pathways that are deregulated in cancer cells. These

agents still have to overcome two major problems of

cellular specificity (since these signalling pathways are

also present in normal cells) and the power of selection

and evolution leading to relapse and development of a

resistant clone (Greaves, 2000; Gorre et al., 2001).

Nevertheless, these new treatment modalities offer some

intriguing possibilities of modifying c and b. Although, it

still needs a lot of development, an example in which the

cost of having a given genotype could be dramatically

increased is the use of replication-competent viruses

(Alemany et al., 2000). Furthermore, recent work with the

re-population of tumour reactive T-cells that can induce

metastatic regression, would here correspond to an

increase in the cost of being a specific cell type (Dudley

et al., 2002). An example where the value of b might be

modified could be the use of angiogenesis inhibitors

(Carmeliet and Jain, 2000). When a patient present with a

tumour, the new blood vessels are already established.

Thus, from an evolutionary dynamics point of view,

angiogenesis inhibitors are probably mainly of use when

applied in a preventive setting rather than when used as

therapeutics.

This study represents an initial step in making spatial

tumour models which account for evolutionary effects

such as local frequency-dependent selection. In previous

spatial models the autocrine and paracrine growth factors

have been seen as determining growth parameters. The

cells inside a tumour should be regarded as entities that

are subject to strong selection and interaction amongst

each other and should not be modelled as static units

inside a tumour. Since the first models of tumour growth

such as the early work of Thomlinson and Gray (1955)

and the model of layered growth by Greenspan (1972) to

the present state of the art models including the cellular

automaton based models (Qi et al., 1993; Kansal et al.,

2000; Moreira and Deutsch, 2002), and models based on

differential equations and diffusion (Michelson and

Leith, 1991; Chaplain et al., 2001; Breward et al.,

2002; Jackson, 2002; Sherratt and Chaplain, 2002), there

seem to have been surprisingly little attention to the kind

of evolutionary dynamics generated by frequency-

dependent interactions among cells. Such effects should

also be considered if tumour models are to become more

realistic, since an inherent property of cancerous growth

is extremely high turnover rates, in turn facilitating short-

term adaptation and local frequency-dependent selection

among cells. With most of the pharmaceutical industry

focussing on “designer” drugs targeting various signal-

ling pathways (or geno-types) altered in various tumour

cells, a better understanding of tumour evolutionary

dynamics and spatial heterogeneity seems more import-

ant than ever (Gonzales-Garcia et al., 2002). An

underestimation of the power of selection and evolution

can be detrimental in connection to treatment and

prognosis (Gorre et al., 2001). The coupling of

population dynamics with evolutionary dynamics,

which has been a major focus of research in ecology, is

equally important in the description of phenomena such

as internal tumour dynamics.
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APPENDIX

Generation Turn Over:

procedure Outer iterative loop

begin

Initialise population on lattice

for g ¼ 0 to g ¼ maxgeneration do

Payoff update

Mortality

Competitive Reproduction

end
end

A.1 Payoff Update:

procedure Payoff updating

begin

for each individual i in lattice do

fitess i ¼ 0

for each neighbour j of i do

Get payoff from pairwise interaction [i,j ]

according to payoff table

fitness (i) ¼ fitness(i) þ payoff

end

end

end

A.2 Mortality:

procedure Asynchronous mortality

begin

remove individual i at random location

return
end procedure Semi-synchronous mortality

begin

for each individual i in lattice do

if mortality probability . PseudoRandom [0; 1]

then

remove i

return

end
end

end

A.3 Reproduction:

procedure Reproduction by competition

begin

for each position p in lattice do

if p is void then

if competition ¼ deterministic then

select neighbour j with highest fitness (if tie

select randomly)
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copy instance of j into location p

end

if competition ¼ probabilistic then

total fitness ¼ 0

for each neighbour n do

total fitness ¼ total fitness þ fitness (n)

end

select neighbour j with probability ¼

fitness (j)/ total fitness

copy instance of j into location p

end

end

end
end
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