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MASON is a fast, easily extensible, discrete-event multi-agent simulation toolkit in Java, designed
to serve as the basis for a wide range of multi-agent simulation tasks ranging from swarm robotics
to machine learning to social complexity environments. MASON carefully delineates between model
and visualization, allowing models to be dynamically detached from or attached to visualizers, and
to change platforms mid-run. This paper describes the MASON system, its motivation, and its basic
architectural design. It then compares MASON to related multi-agent libraries in the public domain,
and discusses six applications of the system built over the past year which suggest its breadth of
utility.

Keywords: Agent-based modeling, simulation, multi-agent systems, computational social science

1. Introduction

MASON is a single-process, discrete event simulation core
and visualization library written in Java, designed to be
flexible enough to be used for a wide range of simple sim-
ulations, but with a special emphasis on swarm multiagent
simulations of many agents (up to millions). We developed
the MASON simulation toolkit to meet the needs of com-
putationally demanding “swarm”-style multiagent systems
(MAS) research. The system is open-source and free and is
a joint effort of George Mason University’s Computer Sci-
ence Department and the George Mason University Cen-
ter for Social Complexity. MASON may be downloaded at
http://cs.gmu.edu/∼eclab/projects/mason/.

Multiagent systems are receiving increasing research
attention as affordable computer brawn makes simulation
of these environments more feasible. One source of interest
has come from social and biological models, notably ones
in economics, land use, politics, and population dynamics
(e.g., [1-3]).Another source stems from the swarm robotics
community, particularly as homeland security and defense
interests have bolstered investigations of large numbers of
“U∗Vs” (unmanned aerial vehicles, unmanned underwater
vehicles, etc.) for collaborative target observation, recon-
naissance, mapping, and so on [4-7]. Swarm multiagent
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simulation is also a common technology in the game and
movie industries.

MASON was built from first principles to serve the
needs of these research areas. Our design philosophy was
to build a fast, orthogonal, minimal model library to which
an experienced Java programmer could easily add features,
rather than one with many domain-specific, intertwined
features that are difficult to remove or modify. To this min-
imal model we have added those visualization and graphi-
cal user interface (GUI) facilities we have found useful for
various simulation tasks.

We began work on MASON because we needed a sim-
ulation toolkit that made it relatively easy for us to create a
very wide range of multiagent and other simulation mod-
els and to run many such models efficiently in parallel
on back-end cluster machines. Domains to which we in-
tended to apply the simulator ran the gamut from robotics
and machine learning to multiagent models of social sys-
tems (political science, historical development, land use,
economics, etc.). Our previous research in these areas had
either relied on a heavily modified robotics simulator (no-
tably TeamBots [8]); a compiled social complexity toolkit
such as SWARM [9], Ascape [10], or RePast [11]; or an in-
terpreted rapid-development library such as StarLogo [12],
NetLogo [13], or Breve [14].

We needed to run many (>100,000) simulation runs to
optimize model parameters or perform machine learning
in a multiagent problem domain. In such cases, we had to
“cook” the simulations on multiple back-end servers (in
Linux, Solaris, and MacOS X) while occasionally viewing
the results on a front-end MacOS X or Windows worksta-
tion. This required speed, the ability to migrate a simulation
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run from platform to platform, and (for our purposes) guar-
anteed platform independence. Furthermore, we needed to
be able to customize the simulator to different multiagent
simulation problems and applications. The aforementioned
systems did not meet these needs well because they tied
the model to the GUI too closely, could not guarantee
platform-independent results, or, being written in an in-
terpreted language, were slow. In addition, several such
systems, particularly the robotics simulators, were by and
large geared to a particular problem domain. Rather than
remove special-purpose code from an existing system (po-
tentially introducing bugs), we instead hoped to build on
top of a more general-purpose simulator.

Given these research needs, MASON’s design goals
were as follows:

• A small, fast, easily understood, and easily modified core
• Separate, extensible visualization in 2D and 3D
• Production of identical results independent of platform
• Checkpointing any model to disk such that it can be re-

sumed on any platform with or without visualization
• Efficient support for up to a million agents without

visualization
• Efficient support for as many agents as possible under

visualization (limited by memory)
• Easy embedding into larger existing libraries, including

having multiple instantiations of the system coexisting in
memory

There were three design goals we explicitly did not
make for MASON. First, we did not intend to include
parallelization of a single simulation across multiple net-
worked processors. Such an architecture is radically dif-
ferent from a single-process architecture. Second, we
intended the MASON core to be simple and small and so
did not provide built-in features special to social agents or
robotics simulators. We felt such things were more appro-
priately offered as optional domain-specific modules in the
future. Third, although we tried to be reasonably memory
efficient, this was not a priority.

We recognize that speed, model detachment, check-
pointing and portability, and strong visualization are all
common in the simulation community at large. However
in the “swarm”-style simulation community, MASON’s
combination of architecture and these features is essen-
tially unique. In this article, we discuss the architectural
design of the system and then detail six applications of
MASON presently under way.

2. Architecture

MASON is written in Java to take advantage of its portabil-
ity, strict math and type definitions (to guarantee duplicable
results), and object serialization (to checkpoint out simu-
lations). Java has an undeserved reputation for slowness,
and our past experience in developing the ECJ evolution-
ary computation toolkit [15] suggests that carefully written
Java code can be surprisingly fast.

The toolkit is written in three layers: the utility layer,
the model layer, and the visualization layer. The utility
layer consists of classes that may be used for any purpose.
These include a random-number generator, data structures
more efficient than those provided in the Java distribution,
various GUI widgets, and movie- and snapshot-generating
facilities. Next comes the model layer, a small collection
of classes consisting of a discrete event schedule, schedule
utilities, and a variety of fields that hold objects and asso-
ciate them with locations. This code alone is sufficient to
write basic simulations running on the command line.

The visualization layer permits GUI-based visualization
and manipulation of the model. Figure 1 shows a simplified
diagram relating basic objects in the model and visualiza-
tion layers. For most elements in the model layer, down
to individual fine-grained objects in the model, there is an
equivalent “proxy” element in the visualization layer re-
sponsible for manipulating the model object, portraying it
on-screen, and inspecting its contents. A bright line sepa-
rates the model layer from the visualization layer, which
allows us to treat the model as a self-contained entity. We
may at any time separate the model from the visualization,
checkpoint the model to disk, move it to a different plat-
form and let it continue to run, or attach an entirely different
visualization collection. Figure 2 shows this procedure.

2.1 The Model Layer

MASON’s model layer has no dependencies on the vi-
sualization layer and can be separated from it. A MA-
SON model is entirely contained within a single in-
stance of a user-defined subclass of MASON’s model
class (SimState). This instance contains a discrete event
Schedule, a MersenneTwister random-number
generator, and zero or more fields.

Agents and the Schedule. MASON employs a specific
usage of the term agent: a computational entity that may be
scheduled to perform some action and that can manipulate
the environment. Note that we do not explicitly state that
the agent is physically in the environment, though it may
be; in this case, we would refer to the agent as an embodied
agent. Agents are brains which may or not be embodied.
MASON does not schedule events to send to an agent;
rather, it schedules the agent itself to be stepped (pulsed
or called) at some time in the future. Hence, MASON’s
agents implement the Steppable interface, as shown in
Figure 1. Scheduling an agent multiple times for different
functions is easily done with an anonymous wrapper class.

MASON can schedule Steppable objects to occur
at any real-valued time in the future. Furthermore, the
Schedule may be divided into multiple orderings that
further subdivide a given time step: agents scheduled at a
given time but in an earlier ordering will be stepped prior
to agents scheduled at the same time but in a later order-
ing. MASON also provides variousSteppablewrappers
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Figure 1. Highly simplified UML diagram of the basic classes in the model and visualization layers. Items in parentheses indicate
sets from which numerous class are available.
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Figure 2. Checkpointing and recovering a MASON model to be run standalone or under different kinds of visualization

that can group agents together, iterate them, perform them
in parallel on separate threads, and so on. Agents may be
scheduled to run in their own thread asynchronous with
the schedule. This thread may run until completion, loop
indefinitely, or run until the Schedule reaches some later
time step.

Fields. MASON’s fields relate arbitrary objects or val-
ues with locations in some notional space. Some of these
fields are little more than wrappers for simple 2D or 3D
arrays. Others provide sparse relationships. An object may
exist in multiple fields at one time, and in some fields, the
same object may appear multiple times. The use of fields
is entirely optional, and the user may add additional fields
of his or her own devising. MASON provides fields for the
following:

• 2D and 3D bounded arrays of objects, integers, or dou-
bles that may be bounded or toroidal and with hexagonal,
triangular, or square layouts

• 2D and 3D sparsely populated object grids that are
bounded, unbounded, or toroidal and with hexagonal, tri-
angular, or square layouts

• 2D and 3D sparse continuous (real-valued) space, that may
be bounded, unbounded, or toroidal

• Networks (graphs), whose edges may be directed or undi-
rected and optionally weighted or labeled

When running the model without visualization,
MASON has an intentionally primitive top-level simu-
lation loop. MASON begins by either creating a new
SimState or loading one from a Java-serialized check-
point file. MASON then enters the following loop. First, it
checks to see if the Schedule has any agents remaining
to step. If not, or if some maximum time step has been ex-
ceeded, MASON exits the loop, finishes the SimState,
and quits. Otherwise, the Schedule advances the time
to the minimum agent-scheduled time step, then steps all
agents scheduled at that time (sorted by ordering and shuf-
fled randomly within an ordering). If a checkpoint is de-
sired (typically every so manySchedule steps), it is done
so at this time: asynchronous agents are first requested to
pause their threads, then a checkpoint of the entire model is

written out, then asynchronous agents resume their threads,
and the loop continues.

Agents have full access to the SimState and may ma-
nipulate its fields, Schedule, and random-number gen-
erator. MASON imposes few restrictions on the actions
they may perform and provides no simplifying protocols
for agent design. For example, MASON does not provide
a rule language for stipulating agent behaviors. We imag-
ine such things can be included in forthcoming MASON
module extensions.

2.2 The Visualization Layer

Objects in the visualization layer may examine model-
layer objects only with the permission of a gatekeeper
wrapper around the SimState, called a GUIState.
When running with a GUI, it is this class that is responsible
for attaching the SimState to visualization (or detach-
ing it) and for checkpointing the SimState to or from
disk. As certain objects in the visualization world need to
be scheduled (notably, windows need to be refreshed to
reflect changes in the model), such elements may “sched-
ule” themselves with the GUIState to be updated when-
ever the underlying Schedule is pulsed but not be sched-
uled on the Schedule itself. This allows the visualization
layer to be separate from the model.

In addition to the SimState, the GUIState also
maintains zero or more displays, GUI windows that pro-
vide 2D and 3D views of underlying fields. Displays op-
erate by holding zero or more field portrayals, associating
each one with a different field in the model. Each field por-
trayal is responsible for drawing the field on-screen and for
responding to user requests to inspect features of the field.
Field portrayals do this by associating simple portrayals
with individual objects or values stored in the fields.A field
portrayal may associate a simple portrayal with a specific
object stored in the field, with a class of objects, with all
objects in the field, and so on. The user may choose from a
number of provided simple portrayals, the user may design
the simple portrayal himself, or the object may portray it-
self instead. Some examples of visualized fields are shown
in Figure 3.
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Figure 3. Examples of visualized fields in MASON, showing various forms of 2D and 3D continuous and discrete space

Simple portrayals can also, on request, call up inspec-
tors (what SWARM would call “probes”) of underlying
model objects. Inspectors are GUI panels that allow the
user to inspect or modify object parameters. The user can
provide custom inspectors for objects or use the basic ones
provided (which use Java’s Bean Properties facility). Mod-
els and fields may also have inspectors. Drawing and in-
spection follow similar paths: when a display is redrawn,
it asks each of its field portrayals to redraw their fields,
and in turn, the field portrayals call up simple portrayals to
draw elements in the field. Likewise, when a user clicks on
a display to request inspection of objects, the display asks
the field portrayals to provide inspectors for these objects,
and the field portrayals in turn call up the relevant simple
portrayals and ask them to provide the inspectors.

The GUIState also contains a top-level controller
GUI window, usually the provided Console. The
Console’s primary function is to allow the user to
start/stop/pause/step the Schedule, but it also provides
the GUI functionality to load and save checkpointed
models, to show and hide displays, to view inspectors,
and to load additional simulations (each with their own
SimStates, GUIStates, and Consoles).

Running the model under visualization is a more in-
volved process than without visualization, and not just be-
cause things must now be displayed. The underlying model
runs in its own thread separate from the GUI’s main thread.
Since both the model thread and the GUI thread must have
access to underlying model data, they enter into a synchro-
nization procedure that guarantees that only one is oper-
ating on these data at any given time. The general proce-
dure is as follows. When a GUIState is constructed, it
creates a Console, various displays, and the underlying
SimState. When the user presses “play” in the Con
sole to start a simulation, the Console starts the
SimState, then spawns the model thread. The model
thread enters into a loop that it exits only if asked to
shut down by the Console or if no further agents are
scheduled. In this loop, the GUIState performs any
pre-schedule items, then the Schedule advances to the
minimum agent-scheduled time and steps any agents at

that time, then postschedule items are performed (typ-
ically requests to redraw the displays), and finally the
thread defers to the GUI thread to give it access to the
model before finishing the loop. While the model thread
is waiting, the GUI thread can finish redrawing the dis-
plays, complete any requests made by the user to in-
spect the model, and checkpoint out the model (or read
a new one in from checkpoint to replace it). When the
user presses “stop,” the thread is asked to shut down,
and the Console finishes the SimState. When the
Console is closed, theGUIState,SimState, and dis-
plays are destroyed.

2.3 MASON Usage and Extensions

Because of the separation of the model from visualization,
MASON models are usually created in two stages (refer
again to Figure 1). First, the author develops the model
proper as a self-contained subclass of SimState. After
this code is completed, the MASON model should be able
to run on the command line as a GUI-less application. Next,
the author creates a GUIState to encapsulate the Sim
State, attaching portrayals and displays.At this point, the
simulation can be visualized. The author can create further
GUIStates to visualize theSimState in different ways.
A GUIState can also be used in combination with a spe-
cial class, SimApplet, to generate online MASON ap-
plets. MASON comes with several tutorial and example
applications to show how these are done.

The basic MASON distribution provides only those core
tools common to most simulation and visualization needs.
We have several extensions to MASON available or in de-
velopment, each of which is distributed as a separate mod-
ule or online tutorial:

• Social Network Analysis. MASON provides only a rudi-
mentary network field. We have developed an extension to
MASON that generates a number of useful graph statistics
aimed largely at the social network research community.

• Physics Modeling. We are actively working on a Java-
based 2D physics engine built on top of MASON. In ad-
dition, we are examining attaching MASON to a C++ 3D
physics engine such as ODE [16].
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• Charting. MASON has no graphing, charting, or statisti-
cal facilities: there are much better open-source facilities
available than we can do ourselves, and what is available
changes rapidly. We have provided a tutorial showing how
to connect MASON to JFreeChart [17] and iText [18] to
generate charts and graphs for display in real time and for
publication-quality output.

• Parameterization. We provide a tutorial showing various
approaches to loading MASON simulations from param-
eter files.

As MASON development continues, we expect further
extensions as well, depending on research needs. Possible
future directions include OpenGL visualization (in addi-
tion to MASON’s presently used Java3D), high-level in-
terpreted agent development tools, packet network simula-
tion, and a Geographic Information Systems (GIS) library.

3. Comparison to Other Simulation Environments

MASON’s original inspiration came from a desire to reim-
plement more cleanly some of the problem domains we
had constructed in the Teambots [8] simulator. Teambots
is an early Java-based lightweight robotics simulation en-
vironment that provides minimal physics and robot sensor
facilities, a graphic display, and a very simple schedule
procedure. Teambots is useful for behavior-based robotics
experiments, though its lack of a real physics model is
a hindrance. Teambots also makes a hard distinction be-
tween the objects in the world (including the robots) and
the agents that drive some of them (such as the robot soft-
ware). MASON’s similar distinction was inspired by this.
Teambots makes this delineation because this design al-
lows the experimenter to port software robot behaviors
to real robots using provided real-robot application proto-
col interfaces (APIs). A more recent family of simulators,
called Player/Stage [19], has moved toward more realistic
robots and environments.

The robotics simulators discussed above are capable but
understandably geared to a very specific problem set. We
found that implementing nonrobotics multiagent simula-
tions in these simulators involved considerable modifica-
tions of the simulators to provide extra-robot functionality
or to remove unneeded functionality that would otherwise
slow the experiment. Such modifications had a strong like-
lihood of introducing bugs, particularly given the size and
complexity of these simulators.

Compiled Multiagent Simulators. Instead we chose
to construct MASON to be usable for a broad scope of
lightweight simulation functions, with a general-purpose
schedule and fields. In this vein, MASON is most closely
comparable to compiled multiagent simulation libraries
such as SWARM [9], Ascape [10], and RePast [11].
SWARM is the earliest such system and originally required
the user to write in Objective-C and Tcl/Tk. SWARM appli-
cations may now be written in Java using special libraries

that communicate with Objective-C. Oddly, SWARM does
not take advantage of by far the foremost Objective-C sys-
tem: the OpenStep GUI specification embodied in MacOS
X and the open-source GNUstep library. We believe the use
of an unusual language but not its primary environment has
proven a challenge to SWARM’s continued extensibility
and maintainability.

To remedy this, RePast was envisioned to reimplement
much of the SWARM philosophy entirely in Java or .NET,
and it has been the center of considerable community in-
terest in recent years. The RePast distribution has a large
footprint: included in the package are neural networks, ge-
netic algorithms, social network modeling, system dynam-
ics modeling, logging, GIS, and graphs and charts.

Ascape is a multiagent simulation toolkit inspired by
the Sugarscape model [2]. Ascape tries to be as rule ori-
ented as possible within a Java framework: agents have
rule-based behaviors that fire based on specific environ-
mental conditions, and these agents are grouped into larger
structures that have their own behaviors and fire their sub-
sidiary agents in a user-specified order. This framework
simplifies model development in some cases, but it also
imposes considerable constraints on simulation design as a
whole, particularly on simulations requiring arbitrary event
handling.

Like MASON, these three multiagent system toolkits
all provide graphical visualization, inspection of simula-
tion objects, stochastic event ordering, and the generation
of various forms of media. But there are some important
differences. Stemming from its design goal as a general-
purpose agent simulation environment, MASON provides
3D fields, visualization of both 2D and 3D fields in 3D,
and somewhat more sophisticated and flexible 2D visual-
ization. MASON is also somewhat faster than the toolkits
described above both in underlying model and in visual-
ization, and it is expressly designed to produce duplicable
results if necessary.

But most important, MASON is capable of separating
the model from visualization dynamically. While some of
the above frameworks can run “headless,” this is generally
an either/or proposition, and furthermore, migration of a
headless process from one machine to another is gener-
ally not possible, much less visualization of the headless
process mid-run (except through analysis of its statistical
output). These systems lack these features largely because
they were originally designed for single-shot models that
the experimenter would construct, run once, and then ana-
lyze. MASON instead was designed to be executed a very
large number of times on different machines as part of a
model optimization procedure.

Interpreted Multiagent Simulators. Another approach
is to build a simulation toolkit in which the user manipu-
lates the world through an interpreted, online programming
language such as Logo. By eliminating the compile-run cy-
cle, the experimenter is free to make small changes in the
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code, even at runtime, to experiment with its effects. This
is the design philosophy behind StarLogo [12] and later
NetLogo [13]. These systems provide basic functionality
similar to SWARM but impose a modified version of Logo
as the experimenter’s model implementation language. A
related simulator is Breve [14], which provides 2D and 3D
worlds with which the user may manipulate objects using
the ODE physics engine and a proprietary language called
Steve.

These simulators offer many benefits for rapid prototyp-
ing by enabling immediate feedback on code changes, en-
couraging tweaking of the model mid-run, and (in Breve’s
case) wrapping a powerful physics environment with a
simple, easy-to-learn library. Furthermore, in theory, an
interpreted-language design can more easily be ported mid-
run from platform to platform and to dynamically add and
remove visualization tools. The primary downside of these
simulators is that, for our purposes, they are slow. The
language features that make them so attractive for rapidly
building a model also make them less appropriate for com-
plex simulations with long runtimes. In addition, simula-
tions built with these tools tend to be bound by the con-
straints imposed by their respective graphical interfaces.
For example, Breve generally assumes visualization of a
single space, and NetLogo constrains simulation tools to
fit within a single window.

4. Applications

MASON has existed for 2 years at George Mason Uni-
versity, but we have already used it for a number of sim-
ulation tasks ranging from micro-air vehicle coordination
and virus propagation to models of collective behavior in
simple societies. Here we will mention a few of interest.
We describe these systems primarily to demonstrate the
depth of applicability of MASON. The models shown use
a wide range of MASON features, including its square and
hexagonal grids, sparse discrete fields, continuous fields,
network facilities, 2D and 3D environments, real-valued
and discrete schedules, added charts and graphs, and capa-
bility to be embedded in a larger external toolkit.

Four of these simulations—cooperative target obser-
vation, ant foraging, urban traffic, and “wetlands”—are
computationally intensive and require many runs in batch.
It is for such tasks that MASON is particularly well
suited. Two simulations—network intrusion and anthrax
propagation—were originally written in other simulation
packages and were ported to MASON to take advantage of
agent inspection features and as tests of porting difficulty.

Network Intrusion and Countermeasures. Network
intrusion is an agent-based model designed to study com-
puter network security issues, first developed inAscape and
then ported to MASON by an inexperienced MASON de-
veloper to test the difficulty and speed of porting to the new
system (with, we felt, very positive results). The current

version models a network of 2500 computer systems con-
nected via two overlaid grid topologies: IP address space
(or physical space) and remote login space. In these spaces
live two kinds of agents: computer systems and one or
more hackers. Each computer system has a set of secu-
rity policies implemented when the system is believed to
be compromised. A computer may be classified as secure,
threatened (in the sense that a nearby computer has been
compromised), compromised at a user level, or compro-
mised at the super-user level. The parameters of the model
allow one to understand the effects of changes in security
policies as well as the effects of changes in hacker behavior.
Figure 4 shows a snapshot of a simulation.

Urban Traffic Simulation. We have developed a
lightweight urban traffic simulation in MASON to examine
traffic flow from a multiagent perspective and hope to apply
derived algorithms to other environments such as packet
routing. A small simulation is shown in Figure 5. The sim-
ulation uses a network field in MASON with intersections
as nodes and roads as graph edges. Cars and traffic lights
are scheduled using MASON’s real-valued time schedule.
Cars beginning travel along a road are scheduled to appear
at the intersection at the end of the road at some time in the
future, depending on road length and car speed. When a
car reaches an intersection, it is placed in another queue to
wait at the intersection’s stoplight. While a light is green,
some N waiting cars are allowed through the intersection
at a given time step.

Using this simulation, we are investigating how to max-
imize both global and per car mean travel time, variance
in wait time, and other factors. Of particular interest to us
is how the system can adapt to “smooth out” sudden un-
expected floods of traffic (after a sporting event ends, for
example), in addition to handling regular “rush-hour” style
floods.

Cooperative Target Observation in Unmanned Aerial
Vehicles. In recent experiments [20], we examined the
effectiveness of various algorithms that direct mobile UAV
agents (called observers) to collectively stay within an “ob-
servation range” of as many randomly moving targets as
possible. Observers and targets live in a sparse continuous
2D or 3D field in MASON. The cooperative target obser-
vation environment is shown in Figure 6. We used this en-
vironment to examine “tunably decentralized” cooperative
algorithms, where by changing a parameter, we could grad-
ually shift the algorithm from one global decision-making
procedure to individual per agent procedures.We examined
two such algorithms for controlling the observers based on
K-means clustering and hill climbing.

Ant Foraging. We have recently examined how to aug-
ment ant-like robot swarm behaviors with pheromones to
perform “central place food foraging,” in which agents
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Figure 4. Network intrusion model: the physical (left) and logical (center) spaces, together with statistics on intrusions and
compromised systems (right)

Figure 5. A small 16-intersection urban traffic simulation.
Gray squares are intersections, and lines are two-way roads.
Numbers indicate how many cars are traveling on roads or
waiting to perform various actions at intersections.

leave a nest to search for food, then return to the nest laden
with food. Figure 7 shows a typical 100 × 100 cell en-
vironment with 1000 ants, a nest (bottom right), a food
source (top left), and two large elliptic obstacles. The ants
cooperatively discover and optimize a minimum-length
trail. Our experiments in this environment [21] suggested
that pheromones bear a strong resemblance to utility value

Figure 6. Cooperative target observation model. Small dou-
bly circled dots are observers. Outer circles are their obser-
vation ranges. Large dots are targets. Straight lines connect
observers with newly chosen destinations.

functions found in dynamic programming and reinforce-
ment learning.

This environment was implemented using 2D sparse
grids and value grids in MASON and is notable in that, in
some cases, MASON served as a subsidiary object within
the ECJ evolutionary computation system [15]. This al-
lowed us to use ECJ to optimize ant behaviors: ECJ would
iteratively consider a candidate ant behavior, then fire up
MASON to test the behavior in simulation and assess its
quality. More details on these experiments are reported in
Panait and Luke [22].
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(a) (b) (c) (d)

Figure 7. Foraging sequence with two obstacles. Nest is in bottom-right quadrant, and food source is in top-left quadrant. Left to
right: (a) ants leave the nest while depositing a pheromone. (b) Ants discover the food source and begin return to nest along the
pheromone while depositing a second pheromone. (c) Trail is established. (d) Ants perform trail optimization.

Anthrax Propagation in the Human Body. The inter-
action between pathogens and infected hosts is usually
investigated using laboratory and live studies. But for some
diseases, such as inhalation anthrax, live studies are not
possible due to their deadly effects. After examining labo-
ratory studies, the spread of anthrax in human organs was
modeled as a series of discrete events that map out a time
course for infection in the human body. Different systems
in the human body that play a role in inhalation anthrax
were modeled as spatial entities to show how the anthrax
disease flows through the body. The dynamics of these in-
teractions was implemented using 2D sparse grids, one per
system. The model also displayed statistics on the interac-
tions of the systems and on the patient’s health and disease
state.

The anthrax model was developed originally using
SWARM in Objective-C but was rewritten in its entirety
in MASON to take advantage of MASON’s speed and its
control and inspection features. The individual perform-
ing the port had no previous knowledge of MASON at all
but reported that the port was fairly easy as MASON has a
similar scheduling mechanism to SWARM. Figure 8 shows
before-and-after screenshots showing an anthrax panel as
displayed in SWARM and in MASON.

Wetlands: A Model of Memory and Primitive Social
Behavior. Using the MASON wetlands model [23, 24],
we investigated the effect of memory, forgetfulness, and
simple hierarchical group organization on the emergent
patterns of agent interactions in a primitive human society.
Groups of agents look for food, which is generated by a
moisture layer in the simulated landscape, and seek shelter
when they get too wet. In addition, groups of the same
culture share information about food and shelter location
to mimic some minimal social in-group versus out-group
behaviors. The system was implemented using MASON’s
hexagonal grid facilities in multiple layers, as shown in
Figure 9.

5. Conclusion

In this article, we presented MASON, a multiagent simu-
lation library written in Java. MASON is fast and portable,
has a small core, and produces guaranteed duplicable re-
sults. MASON is also designed to completely separate the
model from the visualization dynamically or reattach it,
migrate the simulation to another platform in the middle
of a run, and provide visualization in 2D or in 3D. We
also showed six applications of MASON, highlighting the
broad applicability of the toolkit. Two of the applications
are ports of previous simulation models from Ascape and
SWARM.

We plan to position MASON as a principled foundation
for future multiagent simulation systems to build upon.
MASON is free open source under a BSD-style license and
is available at http://cs.gmu.edu/∼eclab/projects/mason/.
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Figure 8. Panels from the anthrax propagation model: (left) original SWARM model and (right) MASON replication

(a) Composite

(b) Moisture (c) Food

(d) Shelter (e) Agents

Figure 9. Wetlands initial visualization and layers. Composite visualization (a) consisting of moisture layer (b), food sites layer (c),
shelter sites layer (d), and agents layer (e)
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