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Abstract

This paper considers complex models arising in sociobiology. These combine genetic

and strategic aspects to model the e�ect of gene-linked strategies on the ability of indi-

viduals to survive to maturity, mate and produce o�spring. Several important models

considered in the literature are generalised and extended to incorporate a spatial aspect.

Individuals are allowed to migrate. Contests, e.g. for food or amongst males for females,

take place locally. The choice of the point at which the population structure is measured

a�ects the complexity of the equations describing the system, although it is possible to

utilise any point in the life cycle. For our spatial models the simplest approach is to mea-

sure the population structure immediately after migration. A saddle point method, de-

veloped by the authors, has previously been used to obtain results for simple discrete

time spatial models. It is utilised here to obtain the speed of ®rst spread of a new

gene-linked strategy for the much more complex sociobiological models included in

this paper. This demonstrates the wide-ranging applicability and power of the

method. Ó 1998 Elsevier Science Inc. All rights reserved.

Keywords: Mendelian games; Gene-linked strategies; Speed of ®rst spread; Saddle point

method

1. Introduction

Genetic models and game theoretic models have been used to describe evo-
lutionary processes. However until recently models included only one of these
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aspects, although clearly a model incorporating both games and genetics would
be more realistic (see Refs. [1,2] for a critique). Non-spatial models for genetics
are described in Ref. [3]; those for evolutionary games being given in Refs.
[4,5].

Recently more complex sociobiological models have been formulated in
which the genetic and strategic aspects are combined (see Refs. [5±11]). The
games can describe symmetric or asymmetric contests. The following two situ-
ations are examples of symmetric contests in sociobiology: (i) a single popula-
tion in which the behaviour of individuals, i.e. the strategies played, depend on
the genotypes at a single autosomal locus and (ii) a single population in which
only the males play di�erent strategies depending on their genotype. There are
many examples of populations in which the males play di�erent strategies in
the competition for females. Many species have been observed to exhibit poly-
morphism which is associated with the playing of di�erent strategies. A three
strategy example occurs in side-blotched lizards which have throat-colour poly-
morphism. Here the strategy adopted by very aggressive males is to defend
large territories, other males adopt the strategy of sneaking, whilst the interme-
diate strategy is to defend smaller territories. This is discussed in detail in Refs.
[12,13]. Polymorphism associated with two strategies occurs in bluegill sun®sh
[14]. Further examples include stoats [15], deer [16], salmon [17±20], ru�
[21,22], marine isopods [23] and wrasse [24].

Models can also be set up involving asymmetric contests. These include
bimatrix games with two populations which are in competition. In most species
of birds and many mammals and ®sh both parents can spend an appreciable
amount of e�ort in bringing up their o�spring. Trivers introduced the concept
of parental investment [25], and reviewed situations where this occurs [26].
Parental care, and models to describe it, are discussed in Ref. [4]. An asymmet-
ric game which describes this situation and has received much attention is the
battle of the sexes (see Refs. [27±33]). In this model the female strategies, fast
and coy, are based on the length of courtship and duration of partnerships
formed; the fast female tending to have shorter courtships and less enduring
relationships than a coy female. All females are assumed to care for their o�-
spring. The male strategies are based on whether a male is prepared to engage
in a long courtship, be faithful and care for its o�spring or to be a philanderer,
who has many short term relationships with no part in the ensuing care and
nurture of o�spring produced. A version of this game which incorporates Men-
delian genetics has been considered in Refs. [5,6,11]. The analysis of these so-
ciobiological models has at present been con®ned to the non-spatial case.

In many cases realistic models will need to include a spatial aspect. It has
been pointed out by Godfray and Hassell [34] (see also Ref. [35]), that in recent
years there has been an increasing realization of the importance of spatial pro-
cesses in all branches of population dynamics. The importance of the spatial
aspect has also been emphasised by Durrett and Levin [36] and Boerlijst and
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Hogeweg [37]. Spatial models have been used for some time in genetics. The
spatial spread of a new gene has been investigated by means of di�usion models
(see Refs. [38±40]) and by the use of migration distributions (see Refs. [41±44]).
Spatial models are also increasingly being used in evolutionary game theory
(see Refs. [45±55]).

In this paper we set up spatial forms of some of the models described in para-
graphs 2 and 3. The models are in discrete time and a migration distribution is
used to incorporate the spatial aspect. The spatial dynamics are analagous to
those used for purely genetic models by Wienberger [41,42] and Lui [43,44]. In-
dividuals play strategies locally which are governed by their genetic makeup.
Survival and success in reproduction are dependent on the strategy played. A
migration term is also included in the model. After reproduction, reaping occurs
to maintain the constant carrying capacity of the habitat. Initially only one gene
is present in each population. A new gene can arise by mutation, or may be in-
troduced from outside. We consider the speed with which such a new gene will
spread and modify the pattern of behaviour of the population(s).

The speed of spatial spread has previously been examined in various areas of
mathematical biology, including simple genetics and games. There is an exact
approach which may be used in simpler contexts to ®nd the asymptotic speed
of propagation of a gene/strategy. Results for the spread of a single gene in a
discrete time model were obtained by Weinberger [41,42] and Lui [43,44];
whilst corresponding exact results for simple models in evolutionary games
were given by Radcli�e and Rass [56].

There is also another approach, which we call the saddle point method. This
can be used to obtain the speed of ®rst spread in biological models. It is a very
powerful method which enables results to be obtained for much more complex
situations, less tractable to exact analysis. The technique was originally applied
to a simple continuous time model of a one-type epidemic by Daniels [57]; a
rigorised approach suitable for n-type models being given by Radcli�e and
Rass [58]. A theoretical treatment of the saddle point method for models of dis-
crete time multi-type processes is given in Ref. [59]. In all situations where an
exact result has been proved, the result obtained by the saddle point method
agrees with it.

The saddle point method is particularly suitable for the analysis of the com-
plex sociobiological models contained in this present paper. It enables us to ob-
tain an expression for the speed of ®rst spread of a new gene (genotype) and its
associated strategy.

2. The saddle point result

The saddle point result for discrete time models was proved by Radcli�e and
Rass [59]. In this section we state the saddle point result in a general setting, so
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that it can be applied in Sections 3±6 to certain spatial models in sociobiology
which combine the ideas from genetics and games. The models considered in
this paper involve certain types, and x�m�i �s� denotes the proportion of type i
in the mth generation at position s 2 RN . The type represents a particular allele
or genotype. Which of these is used is dependent upon the point in the genetic
cycle at which the process is measured. We suppose that initially the population
consists of certain types. Other types n1 � 1; . . . ; n are introduced into a bound-
ed region B and the speed of ®rst spread for these types is considered. Far from
the region B, the linearised equations in the models considered in this paper are
of the form

x�m�1�
i �s� �

Xn

j�n1�1

cij

Z
RN

pij�r�x�m�j �sÿ r� dr �1�

for i � n1 � 1; . . . ; n; where the cij are non-negative and will depend upon the
particular application. It is assumed that the matrix �cij� is non-reducible. In-
dividuals are allowed to move, and pij�r� denotes a migration density represent-
ing the vector distance r moved.

Consider the speed of spread of the forward front in a direction with direc-
tion cosines f for type (n1 + i). Take a ®xed g, which is small and positive. Then
de®ne s(m) so thatZ

u : f0u P s�m�

x�m�n1�i�u� du � g:

The speed of ®rst spread of a type (n1 + i) individual is de®ned as

c � lim
m!1

s�m�
m

:

Let Pij�k� �
R
RN ekf0spij�s� ds and fA�k�gij � cn1�i;n1�jPn1�i;n1�j�k�. De®ne

q�A�k�� to be the Perron±Frobenius root of A�k�.
It is shown in Ref. [59] that the speed c of ®rst spread is given by

c � max 0; inf
k>0

log�q�A�k���
k

� �
: �2�

3. A Mendelian game with two alleles

We ®rst describe the non-spatial model. The behaviour of an individual is
determined by two genes A1 and A2. The genotypes A1A1, A2A2 and A1A2 play
strategies S1, S2 and S3 respectively. The strategy S3 is likely to be either an
intermediate strategy between S1 and S2, or to model the situation when the
heterozygote plays strategy S1 with probability p and S2 with probability
(1 ) p). The 3 ´ 3 payo� matrix for the game with strategies S1, S2 and S3 is
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denoted by A� (aij). The playing of the strategies result in contests which are
not sex speci®c. This is used to describe a situation in which individuals com-
pete for food [60]. An example of this is the genetic model of the Hawk±Dove
game in Ref. [4].

Suppose the proportions of the alleles A1 and A2 just prior to the birth of the
next generation are x1 and x2, with x1 + x2� 1. In the next generation the pro-
portions of the genotypes A1A1, A2A2 and A1A2 are x2

1; x2
2 and 2x1x2, respective-

ly. The average payo� to an A1A1 genotype is a11x2
1 � 2a13x1x2 � a12x2

2; with
similar results for the genotypes A1A2 and A2A2. For each genotype, we identify
the average payo� with its ®tness to survive and reproduce.

The model may then be regarded as a genetics model with the frequency de-
pendent ®tness matrix

W�x2� �
a�x2� b�x2�
b�x2� c�x2�

� �
� a11x2

1 � 2a13x1x2 � a12x2
2 a31x2

1 � 2a33x1x2 � a32x2
2

a31x2
1 � 2a33x1x2 � a32x2

2 a21x2
1 � 2a23x1x2 � a22x2

2

 !
; �3�

where x1� 1 ) x2.
Let x�m�

� 	
i � x�m�i , where x�m�i is the proportion of allele Ai in the mth gen-

eration. The model is described by the equations

x�m�1�
i �

x�m�i W�x�m�2 �x�m�
n o

i

x�m�
0
W�x�m�2 �x�m�

; i � 1; 2:

Since x�m�1 � x�m�2 � 1 we need only consider the second equation, which may
be written in the form

x�m�1�
2 � g x�m�2

� �
; �4�

where

g�h� � c�h�h2 � b�h�h�1ÿ h�
c�h�h2 � 2b�h�h�1ÿ h� � a�h��1ÿ h�2 �5�

with a�h�; b�h� and c�h� given by Eq. (3).
Consider the local stability of (x1, x2)� (1,0), when it is initially disturbed by

a small amount. Using the usual techniques, it can be shown that the point is
locally stable if g0�0� < 1, i.e. a31=a11 < 1. In this case, when a small proportion
of gene A2 is introduced into a population where only gene A1 was originally
present, the gene A2 and the associated strategies S2 and S3 will not become
established and will die out.

We now describe the spatial model. Consider the speed of spread of gene A2,
which is introduced into a bounded region B of RN , through a population in
which initially only the gene A1 is present. A habitat is considered which has
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constant carrying capacity at all points of RN . Consider the composition of the
alleles for generation m at position s prior to mating. Let x�m�i �s� denote the pro-
portion of the gene Ai at position s in the mth generation. Random mating oc-
curs at each position s, the number of o�spring being una�ected by the
genotype. An individual at position r plays against the individuals in its vicin-
ity. If it is assumed that an individual at position r plays only against individ-
uals at position r, the survival to maturity of the genotypes at position r is
governed by a ®tness matrix W�x�m�2 �r��.

Reaping occurs to reduce the population to the carrying capacity of the hab-
itat. Migration then takes place with p(r) being the probability density function
corresponding to migration by a vector distance r. A new generation is pro-
duced and the previous generation dies.

The model is described by the equation

x�m�1�
2 �s� �

Z
RN

p�sÿ r�g x�m�2 �r�
� �

dr; �6�

where g�h� is given by Eq. (5).
The linearisation of g�h� is �constant term in b�h��h� �= constant term in�

a�h��, where a�h� � a11�1ÿ h�2 � 2a13�1ÿ h�h� a12h
2 and b�h� � a31�1ÿ h�2

�2a33�1ÿ h�h� a32h
2. Thus, for small h, g�h� is approximately �a31=a11�h. In

the forward front, where x�m�2 �r� is small, the approximate equation is given by

x�m�1�
2 �s� � c

Z
RN

p�sÿ r�x�m�2 �r� dr; �7�

where c � a31=a11� �:
Rather than assume that an individual at position r plays only against indi-

viduals at position r, it would be more realistic to allow the individual to play
against individuals at various positions in its vicinity. In this setup we could
assume that the payo� to an A1A1 genotype can be expressed as

R �a11x2
1�u��

2a13x1�u�x2�u� � a12x2
2�u��q�rÿ u� du, where q(u) represents the probability

density function of a contact vector random variable C. The payo�s to A2A2

and A1A2 genotypes are
R �a21x2

1�u� � 2a23x1�u�x2�u� � a22x2
2�u��q�rÿ u� du

and
R �a31x2

1�u� � 2a33x1�u�x2�u� � a32x2
2�u��q�rÿ u� du, respectively. However,

if an individual plays against other individuals which are nearby, it can be as-
sumed that the variance-covariance matrix of the contact vector random vari-
able C has reasonably small entries. Then in the forward front, the
approximate equation is still given by Eq. (7).

It follows from the general result of Section 2 that the speed c of ®rst spread
of gene A2 is given by

c � max 0; inf
k>0

log�P�k�� � log a31=a11� �
k

� �� �
; �8�
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where P �k� is the Laplace transform of the projected migration distribution.
Note that when a small amount of gene A2 is present, it occurs predominantly
in the heterozygote A1A2. If equations for the genotypes are considered, as in
Sections 5 and 6, then the approximation in the forward front is valid only
for the heterozygote A1A2 and not for the homozygote A2A2. The speed of ®rst
spread of gene A2 is therefore that of the heterozygote and hence of strategy S3.
When a31=a11 < 1, then for any contact distribution

lim
k#0

log�P �k�� � log a31=a11� �
k

� �
� ÿ1:

Thus the speed of ®rst spread of the forward front is zero. The condition
a31=a11 < 1 corresponds in the non-spatial case to (x1, x2)� (1,0) being locally
stable.

When a31=a11 > 1, in the non-spatial case (x1, x2)� (1,0) is unstable and the
gene A2 when introduced into the population can never die out. In the spatial
model the speed of ®rst spread will be positive for all directions provided the
contact distribution is radially symmetric.

The remaining case has a31=a11 � 1. Note that, as k # 0, g�k� � log�P �k��=k
tends to l � P 0�0� and g0�k� tends to r2=2, where l and r2 are the mean and
variance of the projection of the migration distribution in direction f. Also
g�k� has no maximum for k > 0 so that infk>0g�k� � limk#0 g�k�. Thus when
the mean l is positive, it gives the speed of ®rst spread. Otherwise the speed
is zero; this latter case in particular occurs when the contact distribution is ra-
dially symmetric.

The following variation of this setup can be analysed in a similar manner.
We ®rst describe the non-spatial model. The behaviour of an individual is de-
termined by two genes A1 and A2, where the gene A1 predisposes an individual
to play strategy S1 and A2 to play S2. It is assumed that the homozygotes A1A1

and A2A2 play strategies S1 and S2 respectively, while the hetrozygote A1A2

plays the random strategy which consists of playing S1 with probability p
and playing S2 with probability (1 ) p). The 2 ´ 2 payo� matrix is denoted
by A� (aij). The ®tness matrix is given by

W � a11x1 � a12x2 �pa11 � �1ÿ p�a21�x1 � �pa12 � �1ÿ p�a22�x2

�pa11 � �1ÿ p�a21�x1 � �pa12 � �1ÿ p�a22�x2 a21x1 � a22x2

� �
:

(9)

The corresponding spatial model leads to Eq. (7) with c now given by
c � pa11 � �1ÿ p�a21� �=a11� � and the speed c of ®rst spread of gene A2 is given
by

c � max 0; inf
k>0

log P�k� � log��pa11 � �1ÿ p�a21�=a11�
k

� �� �
: �10�

The expression for c given by Eq. (10) can be obtained from Eq. (8) by re-
placing a31 by p�a11 � �1ÿ p�a21�. This is the average payo� corresponding to
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replacing the strategy S3, played by the hetrozygote A1A2, by the mixed strategy
where S1 and S2 are played with probabilities p and �1ÿ p�, respectively.

Note that in the forward front most individuals play S1. So that in the for-
ward front the system is behaving like a genetics model with ®tness matrix

V � v11 v12

v12 v22

� �
� a11 pa11 � �1ÿ p�a21

pa11 � �1ÿ p�a21 a21

� �
:

A simple expression for the speed, c, of ®rst spread can be obtained in the
particular case where the projection of the contact distribution in direction f
is normally distributed with mean l and variance r2. The speed is given by
c � max 0; l� r

����������������
2 log�c�pÿ �

, where c � a31=a11 for the ®rst model and
c � �pa11 � �1ÿ p�a21�=a11 for the second model.

4. Competition between two populations

Consider two populations P1 and P2 which are in competition. There are var-
ious situations that can be modelled describing competition between two pop-
ulations, (see Ref. [6]). We consider the setup where all individuals in
population P1 play against all individuals in population P2. In population P1

the genotypes A1A1, A2A2 and A1A2 play strategies S1; S2 and S3 respectively.
In population P2 the genotypes B1B1, B2B2 and B1B2 play strategies T1; T2

and T3 respectively. If an individual in P1 plays Si against an individual in P2

playing Tj, the individual in P1 has payo� aij and the individual in P2 has payo�
bji. Here S3 and T3 are likely either to be intermediate strategies between those
of the homozygotes, or to be combined strategies. The heterozygote would the
play strategy S1 (or T1), with probability p (or q) and otherwise would play the
strategy S2 (or T2).

Suppose the proportions of the alleles A1 and A2 in population P1 just prior
to the birth of the next generation are x1 and x2; and the corresponding propor-
tions of the alleles B1 and B2 in population P2 are y1 and y2.

The ®tness matrix V�y2� for the genotypes A1A1, A1A2 and A2A2 of popula-
tion P1 is given by

V�y2� �
a�y2� b�y2�
b�y2� c�y2�

� �
� a11y2

1 � 2a13y1y2 � a12y2
2 a31y2

1 � 2a33y1y2 � a32y2
2

a31y2
1 � 2a33y1y2 � a32y2

2 a21y2
1 � 2a23y1y2 � a22y2

2

 !
; �11�

where y1 � 1ÿ y2.
Let the ®tness matrix W�x2� for the genotypes B1B1, B1B2 and B2B2 of pop-

ulation P2 be given by
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W�x2� �
d�x2� e�x2�
e�x2� f �x2�

� �
� b11x2

1 � 2b13x1x2 � b12x2
2 b31x2

1 � 2b33x1x2 � b32x2
2

b31x2
1 � 2b33x1x2 � b32x2

2 b21x2
1 � 2b23x1x2 � b22x2

2

 !
; �12�

where x1 � 1ÿ x2.
Let x�m�2 and y�m�2 be the proportions of allele A2 in population P1 and allele B2

in population P2 respectively in the mth generation. The model is described by
the equations

x�m�1�
2 � g x�m�2 ; y�m�2

� �
;

y�m�1�
2 � h x�m�2 ; y�m�2

� �
;

�13�

where

g�h;/� � c�/�h2 � b�/�h�1ÿ h�
c�/�h2 � 2b�/�h�1ÿ h� � a�/��1ÿ h�2 ;

h�h;/� � f �h�/2 � e�h�/�1ÿ /�
f �h�/2 � 2e�h�/�1ÿ /� � d�h��1ÿ /�2 :

Consider the local stability of �x1; x2� � �1; 0� if gene A2 is introduced into
population P1 when initially only A1 and B1 are present in populations P1

and P2. The point is locally stable if a31 < a11. Similarly if gene B2 is introduced
instead of gene A2, the point �y1; y2� � �1; 0� is locally stable if b31 < b11. When
both genes A2 and B2 are introduced, the point �x1; x2; y1; y2� � �1; 0; 1; 0� is lo-
cally stable provided both a31 < a11 and b31 < b11.

Now consider the spatial model. Let x�m�i �s� and y�m�i �s� measure the propor-
tion in generation m at position s respectively of the allelle Ai in population P1

and the allelle Bi in population P2. Random mating then occurs within each
population. Individuals grow up and compete, their survival to maturity and
ability to reproduce being governed by the ®tness matrix V�y�m�2 �r�� and
W�x�m�2 �r��. Migration then occurs, the density for migration by a distance r be-
ing p�r� and q�r� for populations P1 and P2 respectively. The spatial model is
described by the equations

x�m�1�
2 �s� �

Z
RN

p�sÿ r�g x�m�2 �r�; y�m�2 �r�
� �

dr;

y�m�1�
2 �s� �

Z
RN

q sÿ r�h�x�m�2 �r�; y�m�2 �r�
� �

dr;

�14�

where p�r� and q�r� are the migration distributions for individuals in the pop-
ulations P1 and P2 respectively.
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We ®rst consider the spread of allele A2 when it is introduced into a bounded
region of RN , where only A1 and B1 are present initially. Then outside this
bounded region, y�m�1�

2 �s� � 0. Hence in the forward front the approximate
equation is

x�m�1�
2 �s� � a31

a11

Z
RN

p�sÿ r�x�m�2 �r� dr: �15�

It follows that the speed of ®rst spread of gene A2, and hence of genotype A1A2

and strategy S3, is given by

c1 � max 0; inf
k>0

log�P�k�� � log a31=a11� �
k

� �� �
; �16�

where P�k� is the Laplace transform of the projected migration distribution for
population P1. This speed is zero if a31 < a11, the condition for local stability in
the non-spatial model. The corresponding result for the speed of ®rst spread of
allele B2, genotype B1B2 and strategy T2 when only A1 and B1 were present ini-
tially is

c2 � max 0; inf
k>0

log�Q�k�� � log b31=b11� �
k

� �� �
: �17�

Here Q�k� is the Laplace transform of the projected migration distribution for
population P2.

If both alleles A2 and B2 are introduced into a population in which only A1

and B1 are present initially, the system cannot be linearised in the forward front
for the allele who's natural speed of spread is slower, i.e. it cannot be linearised
for allele A2 when a31=a11 > b31=b11 and vice versa. The saddle point method
gives the speed of ®rst spread of allele A2 and strategy S3 as c1 provided
a31=a11 P b31=b11. It gives the speed of ®rst spread of allele B2 and strategy
T3 as c2 provided a31=a116 b31=b11. When the contact distributions are symmet-
ric at least one new strategy will spread in a speci®ed direction if at least one of
the conditions a31 > a11 and b31 > b11 holds. This is the condition for local in-
stability of the point �x1; x2; y1; y2� in the non-spatial case.

As in Section 3, games may be played locally. Also the variation may be
considered in which the genotype A1A2 plays a random strategy. A further ad-
aptation of this model allows only the males of P1 to compete with the males of
P2. This can be treated in a similar fashion and the speed of ®rst spread ob-
tained.

5. A model with contests between males

We ®rst describe the non-spatial model. Consider a population consisting of
males and females. When the individuals in a generation reach maturity, the
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males compete with each other for females. We assume that the only selection
mechanism that operates occurs at this stage and operates within the male pop-
ulation only. A model of a population in which there are contests between
males for females has been considered by Hofbauer et al. [9]. Only the males
play di�erent strategies. The male genotypes A1A1, A2A2 and A1A2 play strate-
gies S1; S2 and S3, respectively. The 3� 3 payo� matrix is denoted by A � �aij�.

References to a number of species in which contests between males occur are
given in paragraph 2 of the introduction. In some cases there are three distinct
male strategies, whilst in others there are only two. In the latter case the hetero-
zygote is assumed to play the homozygotic strategies with probabilities p and
�1ÿ p�. An example of alternative strategies are defending di�erent sized terri-
tories and sneaking.

We assume that an o�spring is equally likely to be male or female. Denote
the genotypes 1, 2 and 3 by A1A1;A2A2 and A1A2, respectively. Let the propor-
tions of the ith genotype in the mth generation for both male and female pop-
ulations, after birth and before male selection takes place, be x�m�i , �i � 1; 2; 3�.
During male selection, the average payo� to a male with the ith genotype is
fAx�m�gi, �i � 1; 2; 3�. Thus after male selection, the proportion of this male ge-
notype becomes z�m�i � �fAx�m�gix

�m�
i �=�x�m�0Ax�m��, �i � 1; 2; 3�. Females are

una�ected by selection.
The proportions of genotypes in the next generation for both male and fe-

male populations, are given by

x�m�1�
1 � z�m�1 �

1

2
z�m�3

� �
x�m�1 �

1

2
x�m�3

� �
;

x�m�1�
2 � z�m�2 �

1

2
z�m�3

� �
x�m�2 �

1

2
x�m�3

� �
;

x�m�1�
3 � z�m�1 �

1

2
z�m�3

� �
x�m�2 �

1

2
x�m�3

� �
� z�m�2 �

1

2
z�m�3

� �
x�m�1 �

1

2
x�m�3

� �
:

�18�
Consider the local stability of the point �x1; x2; x3� � �1; 0; 0�. When a small

amount of gene A2 is introduced, after one generation it will always occur pre-
dominantly in the heterozygote. It is easily shown that the point is locally sta-
ble if a31 < a11. When a31 > a11, once A2 is introduced it will persist, so that
strategy S2 will also persist in the population. Provided that in addition
a32 > a22, strategy S3 also persists, since in this case both genes A1 and A2 will
not die out.

In the spatial model individuals grow up at the position where they were
born. Upon reaching maturity they migrate, the migration density di�ering
for males and females. It is convenient to measure the proportion of the three
genotypes at position s in each of the male and female populations at this point
in the cycle, i.e. just after they have migrated. The respective proportions of the
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ith genotype in generation m are denoted by x�m�i �s� and y�m�i �s�. Selection of the
males then takes place, followed by mating. A new generation is born and
grows to maturity. Migration then occurs. Let z�m�i �r� � �fAx�m��r�gix

�m�
i �r��=

�x�m�0�r�Ax�m��r��, �i � 1; 2; 3�.
The equations giving the proportions of male genotypes in the next genera-

tion are

x�m�1�
1 �s� �

Z
RN

pM�sÿ r� z�m�1 �r� �
1

2
z�m�3 �r�

� �
y�m�1 �r� �

1

2
y�m�3 �r�

� �
dr;

x�m�1�
2 �s� �

Z
RN

pM�sÿ r� z�m�2 �r� �
1

2
z�m�3 �r�

� �
y�m�2 �r� �

1

2
y�m�3 �r�

� �
dr;

x�m�1�
3 �s� �

Z
RN

pM�sÿ r� z�m�1 �r� �
1

2
z�m�3 �r�

� �
y�m�2 �r� �

1

2
y�m�3 �r�

� ��

� z�m�2 �r� �
1

2
z�m�3 �r�

� �
y�m�1 �r� �

1

2
y�m�3 �r�

� ��
dr;

�19�

where pM�r� and pF�r� are the migration densities of female and male individ-
uals, respectively.

The three equations for the female genotypes y�m�1�
i �s�, �i � 1; 2; 3�, are

obtained from Eq. (19) by replacing the x�m�1�
i �s� on the left hand side by

y�m�1�
i �s�, and replacing pM�sÿ r� by pF�sÿ r� on the right hand side.

Consider how an allele A2, which is introduced into a bounded region
B 2 RN , propagates through a population in which initially only allele A1 is
present. In the forward front, allele A2 occurs predominantly in the heterozy-
gote. We therefore consider the approximate equations for genotype 3 in the
forward front. These are

x�m�1�
3 �s� � 1

2

Z
RN

pM�sÿ r� a31

a11

x�m�3 �r� � y�m�3 �r�
� �

dr;

y�m�1�
3 �s� � 1

2

Z
RN

pF�sÿ r� a31

a11

x�m�3 �r� � y�m�3 �r�
� �

dr:

For this model the matrix A�k� is given by

A�k� � 1

2

�a31=a11�PM�k� PM�k�
�a31=a11�PF�k� PF�k�

� �
�20�

and hence q�A�k�� � 1
2
�a31=a11�PM�k� � PF�k�� �; where PM�k� and PF�k� are the

Laplace transforms of the projected contact distributions for males and fe-
males, respectively. It follows from the general result of Section 2 that the
speed of ®rst spread of genotype 3, and hence for allele A2 and strategy S3, is
given by
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c � max 0; inf
k>0

log a31

a11
PM�k� � PF�k�

� �
ÿ log 2

k

0@ 1A0@ 1A: �21�

This speed is zero if a31 < a11, the condition for local stability in the non-spatial
model.

Note that it is possible to consider the model at a di�erent point in the cycle.
One can work with alleles only if the point in the cycle chosen is just after se-
lection, before mating. The exact equations are more complex, but the equation
in the forward front is reasonably simple and leads to the same speed of ®rst
spread. This spread of spread is that of the heterozygote and so will be that
of strategy S3. The method does not yield the speed of spread of strategy S2

for the homozygote since it is not possible to obtain an approximate linear
equation which is valid for genotype 2 in the forward front.

The model of this section can easily be modi®ed to encompass the situation
where the male A1A2 genotype plays a random strategy consisting of playing
the strategies S1 and S2 with probabilities p and �1ÿ p�, respectively. Strategy
S2 will then spread with speed c given by Eq. (21). In this equation
a31 � pa11 � �1ÿ p�a21 where a11 and a21 are the payo�s to an individual play-
ing strategies S1 and S2 respectively against an individual playing strategy S1.

The present approach could have been used in Sections 3 and 4. However,
the approach we chose to use in those sections was simpler since the models
could be easily expressed in terms of the alleles, as the new generation is in Har-
dy±Weinberg equilibrium after mating. This is no longer the case for the pres-
ent model.

6. A genetic model for the battle of the sexes

Maynard Smith and Hofbauer [11] (see also Refs. [5,6]) proposed a genetic
model based on the battle of the sexes game. This game is used as a model for
parental investment when bringing up o�spring. We ®rst describe a generalisat-
ion of the model considered by Maynard Smith and Hofbauer and then add a
spatial aspect.

The population consists of males and females. There are two pairs of genes,
A1 and A2 at locus A, and B1 and B2 at locus B. Independence of the loci is as-
sumed (no linkage). Males can play three strategies, which depends only on their
genotype at the A locus, not on the B locus. Males with genotypes A1A1, A2A2

and A1A2, respectively, play strategies S1, S2 and S3. In the female population
the strategies depend only upon the B locus. Females with genotypes B1B1,
B2B2 and B1B2 play strategies T1, T2 and T3, respectively. An example of typical
strategies are philanderer/faithful for homozygotic males and fast/coy for ho-
mozygotic females. The heterozygotes play the homozygotic strategies with
probabilities p and �1ÿ p� for males and q and �1ÿ q� for females.
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Let the payo� matrix be V � �vij� for males playing strategies S1, S2 and S3.
The corresponding payo� matrix for females playing strategies T1, T2 and T3 is
W0 where W � �wij�. The combined payo�s are then given by

Suppose the entries of x
�m�
A and x

�m�
B give the proportions of genotypes

A11; A22 and A12, and B11; B22 and B12 in the male population just after the
birth of the mth generation. The corresponding vectors of proportions in the
female population are identical to those in the male population.

After selection the proportions of genotypes A11, A22 and A12 for males are
scaled, respectively, by the three entries of Vx

�m�
B =x

�m�0
A Vx

�m�
B . The proportions

of genotypes B11; B22 and B12 for females are scaled, respectively, by the three
entries of W0x�m�A =x

�m�0
B W0x�m�A . The proportions for genotypes B11; B22 and B12

in the male population and A11; A22 and A12 in the female population remain
unaltered.

Random mating now takes place. For the next generation the genetic struc-
ture is identical for males and females. Using independence of the loci (no link-
age) an expression for the proportions of genotypes A11; A22 and A12 and
B11; B22 and B12 is easily obtained. This leads to the following equations for
the proportions of the A genotypes in generation m� 1:

x�m�1�
A

n o
1
� z

�m�
A

n o
1
� 1

2
z
�m�
A

n o
3

� �
x
�m�
A

n o
1
� 1

2
x
�m�
A

n o
3

� �
;

x�m�1�
A

n o
2
� z

�m�
A

n o
2
� 1

2
z
�m�
A

n o
3

� �
x
�m�
A

n o
2
� 1

2
x
�m�
A

n o
3

� �
;

x�m�1�
A

n o
3
� z

�m�
A

n o
1
� 1

2
z
�m�
A

n o
3

� �
x
�m�
A

n o
2
� 1

2
x
�m�
A

n o
3

� ��
� z

�m�
A

n o
2
� 1

2
z
�m�
A

n o
3

� �
x
�m�
A

n o
1
� 1

2
x
�m�
A

n o
3

� ��
;

�22�

where fz�m�A gi � fx�m�A gifVx
�m�
B gi=x

�m�0
A Vx

�m�
B . There are equivalent equations for

the B genotypes which are obtained by replacing x
�j�
A by x

�j�
B for j � m;m� 1

and by replacing z
�m�
A by z

�m�
B , where fz�m�B gi � fx�m�B gifW0x�m�A gi=x

�m�0
B W0x�m�A .

Consider stability when initially only A1 and B1 are present. This point is lo-
cally stable when gene A2 is introduced if v31 < v11. It is locally stable when B2

is introduced provided w13 < w11. When both A2 and B2 are introduced, local
stability occurs if both v31 < v11 and w13 < w11.

A spatial version of this model can be written down in a similar manner to
the models considered in Section 5. Individuals grow up at the position where

T1 T2 T3

S1 �v11;w11� �v12;w12� �v13;w13�
S2 �v21;w21� �v22;w22� �v23;w23�
S2 �v31;w31� �v32;w32� �v33;w33�
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they were born. Upon reaching maturity they migrate, the migration density
di�ering for males and females. Let pM�r� and pF�r� represent the densities
of migration by a vector distance r for males and females. We measure the pro-
portion of the three genotypes for A and B at position s in each of the male and
female populations just after they have migrated.

Let the entries of x
�m�
A �s� and x

�m�
B �s� give the proportions in generation m at

position s for genotypes A11; A22 and A12, and B11; B22 and B12, respectively, in
the male population after a new generation has grown to maturity and migrat-
ed but selection is yet to take place. The corresponding vectors of proportions
in the female population are denoted by y

�m�
A �s� and y

�m�
B �s�.

Selection of the males and females then takes place, followed by mating. A
new generation is born and grows to maturity. Migration then occurs.

After selection the proportions of genotypes A11; A22 and A12 at position s

for males are scaled respectively by the three entries of Vy
�m�
B �s�=

��x�m�A �s��0Vy
�m�
B �s��. The proportions of genotypes B11; B22 and B12 at position

s for females are scaled respectively by the three entries of
W0x�m�A �s�=��y�m�B �s��0W0x�m�A �s��. The proportions at position s for genotypes
B11; B22 and B12 in the male population and A11; A22 and A12 in the female
population remain unaltered.

Random mating now takes place. For the next generation the genetic struc-
ture is identical for males and females just after birth. The individuals then
grow to maturity and migrate. The equations giving the proportions at position
s in generation m� 1 for genotypes A11; A22 and A12 and B11; B22 and B12 for
males is then

x�m�1�
A �s�

n o
1
�
Z
RN

pM�sÿ r� z
�m�
A �r�

n o
1
� 1

2
z
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A �r�

n o
3

� �

� y
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n o
1
� 1

2
y
�m�
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n o
3

� �
dr;
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Z
RN
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2
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2
z
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3

� �
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where

z
�m�
A �r�

n o
i
�

x
�m�
A �r�

n o
i

Vy
�m�
B �s�

n o
i

�x�m�A �r��0Vy
�m�
B �r�

;

z
�m�
B �r�

n o
i
�

y
�m�
B �r�

n o
i

W0x�m�A �s�
n o

i

�y�m�B �r��0W0x�m�A �r�
:

Analagous equations may be obtained for females by replacing fx�m�1�
j gi on

the left hand sides by fy�m�1�
j gi for i � 1; 2; 3 and j � A;B and by replacing

pM�sÿ r� on the right hand sides by pF�sÿ r�.
Suppose initially only the genes A1 and B1 are present, and gene A2 is intro-

duced. The linearised equations in the forward front relating to the heterozy-
gote A1A3 for males and females are

x
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3
�
Z
RN

pM�sÿ r� v31

2v11
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�m�
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3
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3

� �
ds;
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2v11
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3
� 1
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y
�m�
A �r�

n o
3

� �
ds:

�24�

In this case the matrix A�k� from Section 2 is given by

A�k� � 1

2v11

v31PM�k� v11PM�k�
v31PF�k� v11PF�k�

� �
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and hence q�A�k�� � �1=2v11� v31PM�k� � v11PF�k�� �: It follows from the general
result of Section 2 that the speed of ®rst spread cA of heterozygote A1A2 (and
hence of gene A2 and strategy S3) is given by

cA � max 0; inf
k>0

log�v31PM�k� � v11PF�k�� ÿ log�2v11�
k

� �� �
: �25�

If initially only the genes A1 and B1 are present, and gene B2 is introduced,
the corresponding linearised equations in the forward front corresponding to
genotype B1B2 are
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In this case A�k� is given by

A�k� � 1

2w11

w11PM�k� w13PM�k�
w11PF�k� w13PF�k�

� �
;

q�A�k�� � �1=2w11� w13PF�k� � w11PM�k�� �; and the speed of ®rst spread cB of
genotype B1B2 (and hence of gene B2 and strategy T3) is given by

cB � max 0; inf
k>0

log�w31PF�k� � w11PM�k�� ÿ log�2w11�
k

� �� �
: �27�

If both alleles A2 and B2 are introduced from outside into a population in
which only A1 and B1 are present, the linearisation of the system will only be
appropriate for the gene which by itself travels faster. Thus if cA P cB, the
speed of ®rst spread of new genotype A1A2, new gene A2 and new strategy S3

are given by cA; and if cB P cA the speed of ®rst spread of new genotype
B1B2, new gene B2 and new strategy T3 are given by cB. Again when the appro-
priate point in the non-spatial case is locally stable the speed of ®rst spread in
any direction is zero.

7. Conclusion

There are numerous examples in nature where species exhibit gene linked be-
haviour. Non-spatial sociobiological models have been developed by a number
of authors to model competitive situations in animal populations. This includes
models for populations competing for food, competition amongst males for fe-
males and models for parental investment.

There has been considerable interest in recent years in the development of
spatial models. In this paper we have shown how the models can be generalised
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and extended to include a spatial aspect. Equations may be obtained for the
proportions of genotypes in generation m at di�erent points in the biological
cycle. The complexity of the equations is highly dependent upon the time se-
lected within this cycle. When the models are spatial it is simplest to measure
the population structure just after migration. For populations where the strat-
egies and payo�s are not sex dependent, as in the examples of Sections 3 and 4,
equations can be obtained for the alleles, since the new generation is in Hardy±
Weinberg equilibrium after mating. However when strategies and payo�s do
di�er between sexes, as is the case for the examples of Sections 5 and 6, it is
necessary to work with the genotypes.

We have developed a saddle point method which can be used to obtain the
speed of ®rst spread in discrete time spatial models of biological system. It has
been used previously only in order to obtain results on the speed of ®rst spread
in simple models of genetics and games.

In this paper we have demonstrated the power of the saddle point method
when applied to much more complex situations. In sociobiology the strategies
are linked to the genes or genotypes. When a new gene is introduced into a
population, the associated strategy (or strategies) will also be introduced.
The saddle point method enables us to obtain the speed of ®rst spread of a
new strategy through a population. Zero speed of spread in the spatial system
is linked to local stability in the non-spatial system.

For simplicity of exposition, we have assumed throughout this paper that
the migration densities do not depend on the genotypes. It is of course possible
to remove this restriction and still obtain the speed of ®rst spread.

The technique is clearly applicable to a wide range of sociobiological mod-
els. This paper demonstrates its usefulness via several models of importance
and interest in this area.
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