
Modeling Nature’s Emergent Patterns with Multi-
agent Languages

Uri Wilensky
Center for Connected Learning and Computer-Based Modeling

http://ccl.northwestern.edu/
Northwestern University

Annenberg Hall 311
Evanston, IL 60208

uriw@media.mit.edu

Adapted from Wilensky, U. (2000). Modeling Emergent Phenomena with
StarLogoT. @Concord.

Abstract

NetLogo is a multi-agent modeling language, a parallel extension of Logo.
NetLogo is designed to enable learners to explore and construct models of
emergent phenomena. By exploring and constructing such models, students make
connections between the micro-level of agents following rules and the macro-level
patterns and regularities that constitute the world of natural and social
phenomena.

Keywords: complexity, emergence, modeling, parallel Logos

Introduction: the emergence of pattern

Everywhere we look, we see regularities, patterns, order. Many of these patterns have a
kind of haunting beauty: the growth of a snowflake crystal, the perimeter pattern of a
maple leaf, the advent of a summer squall. Other patterns, such as the dynamics of the
Dow Jones or of a fourth grade classroom, seem messier, inchoate, yet still exhibit a
familiar and recognizable general “shape”. The characteristic shape can unfold in space
or in time, sometimes striking and unmistakable and sometimes more hidden, needing
probing observation or ingenious experiment to uncover it.

Why is there so much pattern in the world? While grappling with this question in full
would take us far afield, we can start with a simple observation: large scale patterns in
the world are usually the result of the interactions of large numbers of smaller pieces
that somehow combine in surprising ways to create the large-scale pattern. Such large-
scale (macro-) patterns that arise out of the interactions of numerous interacting
(micro-) “agents” are called “emergent phenomena” – that is, phenomena that emerge
from interactions at a lower level or scale.

Visualize a flock of birds winging in the autumn sky or the amazing synchronized
fireflies that blink in unison lighting up whole trees in the Far East. How do these
patterns come about? All of these patterns are emergent, there is no leader bird which

43

other birds follow, no conductor firefly leading the band -- these patterns emerge out of
the behavior of individuals and the adjustment of that behavior in interaction with other
individuals.

The study of emergent phenomena is the principal occupation of a developing field of
science, the study of complex dynamic systems (Gleick, 1987; Waldrop, 1992; Gell-Mann,
1994; Kelly, 1994; Holland, 1995; Kauffman, 1995). This broad new field seeks to
understand how systems of interacting components evolve over time. In the minds of
many, however, complex systems theory is not a new branch of science, but rather a new
framework, a new perspective that allows us to see old scientific content in new ways.
This new perspective and the methods it brings to bear have been adopted across a wide
array of natural and social sciences. An understanding of complex systems is becoming
an essential part of every scientist’s knowledge and skills. The time has come for these
ideas and methods to become a central part of every student’s learning.

Despite its adoption by practicing scientists, the complex systems perspective is largely
absent from the K-16 curriculum. One reason for the slow transfer to schools is the
heavy reliance of complex systems methodologies on the use of powerful computational
technologies. By enabling the rendering, simulation and visualization of the evolution of
complex systems over time, the computer has proved an indispensable tool for making
sense of complex systems and emergent phenomena. Most of the tools used by experts
to explore complexity in their domain of interest are highly domain specific – designed
for use by experts to study a particular class of phenomena. Until very recently, no
general-purpose tools existed for students to render and explore systems of many
interacting parts that can exhibit emergent behavior.

NetLogo: a multi-agent modeling language

Over the past decade, a host of computer languages have been developed for the
purpose of constructing models of emergent phenomena. At Northwestern University’s
Center for Connected Learning (CCL), we have developed such modeling languages (and
associated materials) that enable learners, teachers and students to create dynamic
models of complex phenomena. The languages we have developed are now in use by
thousands of students, teachers and researchers worldwide. The latest of these
languages, called NetLogo1 (Wilensky, 1999), is freely available on the web at
http://ccl.northwestern.edu/cm/. NetLogo is one of a class of new so-called multi-agent
modeling languages (AKA object-based parallel modeling languages or agent-based
modeling languages) that have emerged from the complex systems community.

NetLogo is a parallel extension of Logo. In NetLogo, however, instead of driving a single
turtle, the user can drive (or, perhaps better to say, orchestrate) thousands of turtles.
Instead of drawing with pens, turtles “draw” with their bodies. By that, I mean that the
emergent shape of all the turtles’ positions constitutes a drawing in NetLogo2. Allow me

1 NetLogo is the latest in a family of massively parallel Logos. The first of these was CM-StarLogo
implemented on a parallel supercomputer called the Connection Machine (Resnick, 1994;
Resnick & Wilensky, 1993). Subsequent to that there have been several newer versions including
MacStarLogo (Begel & Resnick, 1995) and StarLogoT (Wilensky, 1997).
2 In fact, in NetLogo, “turtles” do not typically look like turtles, they are general purpose “agents”
that can take on any shape.

44

to illustrate with a simple example in which turtles take the shape of little triangles or
points:

If we initiate a NetLogo session with the command:

create­turtles 1000

1000 little triangles will appear in the graphics screen. However, because they are
initialized to start in the middle of the screen, they are all piled on top of each other and
appear as a single point.

Figure 1: Create-turtles 1000

If we then type the command;

ask turtles [forward 20]

All of the turtles move forward 20 screen units

Figure 2: Forward 20

Note that because the turtles were initialized with different “headings”, that is they
faced in different directions, they drew the shape of a circle. This is already a simple
example of emergent behavior. The fact that there were enough turtles so that by
random chance, they were likely to fill the holes, ensured that a coherent circle emerged
from the motions of independent turtles.

45

At first glance, the reader might wonder how the turtles can do anything different and
interesting if they all follow the same commands. The power of NetLogo comes from the
fact that each turtle is an independent agent. Because each turtle had an independent
heading, they all moved in different directions when we typed “fd 20”. Since it is
possible for turtles to have as many states as the user likes, the response of turtles to
the same commands can vary markedly.

In addition to this difference amongst turtles, each turtle does its own separate
computation. To see how this makes a difference, we can type the command “back 20”
to get all of the turtles back to the middle of the screen, then invoke the command,
“forward random 20”. The function “random” computes a random value between 0 and
20. Because each turtle does its own computation, each one gets a different value for
“random 20” and thus will move forward a different amount.

Figure 3: forward random 20

(Beginning students often want to reverse this operation and therefore try the command
“back random 20”. However, this has unexpected results. Try it.)

In addition to turtles, NetLogo has a second kind of agent that we call a “patch”. Patches
are very much like turtles except that they are always around and do not move. The
screen is initialized to a (user resizable) grid of patches. In other words, even though the
graphics screen looks like empty black where there are no turtles, in reality the patches
are invisibly lurking there waiting for commands3.

If we type the command

ask patches [setpatchcolor red]

 all the patches will change their color to red.

3 The grid of patches is essentially a cellular automaton with each patch being a cell.

46

Figure 4: setpatchcolor red

Finally, if we type the command:

ask patches [if xcor < 0 [setpatchcolor green]]

Then all the patches to the left of the origin turn green. The key point to keep in mind is
that they do not do this because they are “told” to do it by a leader. They each examine
their own position on the screen, determine if they are to the left of the origin and, if so,
they turn themselves green.

Figure 5: If xcor < 0 [setpatchcolor green]

With these basic tools, we can now create models and dynamic simulations of many
different kinds of complex systems.

There is a saying that goes: “If all you have is a hammer, the whole world looks like a
nail”. With the powerful hammer of the NetLogo language, it becomes easier to see
emergent phenomena everywhere. Not only the classic emergent phenomena described
in the complex systems literature, but many every day and scientific phenomena can be
viewed through the lens of emergent phenomena. While, at first glance, the topic of
‘emergent phenomena’ seems like an exotic add-on to the curriculum, we see it as a
powerful amplifier of understanding for virtually all scientific topics. By enabling us to
make cogent and testable connections between the micro- and macro-, the individual
and the collective, the element and the system, the new lens makes them easier to
understand for novice and for expert learners alike.

47

Two Examples: Wolf/Sheep Predation and Gas-in-a-Box

I will now present two examples of the kinds of models students can build with NetLogo.
Students have built models across a wide range of topics and disciplines, including
natural sciences such as physics, biology and chemistry social sciences such as
economics, history and psychology as well as professional practices such as medicine
and law. The two examples presented below are drawn from typical high school science
curriculum. The first example is a model of a simple predator-prey ecosystem – a
popular model with high school students using NetLogo.

In a typical such model (Wilensky & Reisman, in press), students model a predator (say
a wolf) and a prey (say a sheep). They need to give rules to individual wolves and sheep
so that they can move and interact. Many sets of rules are possible. A typical set of rules
might assign an energy level to each wolf and sheep and decrease their energy when
they move, increase their energy when they eat (wolves eating sheep, sheep eating
grass). If their energy falls below 0 they would die. At every turn, they get a random
number (roll an imaginary ‘die”) and if they are lucky they reproduce. Such a model is
illustrated below.

Figure 6: The NetLogo layout for the wolf-sheep predation model. In the upper left is the
interface area that allows users to set model parameters and run simulations. To its right is the
NetLogo graphics window that displays each individual wolf and sheep. Below the interface is a
population plot window. To its right is a command center for interactively running commands.

A dynamic graph of the population levels of sheep, wolves and grass can be viewed
alongside the graphics screen. If the rule sets are chosen appropriately, a typical result
is that the population graphs look like out-of-phase sine waves, sheep populations
increase till the wolves have so much to eat that they increase which reduces the

48

population of sheep which eventually, in turn decreases the population of wolves which
results in an increase in the sheep population.

Figure 7. A typical population graph from a student-created rule-set. Red represents size of
predator population, while blue represents size of prey population.

This is a classical result, but seen here through the lens of emergent phenomena. The
students control the behavior at the micro- level of the individuals and then observe the
results at the macro- level of the populations. It is through experimenting with the
dynamics of this connection that a powerful understanding of the predator prey
dynamics can be achieved.

A second example is a model called Gas-in-a-Box, one of a suite of NetLogo models in a
package called GasLab (Wilensky, 1999; Wilensky, Hazzard & Froemke, 1999). Gas-in-a-
Box was originally created by a physics teacher but the original model has been refined
by dozens of students who have also created many variants and extensions of the
original model.

The basic idea is a box containing thousands of gas molecules. Gas molecules are
modeled as turtles that collide like elastic billiard balls, that is they collide with the box
and with other molecules without loss of energy. The user can set the mass and speed of
any molecule. The display color codes the molecules, blue for slow, green for average
speed and red for fast.

Figure 8: Gas molecules in a box. Fast particles in red, mid-speed in green and slow particles in
blue. The yellow zig-zag line traces the movement of a single particle.

49

0 20

480

0

 0 30

32

0

9a: plot of number of fast, medium, slow particles 9b: histogram of particle speeds
Figure 9: NetLogo displays “live” plots and histograms of the molecules in the graphics window

In a typical first use, students initialize the molecules with equal masses and equal
speeds but with random positions and headings. Thus all molecules start out green.
They run the model and are usually surprised to see that the molecules turn color quite
quickly and that many more of them turn blue than turn green. In other words, more of
the particles slow down than speed up. Although this result is a direct consequence of a
known law of gases, the Maxwell-Boltzman distribution of molecular speeds, taught in
high school physics, it is not recognized by students in this form. (In our experience,
not just students, but even physicists are often surprised by this result.) Again, the key
insight here is that the Gas-in-a-Box model allows students to see the gas from an
emergent perspective. They come to see the connection between the micro- level of
billiard ball collisions and the macro- level of the general characteristics of the gas as an
ensemble. These two levels of description are typically taught separately in the high
school curriculum. However, it is in understanding the connection between these two
levels, how one emerges from the other that leads to a powerful understanding of
statistical thermal physics. The connection has been thought to be too hard for high
school students, as it usually involves advanced mathematical machinery. But, through
the use of multi-agent modeling languages such as NetLogo, these ideas can be
accessible to high school learners.

NetLogo in the classroom

The multi-agent modeling paradigm is in use by many students, teachers and
classrooms. In its years of use, we have assembled a large collection of “extensible”
models.4 These sample models are drawn from a wide range of disciplines including
physics, biology, mathematics, computer science, chemistry, materials science, ecology
and economics. These models are created by students, teachers and researchers and go
through a process of checkout and refinement before becoming a part of the distribution
archive.

In the classroom, NetLogo is typically used in roughly five phases:

4 The largest collection is the StarLogoT collection entitled “Connected Models” (Wilensky, 1998)
which is available for download at http://ccl.northwestern.edu/cm/models. Another collection is
distributed with NetLogo.

50

a) In the first phase, the teacher typically leads the students in off-computer activities
(known as participatory simulations or emergent activities) that provoke thinking about
emergent phenomena. In these activities, students typically enact the role of individual
elements of a system and then discuss amongst themselves what global patterns they
detect and how those patterns could arise from their individual behaviors. These
participatory simulations can be done without technology in what we call “StarPeople”
(Resnick & Wilensky, 1998) or “NetPeople” or they can be supported by wireless
technologies as in the HubNet architecture (Wilensky & Stroup, 1999) which enables
students to use handheld devices to control agents within a NetLogo simulation.
b) In the second phase, the teacher presents a “seed” model (a simple starting model) to
the whole class, projected upfront so that everyone can view it. The teacher engages the
class in discussion as to what is going on. Why are they observing that particular
behavior? How would it be different if model parameters were changed? Is this a good
model of the phenomenon it is meant to simulate?
c) In the third phase, students run the model (either singly or in small groups) on
individual computers and explore the parameter space of the model.
d) In the fourth phase, each modeler (or group) proposes an extension to the model and
implements that extension in the NetLogo language. Modelers starting with GasLab, for
example, might try to add to the model by building a pressure gauge, a piston, a gravity
mechanism, or heating/cooling plates. The extended models are added to the project’s
library of extensible models and made available for others to work with as “seed”
models.
e) In the final phase, students are asked to propose a phenomenon and build a model of
it from “scratch” using the NetLogo modeling primitives.

There are other simulation software packages in use in school settings that enable
students to engage in phases b & c. However, because the packages are “black-box”, not
inspectable or modifiable by students, they do not enable students to engage in phases
d) and e) or to go more deeply into understanding the models. Yet other simulation
packages, notably STELLA (Richmond & Peterson, 1990), are “glass-box” like NetLogo,
but they ask student modelers to model at the level of populations. By enabling students
to model at the level of individuals, NetLogo makes it easier for students to begin
modeling as they can base their models on their own experience of individuals.

We have worked with classrooms in all five of these phases. Generally, the depth of
understanding of complex systems and emergent phenomena would be expected to
increase as the student more actively builds, modifies, and explores with the model. The
results that students can achieve with model extensions and designing their own models
are often quite dramatic. Because of the great variations in available technology,
learning time, and classroom organization, each phase has valuable applications.

Working in phase d), what we call the “extensible modeling” approach, allows learners
to dive right into the model content. Learners typically start by exploring the model at
the level of domain content. When they are puzzled by an outcome of the model, they
design an extension to the basic model. This extension usually requires only a few
language primitives to implement. This allows learners to follow a gently sloping path
towards full NetLogo language mastery — skill with the general purpose modeling
language is acquired gradually as learners seek to explain their experiments and extend
the capabilities of the model.

51

Conclusion

The inclusion of a complex systems perspective in school curriculum would have many
benefits for learners:

• We live in an increasingly interconnected world. Rainforest destruction in South
America leads to Greenhouse effects and weather pattern changes in Africa. Market
collapses in the Far East can wreak great consequences on economies in the West.
Traditional science which studies phenomena in isolation is not equipped to analyze and
understand such systemic effects. Informed citizens in such a highly interacting world
need tools that can help them cope with these complexities.

• Though there is increased desire for interdisciplinary learning, students studying in a
traditional curricular framework find it difficult to see the connections between different
domains of knowledge. One strength of the complex systems theory perspective is that it
enables us to see common patterns across traditionally separate fields: physical matter
is the emergent result of molecular interactions; ecologies and biological niches are
emergent results of interacting organisms; economies and markets are emergent results
of the interactions of buyers and sellers.

• Many everyday phenomena and experiences arise from the interactions of many
different factors. Because these have been hard to study using traditional methods, they
are excluded from the curriculum. Introducing complex systems allows students’
personal experiences to be included in the curriculum – thus students see science as
more personally relevant.

• An understanding of patterns as emergent phenomena, rather than as results of
equations, is both a more accurate picture of nature AND easier for most people to
understand. Science becomes more accessible, not less, as a result of this change in
viewpoint.

By introducing a perspective of complexity and emergent phenomena, we make science
more accurate, more inclusive and more accessible to the great majority of students.

52

References
Forrester, J.W. (1968). Principles of Systems. Norwalk, CT: Productivity Press.

Gell-Mann, M. (1994). The Quark and the Jaguar. New York: W.H. Freeman.

Gleick, J. (1987). Chaos. New York: Viking Penguin.

Holland, J. (1995). Hidden Order: How Adaptation Builds Complexity. Helix Books/Addison-
Wesley.

Kauffman, S. (1995). At Home in the Universe: The Search for the Laws of Self-Organization and
Complexity. Oxford: Oxford University Press.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.

Resnick, M. (1994). Turtles, Termites and Traffic Jams: Explorations in Massively Parallel
Microworlds. Cambridge, MA: MIT Press.

Resnick, M. & Wilensky, U. (1993). Beyond the Deterministic, Centralized Mindsets: New
Thinking for New Sciences, Presentation to the American Educational Research Association,
Atlanta, Ga.

Resnick, M., & Wilensky, U. (1998). Diving into Complexity: Developing Probabilistic
Decentralized Thinking Through Role-Playing Activities. Journal of the Learning Sciences, 7 (2),
153-171.

Richmond, B., & Peterson, S. (1990). Stella II. Hanover, NH: High Performance Systems, Inc.

Waldrop, M. (1992). Complexity: The emerging order at the edge of order and chaos. New York:
Simon & Schuster.

Wilensky, U. & Reisman, K. (in press). Thinking like a Wolf, a sheep or a Firefly: Learning Biology
through Constructing and Testing Computational Theories -- an Embodied Modeling Approach.
Cognition & Instruction.

Wilensky, U. & Stroup, W. (1999). Learning through Participatory Simulations: Network-based
Design for Systems Learning in Classrooms. American Educational Research Association.
Montreal, Canada.

Wilensky, U. & Resnick, M. (1999). Thinking in Levels: A Dynamic Systems Perspective to Making
Sense of the World. Journal of Science Education and Technology. Vol. 8 No. 1.

Wilensky, U. (1999). NetLogo. Evanston, IL: Center for Connected Learning and Computer-Based
Modeling, Northwestern University. http://ccl.northwestern.edu/cm/netlogo/

Wilensky, U. (1999). GasLab—an Extensible Modeling Toolkit for Exploring Micro- and Macro-
Views of Gases. In Roberts, N., Feurzeig, W. & Hunter, B. (Eds.) Computer Modeling and
Simulation in Science Education. Berlin: Springer Verlag.

Wilensky, U., Hazzard, E & Froemke, R. (1999). An Extensible Modeling Toolkit for Exploring
Statistical Mechanics Proceedings of the Seventh European Logo Conference - EUROLOGO'99,
Sofia, Bulgaria.

Wilensky, U. (1998). Connected Models. Evanston, IL: Center for Connected Learning and
Computer-Based Modeling, Northwestern University. http://ccl.northwestern.edu/cm/models/

Wilensky, U. (1997). StarLogoT. Evanston, IL: Center for Connected Learning and Computer-
Based Modeling, Northwestern University. http://ccl.northwestern.edu/cm/starlogot/

53

	Abstract
	NetLogo: a multi-agent modeling language
	Two Examples: Wolf/Sheep Predation and Gas-in-a-Box
	NetLogo in the classroom
	Conclusion

	References

