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Abstract

NetLogo  is  a  multi-agent  modeling  language,  a  parallel  extension  of  Logo. 
NetLogo  is  designed  to  enable  learners  to  explore  and  construct  models  of 
emergent phenomena. By exploring and constructing such models, students make 
connections between the micro-level of agents following rules and the macro-level  
patterns  and  regularities  that  constitute  the  world  of  natural  and  social 
phenomena. 
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Introduction: the emergence of pattern

Everywhere we look, we see regularities, patterns, order. Many of these patterns have a 
kind of haunting beauty: the growth of a snowflake crystal, the perimeter pattern of a 
maple leaf, the advent of a summer squall. Other patterns, such as the dynamics of the 
Dow Jones or of a fourth grade classroom, seem messier, inchoate, yet still exhibit a 
familiar and recognizable general “shape”. The characteristic shape can unfold in space 
or in time, sometimes striking and unmistakable and sometimes more hidden, needing 
probing observation or ingenious experiment to uncover it. 

Why is there so much pattern in the world? While grappling with this question in full 
would take us far afield, we can start with a simple observation: large scale patterns in 
the world are usually the result of the interactions of large numbers of smaller pieces 
that somehow combine in surprising ways to create the large-scale pattern. Such large-
scale  (macro-)  patterns  that  arise  out  of  the  interactions  of  numerous  interacting 
(micro-) “agents” are called “emergent phenomena” – that is, phenomena that emerge 
from interactions at a lower level or scale.

Visualize  a  flock  of  birds  winging  in  the  autumn  sky  or  the  amazing  synchronized 
fireflies  that  blink in unison lighting up whole trees in the Far East.  How do these 
patterns come about? All of these patterns are emergent, there is no leader bird which 
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other birds follow, no conductor firefly leading the band -- these patterns emerge out of 
the behavior of individuals and the adjustment of that behavior in interaction with other 
individuals.

The study of emergent phenomena is the principal occupation of a developing field of 
science, the study of complex dynamic systems (Gleick, 1987; Waldrop, 1992; Gell-Mann, 
1994;  Kelly,  1994;  Holland,  1995;  Kauffman,  1995).  This  broad  new  field  seeks  to 
understand how systems of interacting components evolve over time. In the minds of 
many, however, complex systems theory is not a new branch of science, but rather a new 
framework, a new perspective that allows us to see old scientific content in new ways. 
This new perspective and the methods it brings to bear have been adopted across a wide 
array of natural and social sciences.  An understanding of complex systems is becoming 
an essential part of every scientist’s knowledge and skills. The time has come for these 
ideas and methods to become a central part of every  student’s learning.

Despite its adoption by practicing scientists, the complex systems perspective is largely 
absent from the K-16 curriculum. One reason for the slow transfer to schools is the 
heavy reliance of complex systems methodologies on the use of powerful computational 
technologies. By enabling the rendering, simulation and visualization of the evolution of 
complex systems over time, the computer has proved an indispensable tool for making 
sense of complex systems and emergent phenomena. Most of the tools used by experts 
to explore complexity in their domain of interest are highly domain specific – designed 
for use by experts to study a particular class of phenomena. Until  very recently,  no 
general-purpose  tools  existed  for  students  to  render  and  explore  systems  of  many 
interacting parts that can exhibit emergent behavior.

NetLogo: a multi-agent modeling language

Over  the  past  decade,  a  host  of  computer  languages  have  been  developed  for  the 
purpose of constructing models of emergent phenomena. At Northwestern University’s 
Center for Connected Learning (CCL), we have developed such modeling languages (and 
associated materials)  that  enable  learners,  teachers  and students to  create  dynamic 
models of complex phenomena. The languages we have developed are now in use by 
thousands  of  students,  teachers  and  researchers  worldwide.  The  latest  of  these 
languages,  called  NetLogo1 (Wilensky,  1999),  is  freely  available  on  the  web  at 
http://ccl.northwestern.edu/cm/. NetLogo is one of a class of new so-called multi-agent 
modeling  languages  (AKA  object-based  parallel  modeling  languages  or  agent-based 
modeling languages) that have emerged from the complex systems community. 

NetLogo is a parallel extension of Logo. In NetLogo, however, instead of driving a single 
turtle, the user can drive (or, perhaps better to say, orchestrate) thousands of turtles. 
Instead of drawing with pens, turtles “draw” with their bodies. By that, I mean that the 
emergent shape of all the turtles’ positions constitutes a drawing in NetLogo2. Allow me 

1 NetLogo is the latest in a family of massively parallel Logos. The first of these was CM-StarLogo 
implemented on a parallel supercomputer called the Connection Machine (Resnick, 1994; 
Resnick & Wilensky, 1993). Subsequent to that there have been several newer versions including 
MacStarLogo (Begel & Resnick, 1995) and StarLogoT (Wilensky, 1997).
2 In fact, in NetLogo, “turtles” do not typically look like turtles, they are general purpose “agents” 
that can take on any shape.
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to illustrate with a simple example in which turtles take the shape of little triangles or 
points:

If we initiate a NetLogo session with the command:

create­turtles 1000

1000 little  triangles  will  appear  in  the  graphics  screen.  However,  because  they  are 
initialized to start in the middle of the screen, they are all piled on top of each other and 
appear as a single point. 

Figure 1: Create-turtles 1000

If we then type the command;

ask turtles [forward 20]

All of the turtles move forward 20 screen units

Figure 2: Forward 20

Note that because the turtles were initialized with different “headings”, that is they 
faced in different directions, they drew the shape of a circle. This is already a simple 
example  of  emergent  behavior.  The  fact  that  there  were  enough  turtles  so  that  by 
random chance, they were likely to fill the holes, ensured that a coherent circle emerged 
from the motions of independent turtles.
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At first glance, the reader might wonder how the turtles can do anything different and 
interesting if they all follow the same commands. The power of NetLogo comes from the 
fact that each turtle is an independent agent. Because each turtle had an independent 
heading,  they  all  moved  in  different  directions  when  we  typed  “fd  20”.  Since  it  is 
possible for turtles to have as many states as the user likes, the response of turtles to 
the same commands can vary markedly.

In  addition  to  this  difference  amongst  turtles,  each  turtle  does  its  own  separate 
computation. To see how this makes a difference, we can type the command “back 20” 
to get all  of the turtles back to the middle of the screen, then invoke the command, 
“forward random 20”.  The function “random” computes a random value between 0 and 
20. Because each turtle does its own computation, each one gets a different value for 
“random 20” and thus will move forward a different amount.

Figure 3: forward random 20

(Beginning students often want to reverse this operation and therefore try the command 
“back random 20”. However, this has unexpected results. Try it.) 

In addition to turtles, NetLogo has a second kind of agent that we call a “patch”. Patches 
are very much like turtles except that they are always around and do not move. The 
screen is initialized to a (user resizable) grid of patches. In other words, even though the 
graphics screen looks like empty black where there are no turtles, in reality the patches 
are invisibly lurking there waiting for commands3.  

If we type the command
 

ask patches [setpatchcolor red]

 all the patches will change their color to red.

3 The grid of patches is essentially a cellular automaton with each patch being a cell.
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Figure 4: setpatchcolor red

Finally, if we type the command:

ask patches [if xcor < 0 [setpatchcolor green]]

Then all the patches to the left of the origin turn green. The key point to keep in mind is 
that they do not do this because they are “told” to do it by a leader. They each examine 
their own position on the screen, determine if they are to the left of the origin and, if so, 
they turn themselves green.

Figure 5: If xcor < 0 [setpatchcolor green]

With these basic tools, we can now create models and dynamic simulations of many 
different kinds of complex systems. 

There is a saying that goes:  “If all you have is a hammer, the whole world looks like a 
nail”.  With the powerful hammer of the NetLogo language, it  becomes easier to see 
emergent phenomena everywhere. Not only the classic emergent phenomena described 
in the complex systems literature, but many every day and scientific phenomena can be 
viewed through the lens of emergent phenomena. While,  at first glance, the topic of 
‘emergent phenomena’ seems like an exotic add-on to the curriculum, we see it as a 
powerful amplifier of understanding for virtually all scientific topics. By enabling us to 
make cogent and testable connections between the micro- and macro-, the individual 
and the collective,  the element and the system, the new lens makes them easier  to 
understand for novice and for expert learners alike.
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Two Examples: Wolf/Sheep Predation and Gas-in-a-Box

I will now present two examples of the kinds of models students can build with NetLogo. 
Students  have built  models  across a  wide range of  topics  and disciplines,  including 
natural  sciences  such  as  physics,  biology  and  chemistry  social  sciences  such  as 
economics, history and psychology as well as professional practices such as medicine 
and law. The two examples presented below are drawn from typical high school science 
curriculum.  The  first  example  is  a  model  of  a  simple  predator-prey  ecosystem  –  a 
popular model with high school students using NetLogo.

In a typical such model (Wilensky & Reisman, in press), students model a predator (say 
a wolf) and a prey (say a sheep). They need to give rules to individual wolves and sheep 
so that they can move and interact. Many sets of rules are possible. A typical set of rules 
might assign an energy level to each wolf and sheep and decrease their energy when 
they move,  increase their  energy when they eat  (wolves eating sheep,  sheep eating 
grass). If their energy falls below 0 they would die. At every turn, they get a random 
number (roll an imaginary ‘die”) and if they are lucky they reproduce. Such a model is 
illustrated below.

Figure 6:  The  NetLogo layout  for  the  wolf-sheep  predation  model.  In  the  upper  left  is  the 
interface area that allows users to set model parameters and run simulations. To its right is the 
NetLogo graphics window that displays each individual wolf and sheep. Below the interface is a 
population plot window. To its right is a command center for interactively running commands.

A dynamic graph of the population levels of sheep, wolves and grass can be viewed 
alongside the graphics screen. If the rule sets are chosen appropriately, a typical result 
is  that  the  population  graphs  look  like  out-of-phase  sine  waves,  sheep  populations 
increase  till  the  wolves  have  so  much to  eat  that  they  increase  which  reduces  the 
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population of sheep which eventually, in turn decreases the population of wolves which 
results in an increase in the sheep population. 

Figure 7.  A typical  population graph from a student-created rule-set.  Red represents size of 
predator population, while blue represents size of prey population.

This is a classical result, but seen here through the lens of emergent phenomena. The 
students control the behavior at the micro- level of the individuals and then observe the 
results  at  the macro-  level  of  the populations.  It  is  through experimenting with the 
dynamics  of  this  connection  that  a  powerful  understanding  of  the  predator  prey 
dynamics can be achieved.

A second example is a model called Gas-in-a-Box, one of a suite of NetLogo models in a 
package called GasLab (Wilensky, 1999; Wilensky, Hazzard & Froemke, 1999). Gas-in-a-
Box was originally created by a physics teacher but the original model has been refined 
by  dozens  of  students  who  have  also  created  many  variants  and  extensions  of  the 
original model.

The  basic  idea  is  a  box  containing  thousands  of  gas  molecules.  Gas  molecules  are 
modeled as turtles that collide like elastic billiard balls, that is they collide with the box 
and with other  molecules without loss of energy. The user can set the mass and speed of 
any molecule. The display color codes the molecules, blue for slow, green for average 
speed and red for fast. 

Figure 8: Gas molecules in a box. Fast particles in red, mid-speed in green and slow particles in 
blue. The yellow zig-zag line traces the movement of a single particle.
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9a: plot of number of fast, medium, slow particles        9b: histogram of particle speeds
Figure 9: NetLogo displays “live” plots and histograms of the molecules in the graphics window

In a typical  first  use,  students initialize  the molecules with equal  masses and equal 
speeds but with random positions and headings. Thus all  molecules start out green. 
They run the model and are usually surprised to see that the molecules turn color quite 
quickly and that many more of them turn blue than turn green. In other words, more of 
the particles slow down than speed up. Although this result is a direct consequence of a 
known law of gases, the Maxwell-Boltzman distribution of molecular speeds, taught in 
high school physics, it is not recognized by students in this form.   (In our experience, 
not just students, but even physicists are often surprised by this result.) Again, the key 
insight  here  is  that  the  Gas-in-a-Box model  allows students  to  see  the  gas  from an 
emergent perspective.  They come to see the connection between the micro-  level  of 
billiard ball collisions and the macro- level of the general characteristics of the gas as an 
ensemble. These two levels of description are typically taught separately in the high 
school curriculum. However, it is in understanding the connection between these two 
levels,  how one emerges  from the  other  that  leads  to  a  powerful  understanding  of 
statistical thermal physics. The connection has been thought to be too hard for high 
school students, as it usually involves advanced mathematical machinery. But, through 
the  use  of  multi-agent  modeling  languages  such  as  NetLogo,  these  ideas  can  be 
accessible to high school learners.

NetLogo in the classroom

The  multi-agent  modeling  paradigm  is  in  use  by  many  students,  teachers  and 
classrooms. In its years of use, we have assembled a large collection of “extensible” 
models.4 These sample models are drawn from a wide range of disciplines including 
physics, biology, mathematics, computer science, chemistry, materials science, ecology 
and economics. These models are created by students, teachers and researchers and go 
through a process of checkout and refinement before becoming a part of the distribution 
archive.

In the classroom, NetLogo is typically used in roughly five phases:

4 The largest collection is the StarLogoT collection entitled “Connected Models” (Wilensky, 1998) 
which is available for download at http://ccl.northwestern.edu/cm/models. Another collection is 
distributed with NetLogo.
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a) In the first phase, the teacher typically leads the students in off-computer activities 
(known as participatory simulations or emergent activities) that provoke thinking about 
emergent phenomena. In these activities, students typically enact the role of individual 
elements of a system and then discuss amongst themselves what global patterns they 
detect  and  how  those  patterns  could  arise  from  their  individual  behaviors.  These 
participatory simulations can be done without technology in what we call “StarPeople” 
(Resnick  &  Wilensky,  1998)  or  “NetPeople”  or  they  can  be  supported  by  wireless 
technologies as in the HubNet architecture (Wilensky & Stroup, 1999) which enables 
students to use handheld devices to control agents within a NetLogo simulation.
b) In the second phase, the teacher presents a “seed” model (a simple starting model) to 
the whole class, projected upfront so that everyone can view it. The teacher engages the 
class  in  discussion  as  to  what  is  going  on.  Why  are  they  observing  that  particular 
behavior? How would it be different if model parameters were changed?   Is this a good 
model of the phenomenon it is meant to simulate? 
c)  In  the  third  phase,  students  run  the  model  (either  singly  or  in  small  groups)  on 
individual computers and explore the parameter space of the model. 
d) In the fourth phase, each modeler (or group) proposes an extension to the model and 
implements that extension in the NetLogo language. Modelers starting with GasLab, for 
example, might try to add to the model by building a pressure gauge, a piston, a gravity 
mechanism, or heating/cooling plates. The extended models are added to the project’s 
library  of  extensible  models  and  made  available  for  others  to  work  with  as  “seed” 
models.  
e) In the final phase, students are asked to propose a phenomenon and build a model of 
it from “scratch” using the NetLogo modeling primitives.

There  are  other  simulation  software  packages  in  use  in  school  settings  that  enable 
students to engage in phases b & c. However, because the packages are “black-box”, not 
inspectable or modifiable by students, they do not enable students to engage in phases 
d) and e) or to go more deeply into understanding the models. Yet other simulation 
packages, notably STELLA (Richmond & Peterson, 1990), are “glass-box” like NetLogo, 
but they ask student modelers to model at the level of populations. By enabling students 
to  model  at  the  level  of  individuals,  NetLogo makes  it  easier  for  students  to  begin 
modeling as they can base their models on their own experience of individuals.

We have worked with classrooms in all five of these phases.  Generally, the depth of 
understanding  of  complex  systems  and  emergent  phenomena  would  be  expected  to 
increase as the student more actively builds, modifies, and explores with the model.  The 
results that students can achieve with model extensions and designing their own models 
are  often  quite  dramatic.   Because  of  the  great  variations  in  available  technology, 
learning time, and classroom organization, each phase has valuable applications.   

Working in phase d), what we call the “extensible modeling” approach, allows learners 
to dive right into the model content. Learners typically start by exploring the model at 
the level of domain content. When they are puzzled by an outcome of the model, they 
design  an  extension  to  the  basic  model.  This  extension usually  requires  only  a  few 
language primitives to implement. This allows learners to follow a gently sloping path 
towards  full  NetLogo  language  mastery  — skill  with  the  general  purpose  modeling 
language is acquired gradually as learners seek to explain their experiments and extend 
the capabilities of the model.
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Conclusion

The inclusion of a complex systems perspective in school curriculum would have many 
benefits for learners:

•  We  live  in  an  increasingly  interconnected  world.  Rainforest  destruction  in  South 
America leads to Greenhouse effects and weather pattern changes in Africa.  Market 
collapses in the Far East  can wreak great  consequences on economies in the West. 
Traditional science which studies phenomena in isolation is not equipped to analyze and 
understand such systemic effects. Informed citizens in such a highly interacting world 
need tools that can help them cope with these complexities.

• Though there is increased desire for interdisciplinary learning, students studying in a 
traditional curricular framework find it difficult to see the connections between different 
domains of knowledge. One strength of the complex systems theory perspective is that it 
enables us to see common patterns across traditionally separate fields: physical matter 
is  the emergent  result  of  molecular interactions;  ecologies and biological  niches are 
emergent results of interacting organisms; economies and markets are emergent results 
of the interactions of buyers and sellers.

•  Many  everyday  phenomena  and  experiences  arise  from  the  interactions  of  many 
different factors.  Because these have been hard to study using traditional methods, they 
are  excluded  from  the  curriculum.  Introducing  complex  systems  allows  students’ 
personal experiences to be included in the curriculum – thus students see science as 
more personally relevant.

•  An  understanding  of  patterns  as  emergent  phenomena,  rather  than  as  results  of 
equations, is  both a more accurate picture of nature AND easier for most people to 
understand.  Science becomes more accessible, not less, as a result of this change in 
viewpoint.

By introducing a perspective of complexity and emergent phenomena, we make science 
more accurate, more inclusive and more accessible to the great majority of students.
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