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Evolutionary prisoner’s dilemma in random graphs
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Abstract

We study an evolutionary version of the spatial prisoner’s dilemma game (SPD), where the agents are placed in a random graph.
For graphs with fixed connectivity,α, we show that for low values ofα the final density of cooperating agents,ρc depends on the
initial conditions. However, if the graphs have large connectivitiesρc is independent of the initial conditions. We characterize
the phase diagram of the system, using both, extensive numerical simulations and analytical computations. It is shown that
two well defined behaviors are present: a Nash equilibrium, where the final density of cooperating agentsρc is constant, and
a non-stationary region, whereρc fluctuates in time. Moreover, we study the SPD in Poisson random graphs and find that the
phase diagram previously developed looses its meaning. In fact, only one regime may be defined. This regime is characterized
by a non stationary final state where the density of cooperating agents varies in time.
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. Introduction

The search for models able to account for the
omplex behavior in many biological, economical and
ocial systems has lead to an intense research activity
n the last years[1]. In particular, a very debated issue
s the emergence of cooperation between competitive
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individuals[2] a problem that was studied by Axelro
[3] in the context of the Game theory[4]. Game
theory was originally developed to find the optim
strategy for a given game between two intellige
players. However, its straightforward developm
involved the generalization toward the iterated gam
of N players. In this context many theories have b
proposed to explain the emergence and sustainab
of cooperation, kin selection[5], reciprocal altruism
[6], group selection[7] and others.

The prisoner’s dilemma (PD) is the archety
model of reciprocal altruism[8]. In the game, eac
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player has two options: to defect, or to cooperate.
The defector will always have the highest reward
T (temptation to defect) when playing against the
cooperator which will receive the lowest payoffS
(sucker value). If both cooperate they will receive a
payoff R (reward for cooperation), and if both defect
they will receive a payoffP (punishment). Moreover,
these four payoffs satisfy the following inequalities:

T > R > P > S

T + S < 2R
(1)

It is not too hard to recognize that for rational play-
ers, in a two players-one round game the choice of
defection will assure the largest payoff for each player
independently of the other decision (Nash equilibrium)
[9]. This situation, however, creates a dilemma for in-
telligent players, they know that mutual cooperation re-
sults in a higher income for both of them. The question
then, is to find under which conditions the cooperation
emerges in this game.

Nowak and May[10] have shown how cooperation
can emerge between players with memoryless strate-
gies in the presence of spatial structure (spatial pris-
oners dilemma, SPD). They considered a deterministic
cellular automaton where agents are placed in a square
lattice with self, nearest and next-nearest interaction.
At each round of the game, the payoff of the player
is the sum of the payoffs it got in its encounters with
its neighbors. The state of the next generation is de-
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networks. Furthermore, Ebel and Bornholdt[16]
studied the response of the system upon perturbations
finding different regimes for avalanche dynamics.

In this work, we try to extend previous results of
other authors[10,17]and to put them in a more general
framework. For a square graph[10,17], using periodic
boundary conditions and starting with half of the agents
as cooperators and the other half as defectors (p = 0.5)
it was noticed that as a function of the temptation, the
spatial game has three qualitative different final states:
The first one, for low temptations (1< T < 4/3), is
characterized by a stationary or slightly periodicalρc
that becomes a global majority (ρc > 0.5). The second,
for intermediate temptations (4/3 < T < 3/2), is char-
acterized by a non stationaryρc(t) and spatiotemporal
chaos[10,17], and a third one, for high temptations
(3/2 < T < 2), is also characterized by a stationary or
slightly periodicalρc but that is now a global minority
(ρc < 0.5).

To this end we decided to study the model in a ran-
dom graph[18]. The introduction of a random graph
may be interpreted as a first step to the characterization
of the disordered nature of the interactions in evolu-
tionary systems.

We study two types of random graphs. The first one,
usually called the Bethe lattice, has all sites with a fixed
and equal number of neighborsα, while the other one is
a Poisson random graph, in which the number of links
per site is Poissonian distributed with a mean valueα.

While, it has been recently argued that many real
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ned occupying the site of the graph with the play
aving the highest score among the previous owne

he immediate neighbors. It was remarkable that w
hese simple rules, for a certain range of values o
ay-off matrix, very complex spatial patterns show
ith cooperators and defectors coexisting.
Since then, the game has been largely exte

r modified to study more complex situations.
xample, Szabo et al. studied the influence of
it-for-tat strategy[11] and the effects of the extern
onstraint[12] in the game. Vainstein and Arenz
13] approached the problem considering site-dilu
raphs to mimic the presence of disorder in the envi
ent and proved that, depending on the amount o
rder, cooperation can be enhanced. Moreover, Ab
on and Kuperman[14] and Kim et al. collaborato
15] studied the consequences of different topolo
nd proved that defectors are enhanced in small-w
etworks are of scale free type[19], we are convince
hat the understanding of simpler graphs, like the
tudied in this paper, whose structural properties
ell characterized[18] will be of valuable help in th

uture analysis of the more complex ones. This is
ially relevant in the current state of the research, w
he microscopic properties of these scale free gr
re not completely understood, and that are cert
ot universal at all. Moreover, despite of the rec
valanche of results showing that many real gra
how power law dependences on their degree d
ution, it is not unseeing to believe that many oth
even real) graphs will follow the old Erdös-R̀enyi dis-
ribution.

In this paper, we show that for graphs with fix
egree the final density of cooperating agentsρc)
evelops multiple jumps as a function of the tempta
T) of the agents, and depending of the degree t
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jumps may lead also to a region of the phase space
where the density of cooperating agents,ρc, fluctuates
in time. These jumps are very well characterized and
we show that they can be predicted by the study of
the interaction between clusters of cooperating and
defecting agents. However, for Poisson random graphs
the situation is more complex, the number of jumps
become infinite in the thermodynamic limit, and we do
not find a stationary state of cooperating agents. How-
ever, in these graphs cooperation is strongly enhanced.

The remaining of the paper is organized as follows.
In the next section we present the model with all its
details. Then, the numerical results for the graphs
with fixed connectivity are presented, together with a
comparison of the analytical predictions for the phase
diagram. In the next section we present the results for
Poisson random graphs and finally the conclusions are
outlined.

2. Model

The model is defined by placing two kind of agents,
cooperators (C) or defectors (D), in a random graph,
with fixed or fluctuating connectivities (as mentioned
above) and considering that the connected pairs
interact through the payoff matrix (Table 1), whereC
stands for cooperator andD for defector and where the
temptationT satisfies 1< T < 2 which is consistent
with Eq.(1)[11].

de-
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T
N

D
C

D

as the number of generations between the current one
and the first. The process is repeated, erasing the later
payoffs, until the system stabilizes.

In this way our model reproduces a synchronous
deterministic interaction between memoryless agents.
The only source of randomness comes from the graph
structure and the initial conditionsp, but, as it is shown
below, this is enough to produce a complex behavior.
Therefore, the only remaining relevant variables of our
problem are the temptationT of the agents and the de-
greeα of the graph.

For asynchronous interactions, taking place in
biological systems where the evolution is continuous,
the cooperation usually does not emerge in such
simple models[20] and most be impose by an external
entity [11] or by devising more complicated evolution
rules. However, the synchronous evolution rules
devised before are relevant for real world problems in
which delays in the transmission of the information
between the agents are important[20], for example,
financial markets, and voting problems. It is in this
context that our study intends to be relevant. We
will show, in this scenario, that the random spatial
structure of the graph, alone, leads to very complex
patterns.

Some variables will be useful in the discussions
below, so we will introduce them here. The state (D
or C) of site i will be characterized by a variableθi

that takes the value 1 if the agent is a cooperator and 0
otherwise. In this way, the state of a system withNsites
a les
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c site
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The agents will interact simultaneously and in
endently from each other and the agent payoff
e the sum of the payoffs that it wins in its interact
ith all its neighbors.
The evolution of the system proceeds as follo

rst, each site is occupied by a cooperator (C) with a
robabilityp, or by a defector (D) with a probability 1−
. Then, the agents interact following the payoff ma
, and in the next time step, in every sitei of the graph
e will place the agent with the higher payoff betw

he neighbors ofi andi itself. The timet is then define

able 1
owak’s payoff matrix for one player

D C

0 T
0 1

: defector andC: cooperator.
t time t is fully characterized by the set of variab
θ1, θ2, . . . , θN ). We defined alsosi as the number o
ooperative neighbors of the agent located at thei
by definitionsi ≤ α), andg

si
θi

as the total payoff of th
gent placed at sitei havingsi cooperating neighbor

A simple analysis of the payoff matrix shows t
he agent’s payoff will be different from zero only wh
t plays with at least one cooperator. Thus, the ag
ayoff depends on the number of its cooperative ne
ors. Besides, the agent’s payoff also depends o

ype of agent, if it is a cooperator, it wins 1, otherwis
insT for every interaction with a cooperative neig
or. Therefore:

si
θi

= (T − (T − 1)θi)si (2)

Note that for a cooperative agentgs
1 = s, while for

defector onegs
0 = Ts as pointed out before.
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Fig. 1. Phase diagram for the PD game in a fixed degree case. The
dashed lines (analytic) and the symbols (simulations) represent the
points whereρc changes its value. The shadow characterize three
different regimes: (I) high values ofρc, (II) non-stationary values of
ρc and (III) low values ofρc.

3. Fixed degree graphs

3.1. Phase diagram

In Fig. 1it is shown the phase diagram of the model
obtained from the simulations (black symbols) and
from analytical computations (dashed lines to be dis-
cussed below) when the agents are initially distributed
with probability 0< p < 1 in the graph. The black
symbols represent critical temptations (Tc), i.e. the
temptations values at whichρc jumps for each con-
nectivity α. Note the perfect coincidence between the
points and the predictions, and also the fact that the
phase diagram does not depend onp, provided of course
that it is different from 0 and 1.

In this figure the full lines define three different
regimes. The first one (I) is characterized by a stationary
ρc, the highest for these degreesα but not necessarily
the global majority, as expected for the two dimen-
sional square lattice. A second (II) is characterized by
non-stationary states. These states do not necessarily
emerge with probability 1. It means that for a given
α and a givenT in this zone, it will depend on the ini-
tial distribution of the cooperators, and on the particular
graph whether this phase is observed or not. And a third
(III) regime that appears for high values ofT, is char-
acterized by a stationaryρc that is the global minority
(ρc < 0.5).

Fig. 2. ρc vs.T for random graphs with a fixed degreeα = 5, N =
10, 000. (I–III) Characterize the zones of the phase diagram, see (Fig.
1). In the zone (II)ρc is the mean value ofρc(t) and the bars on the
lines reflects the fluctuations ofρc in this zone.

Note that for a pure PD’s game (α = 1) and for a one-
dimensional chain (α = 2) there are not jumps. Forα >

2 one can define more than one regime, and within each
regime one can observe many jumps. To be illustrative
about this point, theFig. 2shows the variation ofρc as
a function of the temptationT for α = 5.

From now on, and unless specified otherwise, all the
simulations presented result from the average over at
least 50 graphs each one initialized once.

For α = 5 (Fig. 2) the system is characterized by
three different regimes and by four jumps inρc, two
of them are associated to the phase transitions (I–II) at
T = 5/4 and (II–III) atT = 3/2, while the other two
(T = 4/3 andT = 5/3) are just jumps ofρc within the
regimes, see againFig. 1to locate these points.

It is not hard to realize that all the dynamics of the
model is enclosed in the competition between cooper-
ators and defectors. Because of their small payoffs, the
cooperators, to survive, must be organized in clusters
therefore, we may imagine the system as a set of coop-
erating clusters embedded in a sea of defectors. If the
boundary of the cooperator’s cluster is strong enough
it will grow, otherwise, the cluster keeps its size or be-
comes smaller.

It is important to point out that in this model only
phases with cooperators and defectors coexisting may
appear. In fact, the defective population may invade the
whole graph (ρc = 0) if the lowest possible payoff for
a boundary defectorg1

0, i.e a defector interacting with
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only one cooperator, is larger than the highest possible
payoff of a cooperatorgα

1. From Eq.(2) this may hap-
pen ifT > α, but by definitionT < 2, thereforeρc > 0
for all α ≥ 2. Moreover, a whole invasion of the graph
by cooperating agents is impossible because one de-
fector surrounded by cooperators will have the highest
possible payoffgα

0 and is indestructible,ρc < 1.
For a graph with fixed connectivity it is interest-

ing to see what happens when the temptationT of the
agents increases. Obviously, ifT = 1 the systems does
not evolve in time, it keeps its initial distribution of co-
operators and defectors. Increasing the temptation, we
may ask ourselves, at which value ofT, ρc is going to
change . It is evident that either most of the clusters
of cooperators become weak at their boundaries, such
that they get invaded by the defectors, or they become
strong enough to occupy part of the sea of defectors.
Then, the condition of equilibrium that most be satisfied
by all the agents in the boundary between cooperators
clusters and defectors is the following:

g
s1
1 = g

s0
0 (3)

wheres1 ands0 stand for the number of cooperative
neighbors of the cooperator and the defector respec-
tively. But from Eq.(2) g

s1
1 = s1 andg

s0
0 = Ts0. Then,

Tc = s1

s0
(4)
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Going deeper in this kind of analysis we may see
that the strongest cooperators hold:

gs
1 > gs−1

0 (2 ≤ s ≤ α) (7)

which means that the defectors can not invade the clus-
ters of cooperators, or vice versa a cooperator sur-
rounded bys cooperators will invade all the defectors
neighbors with less thanscooperators around them. In
other words, while Eq.(7) holds the clusters of cooper-
ators grow inside the sea of defectors (except forα = 2,
when the winner cooperator does not have any defec-
tor to invade). At some point the defectors are isolated
and become indestructible, stopping the propagation of
cooperators.

Then, following(2), the set of inequalities(7) are
satisfied for the temptations:

T <
α

α − 1
(8)

that correspond to the first jump at the lowestTc(α),
from Eq. (5). Below this line, appears what we call
regime (I), there,ρc evolves toward a stationary state
where it reaches, depending on the initial conditions,
its highest possible value.

On the other hand, for the temptation range:

3

2
< T < 2 (9)

the opposite condition is satisfied, i.e:
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( .
nd since we are interested in the regionT > 1, the Eq
4) implies thats1 > s0. Therefore, we may substitu
1 = α − n ands0 = α − n − m in Eq.(4) to get:

cn,m(α) = α − n

(α − n) − m
(5)

here obviouslyn < α and sinceT < 2, mmust also
atisfy:

≤ m ≤ int

(
(α − n) − 1

2

)
(6)

In this way, assigning appropriate values ofnandm
o the Eq.(5) we characterize all the jumps ofρc for a
ivenα as a function ofT . This is what is represent

n Fig. 1 by dashed lines. Of course, the lines are
uided to the eyes, and fixed values ofα should be
nderstood when analyzing Eq.(5).
0 < g1 < g0 (3 ≤ s < α) (10)

ndependently on the initial conditions and the deg
f the graph. Now, the spreading of cooperators
efective sites is strongly reduced and defectors d

nate the system. The condition(10) implies again a
tationary final state. But, due to the greatest dom
ion of defectors,ρc reaches its lowest possible va
or the given initial conditions (regime (III)).

In the intermediate range appears what we
egime (II). In this regime the stability conditions(7)
nd (10)with an absolute winner do not hold anym
nd dynamics instabilities appear in the interior of
raph. Depending on the temptation,T, boundary site
re intermittently occupied by defectors or coop

ors, or alternatively lines of defectors travel across
luster of cooperators.

Moreover, note that in the phase diagram the reg
III) is not only limited to values ofT larger than 3/2
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For α = 4 the regime (II) is not present, a surprising
result considering that it is present in the square graph.
Unfortunately we were not able to analytically justify
this, but, we are tempted to conjecture that this is a
consequence of the absence of spatial correlations in
the Bethe graph.

3.2. Degree and initial conditions dependence

In the previous subsection we presented numeri-
cal simulation and arguments that justify the indepen-
dence of the phase diagram from the initial conditions.
Here, we go a step further trying to understand howρc
changes with the initial conditions and the connectiv-
ity of the graph in the different regimes of the phase
diagram.

The Figs. 3 and 4show the final value ofρc as a
function of the graph connectivity for different initial
probabilitiesp in regimes (I) and (III). In general, a
large connectivity enhances the cooperation in the first
regime and reduces it in the third one. An important
point is that in both curves forα greater than 5,ρc is
independent of the initial condition (Fig. 3). A situation
that holds also in the non-stationary regime-(II). This
result avoids the necessity to include perturbations or
other external factors to ensure the independence of
the initial conditions of the system and remarks the
importance of large connectivities to the emergence
and sustainability of the collaboration. A similar result

e

Fig. 4. Initial conditions dependence ofρc atT = 5/3, a character-
istic Tc in the third phase. Note again the convergence ofρc when
α ≥ 5.

was already remarked in a different context by Challet
and Du[21] comparing the performance of closed and
open source software projects.

To better understand the effects of the connectivity
on the game dynamics, let us definePs

θ (α) as the proba-
bility of an agent doingθ to has, att = 0,scooperative
neighbors in a graph with degreeα. As beforeθ = 1
reflects cooperation andθ = 0 reflects defection.

Based on combinatorial arguments we find that:

Ps
θ (α) =

(
α

s

)
ps(1 − p)α−s(pθ + (1 − p)(1 − θ))

(11)

and the following relations hold:

Ps
θ (α) > Ps

θ (α − 1) if s > αp (12)

Ps+1
θ (α) > Ps

θ (α)

Ps+1
θ (α) > Ps

θ (α − 1)

}
if s < αp − 1 (13)

Note that, independently ofp, the probability to have
s or more cooperative neighbors increases when the
connectivity grows.

Therefore, from Eqs.(12) and (13), a larger connec-
tivity implies an increase in the number of cooperators
linked to both kind of agents. This leads to a local payoff
increment that amplifies the domination of the winners
agents in each phase. This explains the behavior shown
in Figs. 3 and 4. In regime (I), as the cooperator’s clus-
t hen
ers can only grow, they are strongly enhanced w
Fig. 3. Initial conditions dependence ofρc in regime (I). From bottom
to topp varies from 0.2 to 0.9 in steps of 0.1,N = 10, 000. Note the
convergence ofρc whenα > 5 and the minimum reached by the on
dimensional chain.
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the connectivity of the graph increases. This is clearly
what is shown inFig. 3, where forα > 2ρc increases
continuously. On the contrary, in the regime (III) coop-
erators can hardly invade the defectors, who win practi-
cally all boundary interactions (see Eq.(10)). Then, an
increase in connectivity virtually exterminates all the
cooperators in the system. Regime (II) is more com-
plex, when the degree of the graph increases both kind
of agents are enhanced and also the fluctuations inρc
are larger.

4. Poisson random graphs

To study graphs with fluctuating connectivity, we
assign to each vertex of the graph a number of
links determined by a Poissonian distribution with
meanα:

P(αi) = ααi

αi!
exp (−α) (14)

For these graphs the local equilibrium conditions
satisfied by neighboring and opposite agents remains:

g
s1
1 = g

s0
0

with the only difference that now the degreesα0 andα1
of both sites may be different, a situation that must be
taken in consideration during the analysis of the phase
diagram.
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Fig. 5. ρc vs.T for different graph’s sizes:N = 100 (crosses), 1000
(white circles) and 10,000 (black symbols).

in Fig. 5, where we plotρc versusT for different values
of N andα = 6.

The most interesting feature in this kind of graphs
is thatρc is strongly enhanced with respect to the fixed
degree graphs (seeFig. 6). This in good agreement with
the results of[13] for square graphs with quenched dis-
order. However, here it does not reflect the topological
accidents of the graph, but its random structure. In fact,
from (12) and (13), we may conjecture that in Pois-
sonian Random graphs we will find highly connected
sites, that being already cooperators, att = 0, will be in
the long time limit, the core of a cooperator resistance
for large values of the temptation.

Fig. 6. Comparison betweenρc vs.T for fixed and fluctuating degree
α

Following the analysis done for the fixed d
ree case it is easy to realize that the follow

emptations characterize the equilibrium conditi
or the boundary between cooperating and defec
gents.

cn,m(αi) = αi − n

(αi − n) − m
(15)

hereαi = max{α0, α1}, andTcn,m(αi) is the critica
emptation for all sites with degreeαi.

The main difference here, comes from the la
umber of possible degrees that can be found in
ind of graphs. In fact, Eq.(15) is more general tha
4). Moreover, the larger the graph size, the larger
alues ofαi’s that may be found in the graph. Therefo
he number of jumps defined by(15)increases with th
raph size. In the thermodynamic limitN → ∞, an in-
nite number of jumps must be expected. This is sh
 = 6. Note that for the latestρc is always greater,N = 20, 000.
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Fig. 7. Initial condition dependence for fluctuating degree graph at
T = 1.01. Hereα is the mean degree andp change from 0.2 to 0.8.

Similar arguments explain why the system will stay
in a non-stationary state similar to regime (II) inde-
pendently on the parameters of the game. Regime (I)
is not present, because there is always a critical temp-
tation lower thanTc(αi) for any α > 2 and therefore
cooperators will never be absolute winners. Moreover,
cooperative agents placed at sites with the largest
degrees in their neighborhood may resist any growth
of the temptation and become seeds for the spreading
of cooperation avoiding the appearance of the regime
(III).

Finally,Fig. 7shows the initial condition and degree
dependence ofρc. It is interesting that, despite of the
absence of regime (I), the curve for low temptation is
very similar to that for the fixed degree graphs, againρc
becomes independent ofp for α ≥ 5 for small values
of T. Again, the explanation of the degree dependence
of ρc is similar to the one discussed for the fixed degree
graph and follows directly from Eq.(11). The increase
of the connectivity enhances the winner agents, there-
fore, for low temptations, the number of cooperating
agents increases, on the other hand, for larger values
of T the defectors dominate the game and prevent the
spreading of cooperators.

5. Conclusions

We present a study of the characteristics of the
s ith

synchronous evolution rules. For graphs with fixed de-
grees we were able to fully characterize the phase dia-
gram of the game showing the existence of three differ-
ent regimes depending on the temptation of the agents
and the connectivity of the graph but independent on the
initial conditions of the system. We also give analytical
arguments to explain the appearance of these regimes.
Furthermore, for these kind of graphs we show that
for connectivities larger thanα = 5, also the density
of cooperating agents,ρc, is independent of the initial
conditions revealing the importance of large connected
networks as a requirement for the emergence of stable
cooperation. We give arguments that demonstrate that
in the thermodynamic limit, for Poisson random graphs
the density of cooperating agents changes continuously
with the temptations of the agents. We also show that
only a non-stationary regime exists in these graphs, in-
dependently of the temptation, the degree of the graph
and the initial conditions. Finally we also showed that
in these graphs the cooperation is strongly enhanced in
comparison with the fixed degree graph. These results
support the importance of the randomness and the
connectivity in the appearance and sustainability of
cooperation.
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