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Abstract

We study an evolutionary version of the spatial prisoner’s dilemma game (SPD), where the agents are placed in arandom graph.
For graphs with fixed connectivity, we show that for low values efthe final density of cooperating agents depends on the
initial conditions. However, if the graphs have large connectivitiess independent of the initial conditions. We characterize
the phase diagram of the system, using both, extensive numerical simulations and analytical computations. It is shown that
two well defined behaviors are present: a Nash equilibrium, where the final density of cooperatingoagentmstant, and
a non-stationary region, whegg fluctuates in time. Moreover, we study the SPD in Poisson random graphs and find that the
phase diagram previously developed looses its meaning. In fact, only one regime may be defined. This regime is characterized
by a non stationary final state where the density of cooperating agents varies in time.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction individuals[2] a problem that was studied by Axelrod

[3] in the context of the Game theorf¢]. Game
The search for models able to account for the theory was originally developed to find the optimal

complex behavior in many biological, economical and strategy for a given game between two intelligent

social systems has lead to an intense research activityplayers. However, its straightforward development

in the last year§l]. In particular, a very debated issue involved the generalization toward the iterated games

is the emergence of cooperation between competitive of N players. In this context many theories have been
proposed to explain the emergence and sustainability

_— o of cooperation, kin selectiofb], reciprocal altruism
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player has two options: to defect, or to cooperate.
The defector will always have the highest reward
T (temptation to defect) when playing against the
cooperator which will receive the lowest paydi
(sucker value). If both cooperate they will receive a
payoff R (reward for cooperation), and if both defect
they will receive a payofP (punishment). Moreover,
these four payoffs satisfy the following inequalities:

T>R>P>S

1
T+ S <?2R @)

It is not too hard to recognize that for rational play-
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networks. Furthermore, Ebel and Bornholfit6]
studied the response of the system upon perturbations
finding different regimes for avalanche dynamics.

In this work, we try to extend previous results of
other author§l0,17]and to put them in a more general
framework. For a square grafit0,17], using periodic
boundary conditions and starting with half of the agents
as cooperators and the other half as defecjoes Q.5)
it was noticed that as a function of the temptation, the
spatial game has three qualitative different final states:
The first one, for low temptations & T < 4/3), is
characterized by a stationary or slightly periodipal
that becomes a global majority{ > 0.5). The second,

ers, in a two players-one round game the choice of for intermediate temptations (8 < T < 3/2), is char-

defection will assure the largest payoff for each player
independently of the other decision (Nash equilibrium)
[9]. This situation, however, creates a dilemma for in-
telligent players, they know that mutual cooperation re-
sults in a higher income for both of them. The question
then, is to find under which conditions the cooperation
emerges in this game.
Nowak and May{10] have shown how cooperation

acterized by a non stationapy(r) and spatiotemporal
chaos[10,17], and a third one, for high temptations
(3/2 < T < 2), is also characterized by a stationary or
slightly periodicaloc but that is now a global minority
(pc < 0.5).

To this end we decided to study the model in a ran-
dom graph[18]. The introduction of a random graph
may be interpreted as a first step to the characterization

can emerge between players with memoryless strate-of the disordered nature of the interactions in evolu-
gies in the presence of spatial structure (spatial pris- tionary systems.
oners dilemma, SPD). They considered a deterministic ~ We study two types of random graphs. The first one,
cellular automaton where agents are placed in a squareusually called the Bethe lattice, has all sites with a fixed
lattice with self, nearest and next-nearest interaction. and equal number of neighbarswhile the other one is
At each round of the game, the payoff of the player a Poisson random graph, in which the number of links
is the sum of the payoffs it got in its encounters with per site is Poissonian distributed with a mean value
its neighbors. The state of the next generation is de-  While, it has been recently argued that many real
fined occupying the site of the graph with the players networks are of scale free ty[pE9], we are convinced
having the highest score among the previous owner andthat the understanding of simpler graphs, like the one
the immediate neighbors. It was remarkable that within studied in this paper, whose structural properties are
these simple rules, for a certain range of values of the well characterizeld 8] will be of valuable help in the
pay-off matrix, very complex spatial patterns show -up future analysis of the more complex ones. This is spe-
with cooperators and defectors coexisting. cially relevantin the current state of the research, where
Since then, the game has been largely extendedthe microscopic properties of these scale free graphs
or modified to study more complex situations. For are not completely understood, and that are certainly
example, Szabo et al. studied the influence of the not universal at all. Moreover, despite of the recent
tit-for-tat strategy{11] and the effects of the external avalanche of results showing that many real graphs
constraint[12] in the game. Vainstein and Arenzon show power law dependences on their degree distri-
[13] approached the problem considering site-diluted bution, it is not unseeing to believe that many others
graphs to mimic the presence of disorder in the environ- (even real) graphs will follow the old Eés-Renyi dis-
ment and proved that, depending on the amount of dis- tribution.
order, cooperation can be enhanced. Moreover, Abram-  In this paper, we show that for graphs with fixed
son and Kupermafil4] and Kim et al. collaborators  degree the final density of cooperating agents) (
[15] studied the consequences of different topologies develops multiple jumps as a function of the temptation
and proved that defectors are enhanced in small-world (T) of the agents, and depending of the degree these
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jumps may lead also to a region of the phase spaceas the number of generations between the current one
where the density of cooperating agenis,fluctuates and the first. The process is repeated, erasing the later
in time. These jumps are very well characterized and payoffs, until the system stabilizes.
we show that they can be predicted by the study of In this way our model reproduces a synchronous
the interaction between clusters of cooperating and deterministic interaction between memoryless agents.
defecting agents. However, for Poisson random graphs The only source of randomness comes from the graph
the situation is more complex, the number of jumps structure and the initial conditions but, as it is shown
become infinite in the thermodynamic limit, and we do below, this is enough to produce a complex behavior.
not find a stationary state of cooperating agents. How- Therefore, the only remaining relevant variables of our
ever, in these graphs cooperation is strongly enhanced.problem are the temptatiohof the agents and the de-
The remaining of the paper is organized as follows. greea of the graph.
In the next section we present the model with all its For asynchronous interactions, taking place in
details. Then, the numerical results for the graphs biological systems where the evolution is continuous,
with fixed connectivity are presented, together with a the cooperation usually does not emerge in such
comparison of the analytical predictions for the phase simple model$20] and most be impose by an external
diagram. In the next section we present the results for entity [11] or by devising more complicated evolution
Poisson random graphs and finally the conclusions arerules. However, the synchronous evolution rules

outlined. devised before are relevant for real world problems in
which delays in the transmission of the information
between the agents are impor{20], for example,

2. Model financial markets, and voting problems. It is in this

The model is defined by placing two kind of agents,
cooperators@) or defectors D), in a random graph,
with fixed or fluctuating connectivities (as mentioned

above) and considering that the connected pairs

interact through the payoff matrixxéble 1), whereC
stands for cooperator amifor defector and where the
temptationT satisfies 1< T < 2 which is consistent
with Eq. (1)[11].

The agents will interact simultaneously and inde-
pendently from each other and the agent payoff will
be the sum of the payoffs that it wins in its interaction
with all its neighbors.

The evolution of the system proceeds as follows:

first, each site is occupied by a cooperaid) yith a
probabilityp, or by a defector) with a probability 1—

p. Then, the agents interact following the payoff matrix
1, and in the next time step, in every sitef the graph
we will place the agent with the higher payoff between
the neighbors afandi itself. The timetis then defined

Table 1
Nowak’s payoff matrix for one player

D C
D 0 T
C 0 1

D: defector andC: cooperator.

context that our study intends to be relevant. We
will show, in this scenario, that the random spatial
structure of the graph, alone, leads to very complex
patterns.

Some variables will be useful in the discussions
below, so we will introduce them here. The stale (
or C) of sitei will be characterized by a variabt®
that takes the value 1 if the agent is a cooperator and O
otherwise. In this way, the state of a system Witsites
at timet is fully characterized by the set of variables
(61, 02, ..., 0x). We defined alse; as the number of
cooperative neighbors of the agent located at thd site
(by definitions; < «), andg‘;j as the total payoff of the
agent placed at siehavings; cooperating neighbors.

A simple analysis of the payoff matrix shows that
the agent’s payoff will be different from zero only when
it plays with at least one cooperator. Thus, the agent’s
payoff depends on the number of its cooperative neigh-
bors. Besides, the agent’s payoff also depends on the
type of agent, if it is a cooperator, it wins 1, otherwise it
wins T for every interaction with a cooperative neigh-
bor. Therefore:
gy = (T — (T — 1)6)si 2

Note that for a cooperative agegit = s, while for
a defector ongy = Ts as pointed out before.
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Fig. 1. Phase diagram for the PD game in a fixed degree case. The Fig. 2. pc vs. T for random graphs with a fixed degree= 5, N =
dashed lines (analytic) and the symbols (simulations) represent the 10, 000. (I-I1l) Characterize the zones of the phase diagramFsge
points wherepc changes its value. The shadow characterize three 1).’"1 the zone (Il)pc is the mean value gfe(r) and the bars on the
different regimes: (I) high values @£, (II) non-stationary values of lines reflects the fluctuations pf in this zone.

pc and (1) low values ofpc.

Note thatfor apure PD’'s game & 1) and for aone-

3. Fixed degree graphs dimensional chain( = 2) there are notjumps. Far>
2 one can define more than one regime, and within each
3.1. Phase diagram regime one can observe many jumps. To be illustrative

about this point, th&ig. 2shows the variation gf; as

In Fig. 1itis shown the phase diagram of the model a function of the temptatiof for « = 5.
obtained from the simulations (black symbols) and From now on, and unless specified otherwise, all the
from analytical computations (dashed lines to be dis- simulations presented result from the average over at
cussed below) when the agents are initially distributed least 50 graphs each one initialized once.
with probability 0< p < 1 in the graph. The black For o =5 (Fig. 2 the system is characterized by
symbols represent critical temptation&:), i.e. the three different regimes and by four jumps gg, two
temptations values at which; jumps for each con-  of them are associated to the phase transitions (I-II) at
nectivity . Note the perfect coincidence between the T =5/4 and (lI-1ll) atT = 3/2, while the other two
points and the predictions, and also the fact that the (T = 4/3 andT = 5/3) are just jumps opc within the
phase diagram does notdepenggaorovided of course  regimes, see agaffig. 1to locate these points.
that it is different from 0 and 1. It is not hard to realize that all the dynamics of the

In this figure the full lines define three different model is enclosed in the competition between cooper-
regimes. Thefirstone (1) is characterized by a stationary ators and defectors. Because of their small payoffs, the
oc, the highest for these degreedut not necessarily  cooperators, to survive, must be organized in clusters
the global majority, as expected for the two dimen- therefore, we may imagine the system as a set of coop-
sional square lattice. A second (Il) is characterized by erating clusters embedded in a sea of defectors. If the
non-stationary states. These states do not necessarilypoundary of the cooperator’s cluster is strong enough
emerge with probability 1. It means that for a given it will grow, otherwise, the cluster keeps its size or be-
a and a giverT in this zone, it will depend on the ini-  comes smaller.
tial distribution of the cooperators, and on the particular It is important to point out that in this model only
graph whether this phase is observed or not. And a third phases with cooperators and defectors coexisting may
(1) regime that appears for high values Bfis char- appeatr. In fact, the defective population may invade the
acterized by a stationapy. that is the global minority ~ whole graph f. = 0) if the lowest possible payoff for
(pc < 0.5). a boundary defect(yé, i.e a defector interacting with
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only one cooperator, is larger than the highest possible  Going deeper in this kind of analysis we may see
payoff of a cooperatogg. From Eq.(2) this may hap- that the strongest cooperators hold:

penifT > «, but by definitionT < 2, thereforep; > 0

for all « > 2. Moreover, a whole invasion of the graph si>g " @<s<q (7

by cooperating agents is impossible because one de-which means that the defectors can not invade the clus-
fector surrounded by cooperators will have the hlghest ters of CooperatorS, or vice versa a Cooperator sur-

possible payofg and is indestructiblege < 1. rounded bys cooperators will invade all the defectors
~ For a graph with fixed connectivity it is interest- neighbors with less thascooperators around them. In
ing to see what happens when the temptafi@fthe  other words, while E(7) holds the clusters of cooper-

agents increases. Obviously7if= 1 the systems does  ators grow inside the sea of defectors (excepifer 2,
not evolve in time, It keeps its initial distribution of co- when the winner cooperator does not have any defec-
operators and defectors. Increasing the temptation, wetor to invade). At some point the defectors are isolated

may ask ourselves, at which valueTfpc is goingto  and become indestructible, stopping the propagation of
change . It is evident that either most of the clusters cooperators.

of cooperators become weak at their boundaries, such  Then, following(2), the set of inequalitie7) are

that they get invaded by the defectors, or they become gatisfied for the temptations:

strong enough to occupy part of the sea of defectors.

Then, the condition of equilibrium that most be satisfied T < (8)

by all the agents in the boundary between cooperators o—1

clusters and defectors is the following: that correspond to the first jump at the lowé&s(x),
from Eq. (5). Below this line, appears what we call

g =gy 3) regime (1), therep. evolves toward a stationary state
where it reaches, depending on the initial conditions,

wheres; andsg stand for the number of cooperative its highest possible value.

neighbors of the cooperator and the defector respec- On the other hand, for the temptation range:

tively. But from Eq.(2) g;* = 51 andgy = Tso. Then,

- <T<?2 (9)
s1 2
Ic=— (4) . T . e .o
50 the opposite condition is satisfied, i.e:
and since we are interested in the region 1, the Eq. g5 <& <g5 © (3<s<a) (10)

(4) implies thats; > sg. Therefore, we may substitute

S1=a—nandso=a—n —min Eq.(4)to get: independently on the initial conditions and the degree

of the graph. Now, the spreading of cooperators over
a—n defective sites is strongly reduced and defectors dom-
Ie, () = m (5) inate the system. The conditigf0) implies again a
stationary final state. But, due to the greatest domina-
where obviously: < « and sincel’ < 2, m must also tion of defectorsp. reaches its lowest possible value

satisfy: for the given initial conditions (regime (lII)).
In the intermediate range appears what we call
. (e—n)—1 regime (l1). In this regime the stability conditior(g)
l=m=int 2 ®6) and (10)with an absolute winner do not hold anymore
and dynamics instabilities appear in the interior of the
In this way, assigning appropriate valuesi@ndm graph. Depending on the temptatidn poundary sites
to the Eq.(5) we characterize all the jumps pf for a are intermittently occupied by defectors or coopera-

givena as a function off . This is what is represented  tors, or alternatively lines of defectors travel across the
in Fig. 1 by dashed lines. Of course, the lines are just cluster of cooperators.

guided to the eyes, and fixed valuescofhould be Moreover, note that in the phase diagram the regime
understood when analyzing E&.). (111 is not only limited to values ofT larger than 3/2.
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For « = 4 the regime (Il) is not present, a surprising
result considering that it is present in the square graph.
Unfortunately we were not able to analytically justify
this, but, we are tempted to conjecture that this is a
consequence of the absence of spatial correlations in
the Bethe graph.

3.2. Degree and initial conditions dependence

In the previous subsection we presented numeri-
cal simulation and arguments that justify the indepen-
dence of the phase diagram from the initial conditions.
Here, we go a step further trying to understand hgw
changes with the initial conditions and the connectiv-
ity of the graph in the different regimes of the phase
diagram.

The Figs. 3 and 4show the final value op; as a
function of the graph connectivity for different initial
probabilitiesp in regimes (1) and (lll). In general, a
large connectivity enhances the cooperation in the first
regime and reduces it in the third one. An important
point is that in both curves far greater than 5y is
independent of the initial conditiofr{g. 3). A situation
that holds also in the non-stationary regime-(ll). This
result avoids the necessity to include perturbations or
other external factors to ensure the independence of
the initial conditions of the system and remarks the
importance of large connectivities to the emergence
and sustainability of the collaboration. A similar result

10

Fig. 3. Initial conditions dependenceafin regime (I). From bottom
to topp varies from 0.2 to 0.9 in steps of 0.4, = 10, 000. Note the
convergence gfc whena > 5 and the minimum reached by the one
dimensional chain.
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Fig. 4. Initial conditions dependence af at T = 5/3, a character-
istic T¢ in the third phase. Note again the convergencecofvhen
o> 5.

was already remarked in a different context by Challet
and Du[21] comparing the performance of closed and
open source software projects.

To better understand the effects of the connectivity
on the game dynamics, let us defiR{«) as the proba-
bility of an agent doing to has, at = 0, scooperative
neighbors in a graph with degree As befored = 1
reflects cooperation artd= 0 reflects defection.

Based on combinatorial arguments we find that:

Pile) = (“) PPy (po+ (A= p)(L-0))

11)
and the following relations hold:
Pi(e) > Pyl —1) ifs>ap (12)
Ps-i—l P
?H(a) > Fy(e) ifs <ap—1 (13)
Py (o) > Pj(a—1)

Note that, independently pf the probability to have
s or more cooperative neighbors increases when the
connectivity grows.

Therefore, from Eqg12) and (13)a larger connec-
tivity implies an increase in the number of cooperators
linked to both kind of agents. Thisleads to alocal payoff
increment that amplifies the domination of the winners
agents in each phase. This explains the behavior shown
in Figs. 3 and 4In regime (1), as the cooperator’s clus-
ters can only grow, they are strongly enhanced when
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the connectivity of the graph increases. This is clearly
what is shown irFig. 3 where fora > 2p; increases
continuously. On the contrary, in the regime (l11) coop-
erators can hardly invade the defectors, who win practi-
cally all boundary interactions (see E@0)). Then, an
increase in connectivity virtually exterminates all the
cooperators in the system. Regime (Il) is more com-
plex, when the degree of the graph increases both kind
of agents are enhanced and also the fluctuatiopsg in
are larger.

4. Poisson random graphs

To study graphs with fluctuating connectivity, we
assign to each vertex of the graph a number of
links determined by a Poissonian distribution with
meanc:

aO[

: exp (—a) (14)

Oli!

P(o;) =

For these graphs the local equilibrium conditions
satisfied by neighboring and opposite agents remains:

51 K}
81 = 8o

with the only difference that now the degreesando;

of both sites may be different, a situation that must be
taken in consideration during the analysis of the phase
diagram.

Following the analysis done for the fixed de-
gree case it is easy to realize that the following
temptations characterize the equilibrium conditions
for the boundary between cooperating and defecting
agents.

o —n

T, . (i) = (15)

(¢j —n) —m
wherea; = maXao, a1}, andTg, ,, («;) is the critical
temptation for all sites with degres.

The main difference here, comes from the large
number of possible degrees that can be found in this
kind of graphs. In fact, Eq(15) is more general than
(4). Moreover, the larger the graph size, the larger the
values ofy;'s that may be found in the graph. Therefore,
the number of jumps defined I§45)increases with the
graph size. In the thermodynamic lim\t — oo, anin-
finite number of jumps must be expected. Thisis shown
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Fig. 5. pc vs. T for different graph’s sizesv = 100 (crosses), 1000
(white circles) and 10,000 (black symbols).

in Fig. 5 where we plop. versusT for different values
of Nanda = 6.

The most interesting feature in this kind of graphs
is thatpc is strongly enhanced with respect to the fixed
degree graphs (s€&dg. 6). Thisin good agreement with
the results of13] for square graphs with quenched dis-
order. However, here it does not reflect the topological
accidents of the graph, but its random structure. In fact,
from (12) and (13) we may conjecture that in Pois-
sonian Random graphs we will find highly connected
sites, that being already cooperators,=at0, will be in
the long time limit, the core of a cooperator resistance
for large values of the temptation.

1.4 1.6 1.8

T

Fig. 6. Comparison betweegn vs.T for fixed and fluctuating degree
o = 6. Note that for the latest. is always greatery = 20, 000.
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1 ; ; - ; ; ; : synchronous evolution rules. For graphs with fixed de-
il grees we were able to fully characterize the phase dia-
T=101 - gram of the game showing the existence of three differ-
ent regimes depending on the temptation of the agents
and the connectivity of the graph butindependent on the
initial conditions of the system. We also give analytical
arguments to explain the appearance of these regimes.
Furthermore, for these kind of graphs we show that
for connectivities larger thaa = 5, also the density
of cooperating agentg,, is independent of the initial
conditions revealing the importance of large connected
x 3 4 s § 7 8 9 networks as a requirement for the emergence of stable
o cooperation. We give arguments that demonstrate that
in the thermodynamic limit, for Poisson random graphs
the density of cooperating agents changes continuously
with the temptations of the agents. We also show that
only a non-stationary regime exists in these graphs, in-
dependently of the temptation, the degree of the graph
Similar arguments explain why the system will stay and the initial conditions. Finally we also showed that
in a non-stationary state similar to regime (ll) inde- in these graphs the cooperation is strongly enhanced in
pendently on the parameters of the game. Regime (I) comparison with the fixed degree graph. These results
is not present, because there is always a critical temp-sypport the importance of the randomness and the

tation lower thanT¢(e;) for any @ > 2 and therefore  connectivity in the appearance and sustainability of

cooperators will never be absolute winners. Moreover, cooperation.

cooperative agents placed at sites with the largest

degrees in their neighborhood may resist any growth

of the temptation and become seeds for the spreadingAcknowlegement
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