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Disordered environments in spatial games
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The Prisoner’s dilemma is the main game theoretical framework in which the onset and maintainance of
cooperation in biological populations is studied. In the spatial version of the model, we study the robustness of
cooperation in heterogeneous ecosystems in spatial evolutionary games by considering site diluted lattices. The
main result is that, due to disorder, the fraction of cooperators in the population is enhanced. Moreover, the
system presents a dynamical transitiorp@at separating a region with spatial chaos from one with localized,
stable groups of cooperators.
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I. INTRODUCTION random mating, infinite population of asexuahploid ele-
ments, where two pure strategies are presembperatorC
Game theoretical methods have been applied, in a quitand defector®), it can be shown that defecting will be the
successful way, to several different fields2], biology be-  most rewarding strategian ESS. If instead of only inter-
ing one of the most successful branch@s6]. In these evo-  acting once or a known finite number of times, the players
lutionary games, rewards are translated in terms of subsérave a probabilityy>0 of meeting again in the next round
quent reproductive success, a more natural and clear scad@d remember the chosen strategies in previous encounters,
than the rationality dependent ones used in, for examplenore complex rules may be devisgt]. For instance, in a
economy. Of particular interest is the emergence and sustaifgound robin tournament, Axelrofil] found that tit-for-tat
ability of cooperation, which has attracted a lot of attention(TFT) (starts cooperating and, after that, do what the oppo-
as it poses a difficult problem from an evolutionary point of nent did in the previous stggvas the most successful strat-
view since cooperators, by their nature, have their fitnesggy, but other successful strategies were also fola].
decreased while interacting with defectors. Theories adNevertheless, TFT cannot invade a population of defectors
vanced to explain the evolution of cooperation usually conhefore reaching a minimum population, which can be
sider either kin selectiof5], reciprocal altruism(7,8], or  achieved in several way$,23,24.
group selectiorf9-13], the separation between them not al-  Following a suggestion of Axelrofil], Nowak and co-
ways being clear. Group foraging and young raisidg],  workers[25—27 showed how cooperation can arise even
alarm calls[15,16], bacteria-infecting virusefl7], predator  with only pure, memoryless strategies, such as “always co-
inspection by fisj18], bird female-female cooperati¢@9],  operate” or “always defect” in the presence of spatial struc-
and cleaner fish20], are but a few examples of such acts inture. They considered a deterministic cellular automaton
biological populations, ranging from simple to complex or- consisting of a square lattice with near and next nearest
ganisms. A number of other examples may be found in Refneighbor interactions and self-interaction. Since the agents
(6]. are spatially localized, they are more likely to interact only
The Prisoner’s dilemma game is generally studied as awith their nearest neighbors, differently from the standard,
archetypical model for reciprocal altruism. Each of the twomean-field-like approach, that considers an infinite, random
players either cooperat¢€) or defects D), without knowl-  mixing population. The reasons for this are manifold: indi-
edge of the opponent’s strategy. The result depends on théduals usually occupy well-defined territorial regions, indi-
mutual choice, and is given by the payoff matrix whose elewviduals do not move far from their places of birthopula-
ments are a rewar® (punishment®) if both cooperatdde-  tion viscosity[5]), interactions occur in places where animals
fect), S (sucker's payoff, and T (temptation if one cooper- usually meet such as water ponds, etc. After combat, each
ates and the other defects, respectively. Moreover, thesslayer compares its total payoff with the ones of its neigh-
quantities should satisfy the inequaliti#@§s>R>P>S and  bors and changes strategy, following the strategy with the
2R>T+S. It is clear that, independent of the opponent'sgreatest payoff. For a certain range of values of the payoff
choice, defecting is always the best bet. Thus two basic evanatrix, very complex spatial patterns show up with coopera-
lutionary problems ar¢i) the onset of cooperation, that is, tors and defectors coexistingpatial chaos In these struc-
under which conditions a given cooperative behavior cartured populations, cooperative strategies can build clusters in
invade a population of defectors and, once establisfiedts ~ which the benefits of mutual cooperation can outweigh
stability, that is, under which conditions the population of losses against defectors, maintaining the population of coop-
cooperators is uninvadable. In other words, we are lookingrators to be stable. Irrespective of the initial state that may
for evolutionary stable strategiekESS’9 [3,4,21] where  be chosen with either only one initial defector or a fraction of
there is stable mutual cooperation between individuals. In @andomly distributed defectors, the asymptotic density de-
pends only on the payoff matrix parameters. The actual val-
ues depend on the neighborhood chosen for the dynamics,
*Email address: arenzon@if.ufrgs.br and on whether self-interactions are included or[i2&t26.

1063-651X/2001/6¢46)/05190%6)/$20.00 64 051905-1 ©2001 The American Physical Society



MENDELI H. VAINSTEIN AND JEFERSON J. ARENZON PHYSICAL REVIEW B4 051905

This cooperation enhancement effect due to the spatial struan unchangeable strategy from a €etand, following Ref.
ture is also seen in other games. For instance, in the spatif25], we only consider the simplest case of pure strateGies
version of the Hawk-Dove gami6,28,29, the density of andD, represented by the variab®&= =1, respectively. In
doves(analogous to cooperative individugplis increased by each step(generatiol, the ith individual (n;#0) combats
the spatial structure, although in this game polymorphisnwith all other elements inside a given neighborhdgd and
would exist even in the absence of spatial effects. In a similaaccumulates a payoff; , depending on the chosen strategies,
way, several strategies are more successful in a spatialyccording to the reduced payoff table for the Prisoner’'s game
structured population than otherwig&0,31]. [25]: R=1, P=S=0, andT=b>1, reducing the problem to
In real populations, however, not all individuals interactonly one parametetbesides the densityFor the case con-
the same number of times, either due to the nonsynchronousdered here, where the neighborhdgds restricted to near-
character of the interaction or to the environmental structurest neighbors of site and no self-interactions are included,
that prevents some of the contacts. Both spatial and temporgbth C andD coexist in the region 48 b<3/2 in which also
aspects of the environment affect the interactions betweethe number of active site&ee below is large. For Kb
individuals, being central issues in ecological and evolution-<4/3 cooperators dominate while for>3/2, defectors are
ary theory. Thus a natural question arises: how is cooperajominant. The player’s payoff is a measure of its reproduc-
tion affected by this inherent inhomogeneity? In other wordstjve success: when reproducing, ttie element compares its
how robust is cooperation in the presence of disorder? In thigyn payoff with allj € V, and changes to the strategy of the
paper we apply a simple approach to this question by consite that has the greatest payoff{i} U V. In this way, the
sidering a regular lattice where some sites are empty. Diluglobal density is kept fixed since no empty site will be ever
tion can be either quenchéfixed) or annealedevolving). In filled.
the latter case, individuals may diffuse in the lattice, which Tg characterize the macroscopic behavior of the system

will be considered in detail in a future work. QuenChed Va-we introduce two order parameters. Lﬂt) represent the
canciegor defecty may account for the presence of environ- fraction of cooperators at a given time,

mental featurege.g., geographicalin the game, causing
some individuals to have fewer neighbors than others. De- 1 N

viations from the ordered lattice can also be achieved in sev- pe)= 5y > (S+1)n;, 1)
eral other ways, for instance, by allowing that some of the =1

individuals also interact with distant ones, in a small-world
network fashion[32,33. In Refs.[27,34], a diluted lattice
was used with individuals interacting inside a region of ra-
diusr, and a persistent polymorphism 6fs andD’s was
found, unless was made too large, reaching the long rang

whereN=LY is the total number of sites. Clearlyq(t), the
defectors’ density, ipqy(t) =p—p.(t), wherep is the total
density. Since we are interested in the long time regime, and
the results depend on the choice of the frozen empty sites,

o : X ! . e define the order parameter as the average over time

connectivity associated with mean field behavior, where the L ==
defector population dominates. Nevertheless, their treatment - *?) @nd over the realizations of the disorde () of the
was quite brief and several interesting dynamical behaviorgsymptotic cooperators densigy,=(p.(«)) for large N.
passed unnoticed, as well as the important issue of wheth&ometimes it is more useful to have the relative cooperators’
or not disorder enhances the fraction of cooperators in théensity p./p. Thus p,=0 means that the population was
population. fully invaded by defectors, ang.= p that it was invaded by

Here we show that, depending on the amount of disordeigooperators. An intermediate casep.<p, in which both
cooperation can be enhanced, there being a point where Sfrategies coexist, is also possible. Moreover, it is interesting
dynamical transition settles in, separating the region witito know the fraction of active sites, that is, the fraction of
spatial chaos from the one with localized groups of cooperaelements that change strategy in time:
tors. The paper is organized as follows. In Sec. Il, a diluted

N
version of the spatial Prisoner's game is presented and the B i1
order parameters are defined. In Sec. Il the main results are pa(t)= 2N ;1 (1-SS n;. )
presented. Finally, in Sec. IV, we present conclusions and
comments.

This defines our second order parametge(p,()). Thus
pa=0 means that all sites are frozen, gng=p means that
Il. MODEL all elements are changing strategy.

We consider the spatial version of the Prisoner’s dilemma
[1,25-27,30,34—37 placing the interacting elements in the
vertices of ad-dimensional array, usually a hypercube, with  In Fig. 1, the asymptotic cooperator density/p is plot-
periodic boundary conditions. The results presented here ated against the total occupation of the lattipe If the occu-
for d=2. Differently from the original case, we allow that pation fraction is near zero, almost all sites are isolated and
some of the sites may be empty. To describe the occupatioo not change strategy since there is no combat at all; the
of the i site (1I<i<N=LY whereL is the system linear asymptotic density is the same as the initial opg= p.(0)
dimension we taken; to be either 1, if the site is occupied, =p/2. Indeed, for smalp, the curves for different values of
or 0 otherwise. In every generation, each individual assumels merge. As the density increases, the probability of occur-

IIl. RESULTS
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FIG. 1. Asymptotic fraction of cooperatops /p as a function of FIG. 2. The asymptotic fraction of cooperators for several dif-

the lattice occupatiop for several values db. The initial state has  ferent initial densities of cooperatoris:=100 ando=1.4.
pl2 cooperators, the lattice sizelis=100, and averages are taken

over 100 samples extremely slow, power law like, reminiscent of disordered

systems.

In the active region, for different initial concentrations of
ring pairs of occupied sites increases and, irrespective of th@ooperators, it can be seen that almost upptn the
value ofb, all CD pairs will becomeDD, which can be seen asymptotic density depends on the initial state, as shown in
as a decreasing curve pf from the origin. Aroundo=0.3,  Fig. 2. For smallp, since the clusters are independent, obvi-
as the number of interacting individuals increases due to ineusly the higher the initial fraction of cooperators the higher
creasing cluster sizes, the dynamics will define the fate op. will be. Note that the optimum density for cooperation is
each cluster and the curves for different valuesboWill a function of the initial density of cooperators: for initial
depart: the higheb is, the better for defectors and the lower concentrations below the height of the peakpat p.(0)
the corresponding cooperator curve. Still further, when clus=0.54, p* is the ideal total concentration for cooperators,
ters of cooperators have a reasonable probability to formwhile above the smallgs is the better. Slightly below* all
their density starts to increase reobtaining the Novak-Mayurves merge because the cluster boundaries are no longer
results as the total density approaches (186 The most completely pinned, and the memory of the initial state is
interesting case occurs i is in the active region, 48b  washed out.
<3/2, where the behavior is not monotonic and a sharp de- Although both cooperators and active site densities are
crease inp. appears neap* =0.95. At the same point, the useful parameters to describe the system asymptotic behav-
fraction of active sites presents a sharp increase, as can @, they are not sufficient to understand the complex dy-
seen in the inset of Fig. 1. Note that for the other regions, th@amical behavior that arises in the presence of disorder. To
behavior is almost uniform, with a very small number of clarify what is going on at the transition point, we also mea-
active sites. Interestingly enough, depending on the region cfured the persistence, the fractie(t,t,,) of sites that do not
b, the optimum density that maximizes the fraction of coop-change strategy between an initial waiting tilgg and the
erators occurs at different values: for<4/3, the more indi- timet>t,, [39—42, as can be seen in Figs. 3 and 4. Different
viduals the better, and their maximum occurgatl; above from the fraction of active sites, the persistence is a very
b=3/2, on the other hand, the less occupied the network theomplex measure that depends on the whole time history of
better, due to the exploitation by defectors; the maximunthe system sincg, . For example, if the persistence does not
occurs in the limitpo—0. In these cases cooperators and de-go to zero, we know that there is a fraction of sites that flip
fectors, respectively, are at an advantage when interacting. lonly finitely many timeg43,44] (blocking), and domain wall
the intermediate, active region, the behavior is nontrivialmovements are constrain€uinning). That is precisely what
and the maximum occurs at the transition pgifit Remark-  happens folp<p*, as shown in Fig. 3: after an initial de-
ably, this point is much higher than the site percolation trancrease, the persistence attains, for large times, a plateau
sition, which for a square lattice is located @f.,=0.59  whose value depends both pnandt,,. Denoting this pla-
[38]: although there is a connected, infinite cluster, regionseau byP(«,t,,), we note that it goes to zero gt , as shown
of active sites are bounddginned to small regions due to in the inset of Fig. 3 fot,,=0, signaling a depinning transi-
the presence of defects, as will be shown below. Below theion. In the critical region, the behavior is power law-like
transition, the approach to equilibrium is exponentially fast,P(,0)~ (p* —p)?2 It is important to note that the contri-
pc(°) — pc(t) ~exp(—t/7), 7 diverging as one approaches the bution from isolated sites to the plateau is small, and most of
point p*. This is because most of the interactions occur in-the sites forming the plateau come from the infinite cluster.
side localized groups. Also, if the lattice is completely filled, At p* and above, the interfaces are no longer constrained;
the approach is fast. On the other hand, just above the criticshe number of active sites suffer a sudden increase and all
value, the presence of defects, and the fact that only some gftes eventually change strategy. It was shown for several
the groups are depinned, makes the approach to equilibriummodels[44,45 that in the presence of disordésut also in
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% : shown in Fig. 4. Forp=1, the behavior is exponential, as
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t (MCS) =0.99), that as we dilute the lattice, only the initial behavior

FIG. 4. Persistenc®(t,0) for L =200 (empty sites and 500 is exponential. After this initial exponential deqrease, whose
(filled ones, b=1.4, and several total densitips>p* as a function length decreases @59‘;‘8;"‘”3 from 1, the behaVIor*foIIows a
of time (measured in Monte Carlo stepDifferent from thep power law P(t,0)~t" %", and as we approach from
<p* case, here the persistence goes to Z&aking into account above, the plateau starts to develop. The expoé¢p) is
only sites in the infinite clusterFor p=1 it vanishes exponentially the persistence exponent and has nontrivial values depending
(see the semilog plot in the ingewvhile near this point an inital 0N the total density. For exampleg(0.98)=3.6 and
exponential decay can be seen. Below 1, the longtime behavior 6(0.99)=5.7.
follows a power law, unless we are too closepta where a cross- Below the critical value, groups of cooperators are local-
over behavior to the plateaus is noticed. ized and their borders cannot move because of the presence
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of the defects. We say that the groups are pinned by theeflected by the small number of active sites and the pinning
environment. This explains why the fraction of cooperatorsof the interfaces. It must be noted that even without disorder,
is larger in this regime. As the number of defects decreasesye are not dealing with a system presenting coarsening as
the groups start to become depinned; the interfaces staitie movement of the interfaces is not ruled by surface ten-
moving and interference effects between the groups appesasion as, e.g., in the Ising model.

explaining the sudden increase in the number of active sites. Besides presenting a dynamical transition in the presence
From the persistence data, we can see that below the criticaf disorder, dilution can enhance the fraction of cooperators
value, there is a constant fraction of sites in the infinite clusin the population. Indeed, in the region 4/8<<3/2, the rela-

ter that never changes strategy, meaning that the clusters aiee density of cooperators in the population can reach a
localized. As we approach the depinning transition, some ofalue almost 40% higher than in the undiluted case, the
the groups are depinned and the persistence decreases. Sineaximum occurring at the transition point.

some of the groups are still pinned, we observe a constant Some questions, however, are still open. For example, if
plateau that decreases @approacheg* . Note that below the condition of strong population viscosity is relaxed, dis-
the transition, the number of active sites is not zero, bubrder is no longer quenched, and diffusion is allowed, what

small, due to blinking sites. happens to the cooperator groups? Obviously, the results de-
pend on the chosen rule for the diffusing elements, and there
IV. CONCLUSIONS are several biologically motivated rules. Work is in progress

] ) ] in this direction. Moreover, from the point of view of the

One of the main features of the Prisoner's dilemma, resydy of persistence, it would be interesting to study the be-
sponsible for its widespread use in the problem of cooperanayior of P(t,t,) above p*, for 1<t,<t (instead oft,,
tion, is its robustness. Here we have shown that the system i§0)' as well as to compare the results presented here with
able to sustain cooperation even under the presence of latti¢ge site diluted Ising model.
disorder, which was already suggested in R&f/]. How-
ever, what had been unnoticed was the dynamical transition
as a function of the amount of quenched disorder as well as
the fact that the disorder may enhance cooperation. Dilution We are grateful to H. ChatéN. Lemke, and L. Peliti for
changes the scenario presented by Nowak and M&}for  discussions and suggestions, and Y. Levin for a critical read-
the filled lattice in a dramatic way. The spatial chaos is abing of the manuscript. Work was partially supported by
sent when the disorder is above a given amount, which i€NPq and PROPESQ-UFRGS.

ACKNOWLEDGMENTS

[1] R. Axelrod, The Evolution of CooperatiofBasicBooks, New [17] P. E. Turner and L. Chao, Natufeondon 398 441 (1999.

York, 1984. [18] M. Milinski, Nature (London 325, 433(1987).
[2] R. Duncan Luce and H. Raiff§Games and Decision®over, [19] D. Heg and R. van Treuren, Natur¢ondon 391 687
New York, 1985. (1998.
[3] J. Maynard SmithEvolution and the Theory of Gamégam-  [20] A. S. Grutter, NaturéLondon 398 672(1999.
bridge University Press, Cambridge, UK, 1982 [21] J. Hofbauer and K. Sigmundvolutionary Games and Popu-
[4] 3. M. Weibull, Evolutionary Game TheorfMIT Press, Cam- lation Dynamics (Cambridge University Press, Cambridge,
bridge, MA, 1995. 1998. .
[5] W. D. Hamilton, J. Theor. Biol7, 1 (1964 [22] M. Nowak and K. Sigmund, NaturgLondon 364 56
e L ' ' ' (1993.

[6] Game Theory and Animal Behavj@dited by L. A. Dugatkin
and H. ReevdOxford University Press, New York, 1988
[7] R. L. Trivers, Q. Rev. Biol46, 35 (1971).

[23] R. Ferrige and R. E. Michod, Am. Natl47, 692 (1996.
[24] M. Doebeli, A. Blarer, and M. Ackermann, Proc. Natl. Acad.
Sci. U.S.A.94, 5167(1997).

[8] R. Axelrod and W. D. Hamilton, Scienc®1, 1390(1981.  55) \ A, Nowak and R. M. May, Naturé_ondon) 246, 15 (1992
[9] G. .C. Wllllams,Adaptatlon and Natural SelectiofiPrinceton [26] M. A. Nowak and R. M. May, Int. J. Bifurcation Chaos Appl.
University Press, NJ, 1966 Sci. Eng.3, 35(1993.
[10] D. S. Wilson,The Natural Selection of Populations and Com- [27] M. A, Nowak, S. Bonhoeffer, and R. M. May, Proc. Natl.
munities(Benjamin/Cummings, Menlo Park, CA, 1980 Acad. Sci. U.S.A91, 4877(1994.
[11] R. Donato, J. Phys. 6, 445(1996. [28] T. Killingback and M. Doebeli, Proc. R. Soc. London, Ser. B
[12] R. Donato, L. Peliti, and M. Serva, Theor. Biostilg, 309 263 1135(1996.
(1999. [29] T. Killingback and M. Doebeli, J. Theor. Biol191, 335
[13] A. T. C. Silva and J. F. Fontanari, Eur. Phys. J.7B385 (1998.
(1999. [30] K. Lindgren and M. G. Nordahl, Physica b, 292 (1994).
[14] R. Heinsohn and C. Packer, Scierz9, 1260(1995. [31] K. Brauchli, T. Killingback, and M. Doebeli, J. Theor. Biol.
[15] J. Maynard Smith, Am. Na®©9, 59 (1965. 200, 405 (1999.
[16] C. T. Bergstrom and M. Lachmann, Anim. Behal, 535 [32] D. J. Watts and S. H. Strogatz, Natufeondon 393 440
(2002. (1998.

051905-5



MENDELI H. VAINSTEIN AND JEFERSON J. ARENZON PHYSICAL REVIEW B4 051905

[33] G. Abramson and M. Kuperman, Phys. Rev.6B 030901 [39] B. Derrida, A. J. Bray, and C. Godrke, J. Phys. 27, L357

(2001). (1994.
[34] M. A. Nowak, S. Bonhoeffer, and R. M. May, Int. J. Bifurca- [40] A. J. Bray, B. Derrida, and C. Godrke, Europhys. Let27,
tion Chaos Appl. Sci. Engd, 33 (1994. 175(19949.
[35] G. Szaboand C. Tde, Phys. Rev. 58, 69 (1998. [41] D. Stauffer, J. Phys. 27, 5029(1994).
[36] J. R. N. Chiappin and M. J. de Oliveira, Phys. Re\6% 6419 [42] S. N. Majumdar, Curr. Sci77, 370(1999.
(1999. [43] B. Derrida, P. M. C. de Oliveira, and D. Stauffer, Physica A
[37] G. SzabeT. Antal, P. Szabpand M. Droz, Phys. Rev. B2, 224, 604 (1996.
1095 (2000. [44] C. M. Newman and D. L. Stein, Phys. Rev. Le82, 3944
[38] D. Stauffer and A. AharonyIntroduction to Percolation (1999.
Theory(Taylor & Francis, London, 1994 [45] S. Jain, Phys. Rev. BO, R2445(1999.

051905-6



