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Disordered environments in spatial games
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The Prisoner’s dilemma is the main game theoretical framework in which the onset and maintainance of
cooperation in biological populations is studied. In the spatial version of the model, we study the robustness of
cooperation in heterogeneous ecosystems in spatial evolutionary games by considering site diluted lattices. The
main result is that, due to disorder, the fraction of cooperators in the population is enhanced. Moreover, the
system presents a dynamical transition atr* , separating a region with spatial chaos from one with localized,
stable groups of cooperators.
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I. INTRODUCTION

Game theoretical methods have been applied, in a q
successful way, to several different fields@1,2#, biology be-
ing one of the most successful branches@3–6#. In these evo-
lutionary games, rewards are translated in terms of su
quent reproductive success, a more natural and clear s
than the rationality dependent ones used in, for exam
economy. Of particular interest is the emergence and sus
ability of cooperation, which has attracted a lot of attenti
as it poses a difficult problem from an evolutionary point
view since cooperators, by their nature, have their fitn
decreased while interacting with defectors. Theories
vanced to explain the evolution of cooperation usually c
sider either kin selection@5#, reciprocal altruism@7,8#, or
group selection@9–13#, the separation between them not a
ways being clear. Group foraging and young raising@14#,
alarm calls@15,16#, bacteria-infecting viruses@17#, predator
inspection by fish@18#, bird female-female cooperation@19#,
and cleaner fish@20#, are but a few examples of such acts
biological populations, ranging from simple to complex o
ganisms. A number of other examples may be found in R
@6#.

The Prisoner’s dilemma game is generally studied as
archetypical model for reciprocal altruism. Each of the tw
players either cooperates~C! or defects (D), without knowl-
edge of the opponent’s strategy. The result depends on
mutual choice, and is given by the payoff matrix whose e
ments are a rewardR ~punishmentP) if both cooperate~de-
fect!, S ~sucker’s payoff!, andT ~temptation! if one cooper-
ates and the other defects, respectively. Moreover, th
quantities should satisfy the inequalitiesT.R.P.S and
2R.T1S. It is clear that, independent of the opponen
choice, defecting is always the best bet. Thus two basic e
lutionary problems are~i! the onset of cooperation, that i
under which conditions a given cooperative behavior c
invade a population of defectors and, once established,~ii ! its
stability, that is, under which conditions the population
cooperators is uninvadable. In other words, we are look
for evolutionary stable strategies~ESS’s! @3,4,21# where
there is stable mutual cooperation between individuals. I
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random mating, infinite population of asexual~haploid! ele-
ments, where two pure strategies are present~cooperatorsC
and defectorsD), it can be shown that defecting will be th
most rewarding strategy~an ESS!. If instead of only inter-
acting once or a known finite number of times, the play
have a probabilityw.0 of meeting again in the next roun
and remember the chosen strategies in previous encoun
more complex rules may be devised@1#. For instance, in a
round robin tournament, Axelrod@1# found that tit-for-tat
~TFT! ~starts cooperating and, after that, do what the op
nent did in the previous step! was the most successful stra
egy, but other successful strategies were also found@22#.
Nevertheless, TFT cannot invade a population of defec
before reaching a minimum population, which can
achieved in several ways@8,23,24#.

Following a suggestion of Axelrod@1#, Nowak and co-
workers @25–27# showed how cooperation can arise ev
with only pure, memoryless strategies, such as ‘‘always
operate’’ or ‘‘always defect’’ in the presence of spatial stru
ture. They considered a deterministic cellular automa
consisting of a square lattice with near and next nea
neighbor interactions and self-interaction. Since the age
are spatially localized, they are more likely to interact on
with their nearest neighbors, differently from the standa
mean-field-like approach, that considers an infinite, rand
mixing population. The reasons for this are manifold: ind
viduals usually occupy well-defined territorial regions, ind
viduals do not move far from their places of birth~popula-
tion viscosity@5#!, interactions occur in places where anima
usually meet such as water ponds, etc. After combat, e
player compares its total payoff with the ones of its neig
bors and changes strategy, following the strategy with
greatest payoff. For a certain range of values of the pay
matrix, very complex spatial patterns show up with coope
tors and defectors coexisting~spatial chaos!. In these struc-
tured populations, cooperative strategies can build cluster
which the benefits of mutual cooperation can outwe
losses against defectors, maintaining the population of co
erators to be stable. Irrespective of the initial state that m
be chosen with either only one initial defector or a fraction
randomly distributed defectors, the asymptotic density
pends only on the payoff matrix parameters. The actual v
ues depend on the neighborhood chosen for the dynam
and on whether self-interactions are included or not@25,26#.
©2001 The American Physical Society05-1
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This cooperation enhancement effect due to the spatial s
ture is also seen in other games. For instance, in the sp
version of the Hawk-Dove game@26,28,29#, the density of
doves~analogous to cooperative individuals! is increased by
the spatial structure, although in this game polymorphi
would exist even in the absence of spatial effects. In a sim
way, several strategies are more successful in a spat
structured population than otherwise@30,31#.

In real populations, however, not all individuals intera
the same number of times, either due to the nonsynchron
character of the interaction or to the environmental struct
that prevents some of the contacts. Both spatial and temp
aspects of the environment affect the interactions betw
individuals, being central issues in ecological and evoluti
ary theory. Thus a natural question arises: how is coop
tion affected by this inherent inhomogeneity? In other wor
how robust is cooperation in the presence of disorder? In
paper we apply a simple approach to this question by c
sidering a regular lattice where some sites are empty. D
tion can be either quenched~fixed! or annealed~evolving!. In
the latter case, individuals may diffuse in the lattice, wh
will be considered in detail in a future work. Quenched v
cancies~or defects! may account for the presence of enviro
mental features~e.g., geographical! in the game, causing
some individuals to have fewer neighbors than others.
viations from the ordered lattice can also be achieved in s
eral other ways, for instance, by allowing that some of
individuals also interact with distant ones, in a small-wo
network fashion@32,33#. In Refs. @27,34#, a diluted lattice
was used with individuals interacting inside a region of
dius r, and a persistent polymorphism ofC’s and D ’s was
found, unlessr was made too large, reaching the long ran
connectivity associated with mean field behavior, where
defector population dominates. Nevertheless, their treatm
was quite brief and several interesting dynamical behav
passed unnoticed, as well as the important issue of whe
or not disorder enhances the fraction of cooperators in
population.

Here we show that, depending on the amount of disor
cooperation can be enhanced, there being a point whe
dynamical transition settles in, separating the region w
spatial chaos from the one with localized groups of coope
tors. The paper is organized as follows. In Sec. II, a dilu
version of the spatial Prisoner’s game is presented and
order parameters are defined. In Sec. III the main results
presented. Finally, in Sec. IV, we present conclusions
comments.

II. MODEL

We consider the spatial version of the Prisoner’s dilem
@1,25–27,30,34–37#, placing the interacting elements in th
vertices of ad-dimensional array, usually a hypercube, w
periodic boundary conditions. The results presented here
for d52. Differently from the original case, we allow tha
some of the sites may be empty. To describe the occupa
of the i site (1, i ,N5Ld, where L is the system linear
dimension! we takeni to be either 1, if the site is occupied
or 0 otherwise. In every generation, each individual assu
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an unchangeable strategy from a setV and, following Ref.
@25#, we only consider the simplest case of pure strategieC
andD, represented by the variableSi561, respectively. In
each step~generation!, the i th individual (niÞ0) combats
with all other elements inside a given neighborhoodVi , and
accumulates a payoffpi , depending on the chosen strategie
according to the reduced payoff table for the Prisoner’s ga
@25#: R51, P5S50, andT5b.1, reducing the problem to
only one parameter~besides the density!. For the case con-
sidered here, where the neighborhoodVi is restricted to near-
est neighbors of sitei and no self-interactions are include
bothC andD coexist in the region 4/3,b,3/2 in which also
the number of active sites~see below! is large. For 1,b
,4/3 cooperators dominate while forb.3/2, defectors are
dominant. The player’s payoff is a measure of its reprod
tive success: when reproducing, thei th element compares it
own payoff with all j PVi and changes to the strategy of th
site that has the greatest payoff in$ i %øVi . In this way, the
global density is kept fixed since no empty site will be ev
filled.

To characterize the macroscopic behavior of the sys
we introduce two order parameters. Letrc(t) represent the
fraction of cooperators at a given time,

rc~ t !5
1

2N (
i 51

N

~Si11!ni , ~1!

whereN5Ld is the total number of sites. Clearly,rd(t), the
defectors’ density, isrd(t)5r2rc(t), wherer is the total
density. Since we are interested in the long time regime,
the results depend on the choice of the frozen empty s
we define the order parameter as the average over
(^•••&) and over the realizations of the disorder (•••̄) of the
asymptotic cooperators densityrc5^rc(` )̄& for large N.
Sometimes it is more useful to have the relative cooperat
density rc /r. Thus rc50 means that the population wa
fully invaded by defectors, andrc5r that it was invaded by
cooperators. An intermediate case 0,rc,r, in which both
strategies coexist, is also possible. Moreover, it is interes
to know the fraction of active sites, that is, the fraction
elements that change strategy in time:

ra~ t !5
1

2N (
i 51

N

~12Si
tSi

t21!ni . ~2!

This defines our second order parameterra5^ra(` )̄&. Thus
ra50 means that all sites are frozen, andra5r means that
all elements are changing strategy.

III. RESULTS

In Fig. 1, the asymptotic cooperator densityrc /r is plot-
ted against the total occupation of the lattice,r. If the occu-
pation fraction is near zero, almost all sites are isolated
do not change strategy since there is no combat at all;
asymptotic density is the same as the initial one:rc5rc(0)
5r/2. Indeed, for smallr, the curves for different values o
b merge. As the density increases, the probability of occ
5-2
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DISORDERED ENVIRONMENTS IN SPATIAL GAMES PHYSICAL REVIEW E64 051905
ring pairs of occupied sites increases and, irrespective of
value ofb, all CD pairs will becomeDD, which can be seen
as a decreasing curve ofrc from the origin. Aroundr.0.3,
as the number of interacting individuals increases due to
creasing cluster sizes, the dynamics will define the fate
each cluster and the curves for different values ofb will
depart: the higherb is, the better for defectors and the low
the corresponding cooperator curve. Still further, when cl
ters of cooperators have a reasonable probability to fo
their density starts to increase reobtaining the Novak-M
results as the total density approaches unity@25#. The most
interesting case occurs ifb is in the active region, 4/3,b
,3/2, where the behavior is not monotonic and a sharp
crease inrc appears nearr* .0.95. At the same point, the
fraction of active sites presents a sharp increase, as ca
seen in the inset of Fig. 1. Note that for the other regions,
behavior is almost uniform, with a very small number
active sites. Interestingly enough, depending on the regio
b, the optimum density that maximizes the fraction of coo
erators occurs at different values: forb,4/3, the more indi-
viduals the better, and their maximum occurs atr51; above
b53/2, on the other hand, the less occupied the network
better, due to the exploitation by defectors; the maxim
occurs in the limitr→0. In these cases cooperators and
fectors, respectively, are at an advantage when interactin
the intermediate, active region, the behavior is nontriv
and the maximum occurs at the transition pointr* . Remark-
ably, this point is much higher than the site percolation tr
sition, which for a square lattice is located atrperc.0.59
@38#: although there is a connected, infinite cluster, regio
of active sites are bounded~pinned! to small regions due to
the presence of defects, as will be shown below. Below
transition, the approach to equilibrium is exponentially fa
rc(`)2rc(t);exp(2t/t), t diverging as one approaches th
point r* . This is because most of the interactions occur
side localized groups. Also, if the lattice is completely fille
the approach is fast. On the other hand, just above the cri
value, the presence of defects, and the fact that only som
the groups are depinned, makes the approach to equilib

FIG. 1. Asymptotic fraction of cooperatorsrc /r as a function of
the lattice occupationr for several values ofb. The initial state has
r/2 cooperators, the lattice size isL5100, and averages are take
over 100 samples.
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extremely slow, power law like, reminiscent of disorder
systems.

In the active region, for different initial concentrations
cooperators, it can be seen that almost up tor* , the
asymptotic density depends on the initial state, as show
Fig. 2. For smallr, since the clusters are independent, ob
ously the higher the initial fraction of cooperators the high
rc will be. Note that the optimum density for cooperation
a function of the initial density of cooperators: for initia
concentrations below the height of the peak atr* , rc(0)
&0.54r, r* is the ideal total concentration for cooperato
while above the smallerr is the better. Slightly belowr* all
curves merge because the cluster boundaries are no lo
completely pinned, and the memory of the initial state
washed out.

Although both cooperators and active site densities
useful parameters to describe the system asymptotic be
ior, they are not sufficient to understand the complex d
namical behavior that arises in the presence of disorder
clarify what is going on at the transition point, we also me
sured the persistence, the fractionP(t,tw) of sites that do not
change strategy between an initial waiting timetw , and the
time t.tw @39–42#, as can be seen in Figs. 3 and 4. Differe
from the fraction of active sites, the persistence is a v
complex measure that depends on the whole time histor
the system sincetw . For example, if the persistence does n
go to zero, we know that there is a fraction of sites that fl
only finitely many times@43,44# ~blocking!, and domain wall
movements are constrained~pinning!. That is precisely what
happens forr,r* , as shown in Fig. 3: after an initial de
crease, the persistence attains, for large times, a pla
whose value depends both onr and tw . Denoting this pla-
teau byP(`,tw), we note that it goes to zero atr* , as shown
in the inset of Fig. 3 fortw50, signaling a depinning transi
tion. In the critical region, the behavior is power law-lik
P(`,0);(r* 2r)2.2. It is important to note that the contri
bution from isolated sites to the plateau is small, and mos
the sites forming the plateau come from the infinite clust
At r* and above, the interfaces are no longer constrain
the number of active sites suffer a sudden increase and
sites eventually change strategy. It was shown for sev
models@44,45# that in the presence of disorder~but also in

FIG. 2. The asymptotic fraction of cooperators for several d
ferent initial densities of cooperators:L5100 andb51.4.
5-3
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MENDELI H. VAINSTEIN AND JEFERSON J. ARENZON PHYSICAL REVIEW E64 051905
some homogeneous systems!, the decay to the plateau
P(t,0)2P(`,0), is exponential@44,45# at large times. The
same behavior is found here for a non-Hamiltonian model
Fig. 5 we present a snapshot of the system belowr,r* ,
showing both empty and pinned sites as well as their str
gies. This configuration is almost stable; many of the co
erator groups shown no longer change, and the small am
of active sites is either confined to a few regions or belo
to one of the blinkers present. This has to be compared w
the spatial chaos region abover* , where there is no blocking
and every spin flips infinitely many times. Since we are n
the transition, the quantity of pinned sites is quite reduce

For densitiesr.r* , considering only elements that be

FIG. 3. PersistenceP(t,0) for L5100, b51.4, and several tota
densitiesr,r* as a function of time~measured in Monte Carlo
steps!. Note that these densities are far above the percolation thr
old. As t→`, all curves attain ther-dependent plateausP(`,0),
shown in the inset as a function of the lattice occupation. The
havior of P(`,0) nearr* is power law, with an exponent of ap
proximately 2.2.

FIG. 4. PersistenceP(t,0) for L5200 ~empty sites! and 500
~filled ones!, b51.4, and several total densitiesr.r* as a function
of time ~measured in Monte Carlo steps!. Different from ther
,r* case, here the persistence goes to zero~taking into account
only sites in the infinite cluster!. For r51 it vanishes exponentially
~see the semilog plot in the inset!, while near this point an initial
exponential decay can be seen. Belowr51, the longtime behavior
follows a power law, unless we are too close tor* , where a cross-
over behavior to the plateaus is noticed.
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long to the infinite cluster, the persistence goes to zero
shown in Fig. 4. Forr51, the behavior is exponential, a
shown in the inset of Fig. 4. Also note, in the inset~for r
50.99), that as we dilute the lattice, only the initial behav
is exponential. After this initial exponential decrease, who
length decreases asr departs from 1, the behavior follows
power law P(t,0);t2u(r), and as we approachr* from
above, the plateau starts to develop. The exponentu(r) is
the persistence exponent and has nontrivial values depen
on the total density. For example,u(0.98).3.6 and
u(0.99).5.7.

Below the critical value, groups of cooperators are loc
ized and their borders cannot move because of the pres

h-

-

FIG. 5. Snapshot showing the sites that have not changed s
egy after 105 steps forL550 and total density 0.9~top!. The figure
at the bottom shows, at the same time, the cooperators~empty
circles! and defectors~crosses!. The black points are the empt
sites. Those sites that are blocked will remain blocked forever.
5-4
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DISORDERED ENVIRONMENTS IN SPATIAL GAMES PHYSICAL REVIEW E64 051905
of the defects. We say that the groups are pinned by
environment. This explains why the fraction of cooperat
is larger in this regime. As the number of defects decrea
the groups start to become depinned; the interfaces
moving and interference effects between the groups app
explaining the sudden increase in the number of active s
From the persistence data, we can see that below the cr
value, there is a constant fraction of sites in the infinite cl
ter that never changes strategy, meaning that the cluster
localized. As we approach the depinning transition, some
the groups are depinned and the persistence decreases.
some of the groups are still pinned, we observe a cons
plateau that decreases asr approachesr* . Note that below
the transition, the number of active sites is not zero,
small, due to blinking sites.

IV. CONCLUSIONS

One of the main features of the Prisoner’s dilemma,
sponsible for its widespread use in the problem of coope
tion, is its robustness. Here we have shown that the syste
able to sustain cooperation even under the presence of la
disorder, which was already suggested in Ref.@27#. How-
ever, what had been unnoticed was the dynamical trans
as a function of the amount of quenched disorder as we
the fact that the disorder may enhance cooperation. Dilu
changes the scenario presented by Nowak and May@25# for
the filled lattice in a dramatic way. The spatial chaos is
sent when the disorder is above a given amount, whic
-
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reflected by the small number of active sites and the pinn
of the interfaces. It must be noted that even without disord
we are not dealing with a system presenting coarsening
the movement of the interfaces is not ruled by surface t
sion as, e.g., in the Ising model.

Besides presenting a dynamical transition in the prese
of disorder, dilution can enhance the fraction of cooperat
in the population. Indeed, in the region 4/3,b,3/2, the rela-
tive density of cooperators in the population can reach
value almost 40% higher than in the undiluted case,
maximum occurring at the transition point.

Some questions, however, are still open. For example
the condition of strong population viscosity is relaxed, d
order is no longer quenched, and diffusion is allowed, w
happens to the cooperator groups? Obviously, the results
pend on the chosen rule for the diffusing elements, and th
are several biologically motivated rules. Work is in progre
in this direction. Moreover, from the point of view of th
study of persistence, it would be interesting to study the
havior of P(t,tw) above r* , for 1!tw!t ~instead of tw
50), as well as to compare the results presented here
the site diluted Ising model.
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