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Evolutionary prisoner’s dilemma game on hierarchical lattices
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An evolutionary prisoner’s dilemm@D) game is studied with players located on a hierarchical structure of
layered square lattices. The players can follow two strateldlesdefectoy and C (cooperatox] and their
income comes from PD games with the “neighbors.” The adoption of one of the neighboring strategies is
allowed with a probability dependent on the payoff difference. Monte Carlo simulations are performed to study
how the measure of cooperation is affected by the number of hierarchical (€)edsd by the temptation to
defect. According to the simulations the highest frequency of cooperation can be observed at the top level if the
number of hierarchical levels is loWQ<4). For largerQ, however, the highest frequency of cooperators
occurs in the middle layers. The four-level hierarchical structure provides the highest aitetalygncome for
the whole community.
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I. INTRODUCTION more successful strategies from the coplayers they interact
with. Generally, the probability of strategy adoption is deter-

The evolutionary prisoner’s dilemma gartltDG) [1-5]  mined by the payoff difference.
is a very useful tool to examine the maintenance of coopera- The mean field approximation predicts that in a society of
tive behavior among selfish individuals. Investigating thisplayers following theC or D strategy the cooperation dies
model, we can study the behavior of a fictive society: we carput after a short time. This happens in the case of the one-
collect data about the change of the total income when varydimensional chain if the interaction is limited to nearest
ing the model parameters, e.g., payoffs, set of strategies, t@righbors. At the boundary of@andD cluster the defectors
pological structure of interaction, rules controlling the choicealways have higher payoff than the cooperators; thus coop-
of a new strategy, noise, and external constraints. eration vanishes quickly.

The original PDG is a version of matrix games describing  To demonstrate the advance of local interactions in the
the interaction between two players. The payoffs of the playspatial games, Nowak and Md] have created a two-
ers depend on their simultaneous decisions to cooperate @imensional cellular automaton where the players could fol-
defect. In this paper we use rescaled payoff parameters withow the C or D strategy. Their investigations revealed that
out any loss of generality in the evolutionary PD@&.  the cooperators overrun the territory of defectors along
Thus, mutual cooperation yields the players unit income prostraight-line fronts while the defectors’ invasion can be seen
viding them with the highest total payoff. On the contrary, along irregular boundaries. It was shown that as a result of
their payoffs are zero for mutual defection. If one of thethese invasion processes the coexistencP aihd C strate-
players defects while the other cooperates then the defectgjes took place with a population ratio determined by the
receives the highest individual paydfi>1), i.e., there isa model parameters. Noisy effects make the boundaries irregu-
temptation to defect, while the cooperator’s incotoalled  |ar and give more chance for defectif89]. Randomly cho-
sucker’s payoff is the lowest ongc<0). In the PDG the sen empty sites on the lattice further the maintenance of co-
cooperator’s loss goes beyond the profit of the defector, i.eqgperation[8,10] by holding up the spreading of defectors.
b+c<2. The values of these payoffs create an unresolvabl&hese sites behave like defectdéfsr c=0), but they cannot
dilemma for intelligent players who wish to maximize their disperse; they are “sterile.” Finally, it turned out that the
own income; namely, defection brings higher individual in- short range interactions between the localized players favor
come independently of the other player’s decision but forthe maintenance of cooperation under some conditierts,
mutual defection they receive the second worst result. for small b valueg even if just the simplest strategié8 or

In the case of evolutionary multiagent systefbs7] we D) are allowed 6,8,9,11-13 If b, the temptation to defect,
face a totally changed situation. The players’ income isexceeds a threshold value depending on the evolutionary
gained from iterated PDGs played with different coplayersrules, then the advantage of local interactions will not be
In the present study we handle only the two simplest strateenough to preserve cooperation, so defection overcomes.
gies which are independent of the coplayers’ decisions: the Recently spatial PDGs have been studied on different so-
first one is always cooperating, while the second one alwaysial networks. First, different studies were performed to re-
chooses defection. The players following these strategies aksal what happens on small-world netwofid]. It is found
called cooperator§C) and defectors(D) respectively. In  that cooperation can be maintained on these networks in a
evolutionary games the players can addearn one of the  wide range of parametef45-18.
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sponding values of the clustering coefficig@0] are 1/7,
1/6, and 1/5, respectively.

Note that this structure preserves {l@rizonta) transla-
tional and rotational symmetry of the square lattice at the top
level. For technical convenience, the horizontal sizes of the
bottom layer are chosen to the=2¢ (k> Q) with a unit lat-
tice constant. In this case this structure contaitrs4]4X
-4Q)/3 sites(players.

The players follow one of the above mention€dor D
strategies. The spatial distribution of strategies is described
Qy a two-dimensional unit vector for each siigenamely,

FIG. 1. Three-level “hierarchical lattice” constructed from
square latticegperspective vieyw Within a level the players are
linked to their nearest neighbors, and to four other players locate
geometrically under them at the level below. The horizontal peri- 1 0
odic boundary conditions are not indicated. White spheres indicate S = (O) or <1>
players at the first and the third layers; meanwhile black spheres are
for players at the second level. In our notation the highest hierarfor defectors and cooperators, respectively. Each player plays
chical level(g=1) is at the top. a PDG with its “neighborst{coplayers$ defined by the above

structure and the incomes are summed. The total income of

Nowadays the research is concentrated on the revelatidhe player at the sit& can be expressed as
of those circumstances for which the total income of the

1)

. . . . . — T
society can reach its highest value. The other main purpose is My = > SAS, (2
to find networks describing social systems more and more ye i
adequately. where the sum runs over all the neighboring sites ¢this

First we studied the PDG on such a scale-free hierarchicalet is indicated byf),) and the payoff matrix has a rescaled
structure suggested by Ravasz and BaralEsi where the  form:
distribution of the clustering coefficients is similar to that in
social systems. The results of this model are enclosed in the A= (0 b) (3)
Appendix. c 1)’

As the cooperation is not maintained in this system, we

modified the model’s structure; we launched the study of a\l/vhere k<b<2-candc<0 for the present PDGs. Since the

hierarchical structure with many “horizontal links.” The work bY Nowak an_d May6] the parametem is usually fixed
equilibrium strategy concentrations and average payoffs arg’ 2€r0; therefore in our analysis we use the same value.
analyzed as functions @ffor each hierarchical level. By this In the evolutionary games _the players are alloyved to
means we can get some information about those hierarchic opt the strategy of one of their more successiul neighbors.

structures providing the highest total payoff for such a soci-" the_prg;ent wqu the success is measured by th? ratio of
ety. total individual income and the number of neighbors

(games, i.e.,

My
0’
r\/\/here|QX| indicates the number of neighboring players at

site Xx. This choice suppresses the advance coming from the
larger number of neighbors.

Il. THE MODEL my = (4)

We consider an evolutionary PDG with players located o
the sites of a hierarchical structugattice). The three-level
version of this structure is shown in Fig. 1.

Sites ofQ square fatices posiioned above each other. mean " e present evolutionary procedure the randorly cho-

: . ; . ' Men player(x) can adopt one of théandomly chosenco-
while, the corresponding lattice constant is doubled level by , : . . _
level. These levels are labeled b1, ... Q from top to player’s(y) strateg_y with a probability depending on the dif-
bottom. Within a given level the sites are link€adorizon- ference of normalized payoffn,—m,) as
tally) to their four nearest neighbors. The undesired edge W | 1
effects are eliminated by applying horizontal periodic bound- Sy = _ ,
ary conditions for each level. In addition, the sites of the 1+ expi(m,—m)/T]
level g (g=2,... Q) are divided into 22 blocks whose whereT indicates the nois§7,9]. This definition of W in-
four sites are linked to a common site above belonging to theolves different effectgfluctuations in payoffs, errors in de-
level g—1. This means that for such a connectivity structurecision, individual trials, et¢. Henceforth, we consider the
each player has four additional links to its “staff members”effects of Q and b on the measure of cooperation far
and another one to its “chief.” Exceptions are naturally the=0.02.
players at the topg=1) and bottom(q=Q) levels where the
“chiefs” and “staff members” are missing.

Consequently, the players at the top, middle, and bottom The Monte Carlo(MC) simulations are carried out by
levels have eight, nine, and five neighbors, and the correvarying the values ob and Q for fixed ¢ and T values as

(5

Ill. AVERAGE STRATEGY FREQUENCIES AND PAYOFFS
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mentioned above. For small system size, the MC simulations 1
end up in one of the homogeneous absorbing st@teso- 09}
geneousC or D phase within a short time. In order to avoid 08
this undesired phenomenon we have investigated sufficiently g 07k
large systemgcontainingN=10P-1¢ players where the 5

amplitudes of population fluctuations are considerably go.(,r\
smaller than the corresponding average values. 5 05¢
The MC simulations are started from a random initial dis- 304}

. . . 8
tribution of strategies where the average frequency of both S g¢3|

. . . . -2
strategies is 1/2. The above described evolutionary steps g,
(strategy adoptionsare repeated until the system reaches the
steady state we study. It is checked in some cases that the
steady states are independent of the initial conditions. The
steady states are reached after some transient time varied 1
from 2000 to 50 000 Monte Carlo stefdICS), where dur- 09f
ing the time unit 1 MCS each player has a chance once on

\22\1/2

102 104 1.06 108 11 112 Li4 L16 LI8

1/4

average to modify its strategy. go.s

In the course of the simulations we have recorded the %0'7'
current frequenciefpp(t) and pc(t)=1-pp(t)] and payoffs g06t
[mp(t) andmc(t)] as a function of timé for both strategies at % 0.5¢

each level. The corresponding average values are obtained §’0.4-
by averaging through 16 000 MCS. With knowledge of these 3 03|
quantities, we can determine other quantities concerning the £ g,/
whole systenftotal income of the society, strategy distribu-
tions referring to the whole system, etc.

01} 4

0

First we study how the strategy populations at each level 1 105 11 L5 12 125 13
depend orQ andb. The results foQ=2, 3, and 4 are plotted b
in Fig. 2, and Fig. 3 represents the data @+5 and 6. The FIG. 2. Average frequency of cooperators as a functiob af

corresponding system sizes &e81 920, 344 064, 348 160, ifferentq levels forQ=2, 3 (top), and 4(bottom. The dashed line
349 184, and 349 440. For these sizes the statistical error (&)p) indicates the results obtained on the square |a(tj|g®: 1).

comparable with the line thickness. It is observed that there
always exists a threshold valdi,) for any value ofQ. For Figures 2 and 3 show clearly that the frequencies of co-

b>b, the cooperators become extinct. This crit?cal Value'operators differ level by level. At the same time, the phase
however, depends on the number of hierarchical levelsy,nsitions to the absorbirilomogeneoysD state occur for
b(Q). The exact value ob, for eachQ is not determined  gach jevel at the same critical value Iofdependent orQ.
because the thermalization tintas well as the fluctuation s feature is related to the fact that the successful colonies
grows very fast when approaching the critical points. Consept cooperators can pass their strategy to any level although
quently, the precise determination lnf requires a very long jig probability depends og.
computer time(this is the reason why the end points are not  apgther striking message of the above numerical results
represented in the figuredt is expected that the extinction g that the lowest measure of cooperation always occurs at
of cooperators at large spatial scales belong to the tWogme pottom level. The label of the most cooperative level,
dimensional directed percolation universality cld8s21]. however, depends 0@ andb. For Q=2, 3, and 4 the fre-
Unfortunately, the numerical _justification of this Conjecturequency of cooperators is the highest at the top level, and it is
exceeds our computer capacity. _ decreasing monotonically when going downward on these
_We have performed MC simulations on the square latticjgrarchical structures. The simulations for the given param-
with periodic boundary condition$Q=1), too. The fre-  gters show different behaviors@> 4. In the five-level sys-
quency of cooperators vanishes continuously as a function @k the highest measure of cooperation is reached by players
b (dashed line in the upper plot of Fig). Z'he value of the iy the second level in a wide range Iofand their frequency
critical point is b;=1.028 5245). The phase transition be- 5 exceeded by the cooperators of the top level only in the
longs to the two-dimensional directed percolation universalvyicinity of the critical point. The interval where the measure
ity class[9,21]. of cooperation is the highest at the top level becomes nar-
Comparing the results of the two-level case with those oryower for Q=6. In this case one can observe two additional
the square lattice one can see an increadg #fat may have regions ofb where the second and third levels exhibit the
come from the enhancement in the average number of neighighest cooperativity. Furthermore, within a wide rangé of
bors(from 4 to 5.6 and/or the average clustering coefficient the measure of cooperation at the fourth level is higher than
(from 0 to 0.189. It is worth mentioning that both of these it is at the top level.
quantities increase monotonically wit@. In the limit Summarizing the data of the different levels, we can de-
Q— o the average number of neighbors goes to six and thgarmine the measure of cooperation in the whole system as a
average clustering coefficient tends to 23/120=0.1916 function of Q andb. The average values are very low. The
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FIG. 3. The frequency of cooperatorslysn all the hierarchical
levels forQ=5 (top) and 6(bottom.

reason for this is that the measure of cooperation is the low-
est at the bottom level where most of the players are located.
As plotted in Fig. 4 the measure of cooperation has its maxi-
mum for Q=4 for almost any value dj. It is observable that
the b.(Q) values increase monotonically wif, and they
seem to converge to a value négfQ==6). This tendency is
likely to come from the mentioned convergence of the aver- 0 105 T WG ) 155 13
age number of neighbors and/or the average clustering coef-
ficient.
. FIG. 5. The averagénormalized payoffs as a function ob at
Now we are going to analyze the average payoffs Sepae_ach hierarchical level foR=4. The top(middle) plot shows the

rately at the different levels as well as in the whole systemavelrage payoffs of cooperatafefectors while the bottom figure

08 . ' ' ' ' ' indicates the weighted average payoffs at each level.

0.7 1 Figures 5 and 6 show the average payoffs of cooperators and
£ o6l | defectors at each level for sevefalvalues. Beyond that, the
B players’ average payoff at each level is also presented. Com-
§0-5 1 paring these figures with those representing the frequency of
§ 04l | cooperators for the san@, one can observe high similarity.
> This similarity is due to the fact that the cooperative partners
§0~3 r . ensure(positive) income for both the cooperators and defec-
§-0.2_ | tors. (The total payoff for a player following th€ or D
& strategy and having neighbors following theC strategy is

0.1 . equal ton or bn, respectively. Notice, furthermore, that the

0 2 dominant part of the total income is received by the coop-

L5 LbLis 12 125 13 erators whose average incomes exceed those of defectors at
each level. This fact comes from the formation of colonies
FIG. 4. The frequency of cooperators in the whole system as &y cooperators explaining why their average income remains
function of b and Q. positive for their vanishing concentrations. Although along
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1 y y y y y y system behavior is analogous to the case of the six-level
system.
1 For the differentQ values theb dependence of the total

EOJ I l payoff per gamdin the whole systepnis very similar to the
o6l ] measure of cooperation plotted in Fig. 4. This means that the
%05 four-level hierarchy provides the highest average income to
§0'4 the players for such connectivity structures.
5 0.
&

IV. SUMMARY

This work is devoted to studying the effect of the hierar-

0 ) ) ) ) ) ) chical structure on the measure of cooperation in a society
1.05 1.1 1.15 12 1.25 1.3 where the pairwise interaction between the members is mod-
1 . . . . . . eled by an evolutionary PDG with two strategi€andD).
0ol ] Using MC simulations we have determined the frequency
08 of cooperators as a function bf(the measure of temptation
P, to choose defectiomat the different hierarchical levels in the
s Q-level structures. These systems exhibit a continyoris-
206 cal) transition from theC+D state to the homogeneol
"g 05¢ state ifb tends tob, depending orQ. During this transition
30.4 the cooperators become extinct simultaneously at each level
A 03 of the hierarchical structures.
02 The lowest measure of cooperation is always found at the
o1 bottom level. In the close vicinity of the transition point the
0 . . : . frequency of cooperators is increasing gradually when going
1.05 L1 L15 1.2 1.25 1.3 upward on the hierarchical structures. For lovkeralues,
1 . . . . . . however, significantly different behavior is observedQf

> 4; namely, the highest frequency of cooperators is found in
the middle levels; meanwhile the total payoff per game de-
creases ifQ is increased for a fixed. Surprisingly, the
present simulations indicate clearly the existence of an opti-
mum number of hierarchical levels where such a community
can reach the highest income. For the present hierarchical
lattices the four-level structure provides the highest income
(productivity).

Another important message of the present investigations
is related to the importance of “horizontal lattice structure”
(or the additional horizontal linksin the hierarchical struc-
1.05 11 1.5 12 125 1.3 tures. As is mentioned in the Introduction, the cooperators

b die out exponentially in a similar evolutionary PDG model if

FIG. 6. The averagénormalized payoffs vsb at each hierar- the players are located on a complex hierarchical network
chical level forQ=6. suggested by Ravasz and Baraljasi. We think that further
systematic research is required to clarify the relationship be-
é\_/veen the maintenance of cooperation and the topological
I%tructure of connectivity.

the boundary of these colonies the defectors exploit cooper
tors, their average income is lower because most of them a
surrounded by defectors and receive zero income. Evidently,

the average payoff in the whole systdas well as the de- ACKNOWLEDGMENT
fectors’ payoffs for each levetisappears continuously when  Thjs work was supported by the Hungarian National Re-
approaching the critical poirtb—b.) from below. search Fund under Grant No. T-47003.

In the six-level system, the rank of the average defector
payoff differs from that of the cooperator payoff. The aver-
age income of defectors is the highest at the second and the
first levels. The reason for this is that f@=6, the highest
measure of cooperation is found at the middle levels and as
the result of the geometrical arrangement of the structure, In this model, the players are located on a scale-free net-
these cooperators can be exploited the most by the defectongork, where the distribution of the clustering coefficients is
located geometrically above them. similar to that in social systems. The dynamical rule in this

For Q=2 and 3 the average payoffs exhibit similar fea-model is the same as described in Sec. IlI; the difference
tures as are found foD=4 (see Fig. % while for Q=5 the  occurs in the structure of the network.

APPENDIX: EVOLUTIONARY PRISONER’S
DILEMMA GAME ON A SCALE-FREE
HIERARCHICAL NETWORK
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FIG. 7. Iterative stepéindicated byn) in the construction of the W0 lowest hierarchical levels.

scale-free network. . .
sites where they can defend themselves against the defectors’

The construction of the network suggested by Ravasz anthttacks.” In this state the frequency of cooperators rather
Barabasi[19] is the following. In the first step, there is a depends on the initial distribution of strategies than the value
small cluster of five densely linked nodgsig. 7(@)]. In the  of b.
next step, we generate four replicas of this cluster and con- The small groups of cooperators can survive in two types
nect the four external nodes of the replicated clusters to thef configurations. In the first case, they occupy a five-node
central node of the old cluster, creating a large 25-node modsubgraptisee the graph in Fig.(@] with central node at the
ule [Fig. 7(b)]. Continuing the process, we again generatdevel H-1. The other basic unit of th& groups is composed
four replicas of this 25-node cluster, and connect the 16 peef the four peripheral nodes of a five-node graph with a
ripheral nodes of each replica to the central node of the oldentral node located at a hierarchical leliet H-1.
module[Fig. 7(c)], obtaining a new module of 125 nodes.  Within such clique$20], if all the players cooperate, then
These replication and connection steps can be iterated indefdue to the many internal linkshey receive such a high
nitely; in each step the number of nodes is multiplied by aincome from each other that it provides protection against
factor of 5. the externaD invaders even for the highelstvalue. For this

The generated graph has a power-law degree distributioparticular structure the normalized payoff of the attacking
with a degree exponeng=1+In5/In4=2.161. In this net- defectors is reduced drastically by the many neighbobing
work for N=125 the average clustering coefficient &  strategies. Occasionally, however, these groups can be in-
=0.743. The network’s hierarchical structure is apparentvaded by defectors in the presence of noise. If a sifyle
there are several, small, fully connected five-node graphsstrategy gets into a clique then its offspring invade the whole
which are clustered into larger 25-node graphs. The 25-nodgroup within a short time because these internal defectors
graphs are clearly separated from each other, and they at@ho have only a few defector neighbprexploit all the
clustered into much larger 125-node graphs, etc. internal cooperators.

The hierarchical levels are introduced in the following The above process implies a decrease in the number of
way. Being in the center of bigger cluster means being atooperators’ cliques as well as in the average frequency of
higher level in the hierarchy. Figurébj shows a three-level cooperators. Figure 8 shows a noisy steplike decrease of
hierarchy: there is only one player at the fifsighes} hier-  frequency in time where the magnitude of the steplike de-
archical level, the one in the center of the entire structure; therease corresponds to the disappearance of a cooperator
center nodes of the four “replicas” are at the second levelclique described above. As the players in the small coopera-
while the other nodes are at the thitdwes) level (there are  tor groups have higher average payoffs than the defectors,
20 nodes of this type One iterative step increases the num-they invade continuously the territory of the defectors. At the
ber of hierarchical levels by 1. The analyzed network hasame time, due to the network’s topology, the mutual coop-
H=7 hierarchical levels; therefore the number of playerseration cannot persist within these territories; thereforexthe
(nodes is N=5""1=56=15 625. strategy will recapture them in a short time.

We have performed Monte Carlo simulations as described As a result of the above process the system will end up in
previously by varyingo for fixed temperatur€T=0.01, 0.02, the absorbind state for anyb. The average lifetime of the
and 0.03, to analyze what happens in a society where thegare cooperator cliques dependstmandT. More precisely,
players can followC or D strategies. the extinction of the cooperators becomes slower for Idwer

Two different stages can be distinguished as the systerandT. The probability of the first successfDl attack against
evolves. The first one is a transient process, where most @fC cliqgue can be estimated by the application of &), and
the small groups of cooperators die out. After this periodthe corresponding theoretical predictions are consistent with
(=4000 MCS, the cooperators remain on such groups ofthe results of the simulations.
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