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An evolutionary prisoner’s dilemmasPDd game is studied with players located on a hierarchical structure of
layered square lattices. The players can follow two strategiesfD sdefectord and C scooperatordg and their
income comes from PD games with the “neighbors.” The adoption of one of the neighboring strategies is
allowed with a probability dependent on the payoff difference. Monte Carlo simulations are performed to study
how the measure of cooperation is affected by the number of hierarchical levelssQd and by the temptation to
defect. According to the simulations the highest frequency of cooperation can be observed at the top level if the
number of hierarchical levels is lowsQ,4d. For largerQ, however, the highest frequency of cooperators
occurs in the middle layers. The four-level hierarchical structure provides the highest averagestotald income for
the whole community.
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I. INTRODUCTION

The evolutionary prisoner’s dilemma gamesPDGd f1–5g
is a very useful tool to examine the maintenance of coopera-
tive behavior among selfish individuals. Investigating this
model, we can study the behavior of a fictive society: we can
collect data about the change of the total income when vary-
ing the model parameters, e.g., payoffs, set of strategies, to-
pological structure of interaction, rules controlling the choice
of a new strategy, noise, and external constraints.

The original PDG is a version of matrix games describing
the interaction between two players. The payoffs of the play-
ers depend on their simultaneous decisions to cooperate or
defect. In this paper we use rescaled payoff parameters with-
out any loss of generality in the evolutionary PDGsf6g.
Thus, mutual cooperation yields the players unit income pro-
viding them with the highest total payoff. On the contrary,
their payoffs are zero for mutual defection. If one of the
players defects while the other cooperates then the defector
receives the highest individual payoffsb.1d, i.e., there is a
temptation to defect, while the cooperator’s incomescalled
sucker’s payoffd is the lowest onesc,0d. In the PDG the
cooperator’s loss goes beyond the profit of the defector, i.e.,
b+c,2. The values of these payoffs create an unresolvable
dilemma for intelligent players who wish to maximize their
own income; namely, defection brings higher individual in-
come independently of the other player’s decision but for
mutual defection they receive the second worst result.

In the case of evolutionary multiagent systemsf5,7g we
face a totally changed situation. The players’ income is
gained from iterated PDGs played with different coplayers.
In the present study we handle only the two simplest strate-
gies which are independent of the coplayers’ decisions: the
first one is always cooperating, while the second one always
chooses defection. The players following these strategies are
called cooperatorssCd and defectorssDd respectively. In
evolutionary games the players can adoptslearnd one of the

more successful strategies from the coplayers they interact
with. Generally, the probability of strategy adoption is deter-
mined by the payoff difference.

The mean field approximation predicts that in a society of
players following theC or D strategy the cooperation dies
out after a short time. This happens in the case of the one-
dimensional chain if the interaction is limited to nearest
neighbors. At the boundary of aC andD cluster the defectors
always have higher payoff than the cooperators; thus coop-
eration vanishes quickly.

To demonstrate the advance of local interactions in the
spatial games, Nowak and Mayf6g have created a two-
dimensional cellular automaton where the players could fol-
low the C or D strategy. Their investigations revealed that
the cooperators overrun the territory of defectors along
straight-line fronts while the defectors’ invasion can be seen
along irregular boundaries. It was shown that as a result of
these invasion processes the coexistence ofD andC strate-
gies took place with a population ratio determined by the
model parameters. Noisy effects make the boundaries irregu-
lar and give more chance for defectionf8,9g. Randomly cho-
sen empty sites on the lattice further the maintenance of co-
operationf8,10g by holding up the spreading of defectors.
These sites behave like defectorssfor c=0d, but they cannot
disperse; they are “sterile.” Finally, it turned out that the
short range interactions between the localized players favor
the maintenance of cooperation under some conditionsse.g.,
for small b valuesd even if just the simplest strategiessC or
Dd are allowedf6,8,9,11–13g. If b, the temptation to defect,
exceeds a threshold value depending on the evolutionary
rules, then the advantage of local interactions will not be
enough to preserve cooperation, so defection overcomes.

Recently spatial PDGs have been studied on different so-
cial networks. First, different studies were performed to re-
veal what happens on small-world networksf14g. It is found
that cooperation can be maintained on these networks in a
wide range of parametersf15–18g.
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Nowadays the research is concentrated on the revelation
of those circumstances for which the total income of the
society can reach its highest value. The other main purpose is
to find networks describing social systems more and more
adequately.

First we studied the PDG on such a scale-free hierarchical
structure suggested by Ravasz and Barabásif19g where the
distribution of the clustering coefficients is similar to that in
social systems. The results of this model are enclosed in the
Appendix.

As the cooperation is not maintained in this system, we
modified the model’s structure; we launched the study of a
hierarchical structure with many “horizontal links.” The
equilibrium strategy concentrations and average payoffs are
analyzed as functions ofb for each hierarchical level. By this
means we can get some information about those hierarchical
structures providing the highest total payoff for such a soci-
ety.

II. THE MODEL

We consider an evolutionary PDG with players located on
the sites of a hierarchical structureslatticed. The three-level
version of this structure is shown in Fig. 1.

The Q-level hierarchical structure is constructed from the
sites ofQ square lattices positioned above each other; mean-
while, the corresponding lattice constant is doubled level by
level. These levels are labeled byq=1, . . . ,Q from top to
bottom. Within a given level the sites are linkedshorizon-
tallyd to their four nearest neighbors. The undesired edge
effects are eliminated by applying horizontal periodic bound-
ary conditions for each level. In addition, the sites of the
level q sq=2, . . . ,Qd are divided into 232 blocks whose
four sites are linked to a common site above belonging to the
level q−1. This means that for such a connectivity structure
each player has four additional links to its “staff members”
and another one to its “chief.” Exceptions are naturally the
players at the topsq=1d and bottomsq=Qd levels where the
“chiefs” and “staff members” are missing.

Consequently, the players at the top, middle, and bottom
levels have eight, nine, and five neighbors, and the corre-

sponding values of the clustering coefficientf20g are 1/7,
1/6, and 1/5, respectively.

Note that this structure preserves theshorizontald transla-
tional and rotational symmetry of the square lattice at the top
level. For technical convenience, the horizontal sizes of the
bottom layer are chosen to beL=2k sk.Qd with a unit lat-
tice constant. In this case this structure containsN=4f4k

−4sk−Qdg /3 sitessplayersd.
The players follow one of the above mentionedC or D

strategies. The spatial distribution of strategies is described
by a two-dimensional unit vector for each sitex, namely,

sx = S1

0
D or S0

1
D s1d

for defectors and cooperators, respectively. Each player plays
a PDG with its “neighbors”scoplayersd defined by the above
structure and the incomes are summed. The total income of
the player at the sitex can be expressed as

Mx = o
yPVx

sx
TAsy s2d

where the sum runs over all the neighboring sites ofx sthis
set is indicated byVxd and the payoff matrix has a rescaled
form:

A = S0 b

c 1
D , s3d

where 1,b,2−c andc,0 for the present PDGs. Since the
work by Nowak and Mayf6g the parameterc is usually fixed
to zero; therefore in our analysis we use the same value.

In the evolutionary games the players are allowed to
adopt the strategy of one of their more successful neighbors.
In the present work the success is measured by the ratio of
total individual income and the number of neighbors
sgamesd, i.e.,

mx =
Mx

uVxu
, s4d

where uVxu indicates the number of neighboring players at
site x. This choice suppresses the advance coming from the
larger number of neighbors.

In the present evolutionary procedure the randomly cho-
sen playersxd can adopt one of thesrandomly chosend co-
player’ssyd strategy with a probability depending on the dif-
ference of normalized payoffsmx−myd as

Wssx ← syd =
1

1 + expfsmx − myd/Tg
, s5d

whereT indicates the noisef7,9g. This definition ofW in-
volves different effectssfluctuations in payoffs, errors in de-
cision, individual trials, etc.d. Henceforth, we consider the
effects of Q and b on the measure of cooperation forT
=0.02.

III. AVERAGE STRATEGY FREQUENCIES AND PAYOFFS

The Monte CarlosMCd simulations are carried out by
varying the values ofb and Q for fixed c and T values as

FIG. 1. Three-level “hierarchical lattice” constructed from
square latticessperspective viewd. Within a level the players are
linked to their nearest neighbors, and to four other players located
geometrically under them at the level below. The horizontal peri-
odic boundary conditions are not indicated. White spheres indicate
players at the first and the third layers; meanwhile black spheres are
for players at the second level. In our notation the highest hierar-
chical levelsq=1d is at the top.
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mentioned above. For small system size, the MC simulations
end up in one of the homogeneous absorbing statesshomo-
geneousC or D phased within a short time. In order to avoid
this undesired phenomenon we have investigated sufficiently
large systemsscontaining N.105–106 playersd where the
amplitudes of population fluctuations are considerably
smaller than the corresponding average values.

The MC simulations are started from a random initial dis-
tribution of strategies where the average frequency of both
strategies is 1/2. The above described evolutionary steps
sstrategy adoptionsd are repeated until the system reaches the
steady state we study. It is checked in some cases that the
steady states are independent of the initial conditions. The
steady states are reached after some transient time varied
from 2000 to 50 000 Monte Carlo stepssMCSd, where dur-
ing the time unit 1 MCS each player has a chance once on
average to modify its strategy.

In the course of the simulations we have recorded the
current frequenciesfrDstd and rCstd=1−rDstdg and payoffs
fmDstd andmCstdg as a function of timet for both strategies at
each level. The corresponding average values are obtained
by averaging through 16 000 MCS. With knowledge of these
quantities, we can determine other quantities concerning the
whole systemstotal income of the society, strategy distribu-
tions referring to the whole system, etc.d.

First we study how the strategy populations at each level
depend onQ andb. The results forQ=2, 3, and 4 are plotted
in Fig. 2, and Fig. 3 represents the data forQ=5 and 6. The
corresponding system sizes areN=81 920, 344 064, 348 160,
349 184, and 349 440. For these sizes the statistical error is
comparable with the line thickness. It is observed that there
always exists a threshold valuesbcd for any value ofQ. For
b.bc the cooperators become extinct. This critical value,
however, depends on the number of hierarchical levels:
bcsQd. The exact value ofbc for eachQ is not determined
because the thermalization timesas well as the fluctuationd
grows very fast when approaching the critical points. Conse-
quently, the precise determination ofbc requires a very long
computer timesthis is the reason why the end points are not
represented in the figuresd. It is expected that the extinction
of cooperators at large spatial scales belong to the two-
dimensional directed percolation universality classf9,21g.
Unfortunately, the numerical justification of this conjecture
exceeds our computer capacity.

We have performed MC simulations on the square lattice
with periodic boundary conditionssQ=1d, too. The fre-
quency of cooperators vanishes continuously as a function of
b sdashed line in the upper plot of Fig. 2d. The value of the
critical point is bc=1.028 524s5d. The phase transition be-
longs to the two-dimensional directed percolation universal-
ity classf9,21g.

Comparing the results of the two-level case with those on
the square lattice one can see an increase ofbc that may have
come from the enhancement in the average number of neigh-
borssfrom 4 to 5.6d and/or the average clustering coefficient
sfrom 0 to 0.189d. It is worth mentioning that both of these
quantities increase monotonically withQ. In the limit
Q→` the average number of neighbors goes to six and the

average clustering coefficient tends to 23/120=0.1916˙ .

Figures 2 and 3 show clearly that the frequencies of co-
operators differ level by level. At the same time, the phase
transitions to the absorbingshomogeneousd D state occur for
each level at the same critical value ofb dependent onQ.
This feature is related to the fact that the successful colonies
of cooperators can pass their strategy to any level although
its probability depends onq.

Another striking message of the above numerical results
is that the lowest measure of cooperation always occurs at
the bottom level. The label of the most cooperative level,
however, depends onQ and b. For Q=2, 3, and 4 the fre-
quency of cooperators is the highest at the top level, and it is
decreasing monotonically when going downward on these
hierarchical structures. The simulations for the given param-
eters show different behaviors ifQ.4. In the five-level sys-
tem the highest measure of cooperation is reached by players
in the second level in a wide range ofb and their frequency
is exceeded by the cooperators of the top level only in the
vicinity of the critical point. The interval where the measure
of cooperation is the highest at the top level becomes nar-
rower for Q=6. In this case one can observe two additional
regions ofb where the second and third levels exhibit the
highest cooperativity. Furthermore, within a wide range ofb
the measure of cooperation at the fourth level is higher than
it is at the top level.

Summarizing the data of the different levels, we can de-
termine the measure of cooperation in the whole system as a
function of Q and b. The average values are very low. The

FIG. 2. Average frequency of cooperators as a function ofb at
differentq levels forQ=2,3 stopd, and 4sbottomd. The dashed line
stopd indicates the results obtained on the square latticesq=Q=1d.
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reason for this is that the measure of cooperation is the low-
est at the bottom level where most of the players are located.
As plotted in Fig. 4 the measure of cooperation has its maxi-
mum forQ=4 for almost any value ofb. It is observable that
the bcsQd values increase monotonically withQ, and they
seem to converge to a value nearbcsQ=6d. This tendency is
likely to come from the mentioned convergence of the aver-
age number of neighbors and/or the average clustering coef-
ficient.

Now we are going to analyze the average payoffs sepa-
rately at the different levels as well as in the whole system.

Figures 5 and 6 show the average payoffs of cooperators and
defectors at each level for severalQ values. Beyond that, the
players’ average payoff at each level is also presented. Com-
paring these figures with those representing the frequency of
cooperators for the sameQ, one can observe high similarity.
This similarity is due to the fact that the cooperative partners
ensurespositived income for both the cooperators and defec-
tors. sThe total payoff for a player following theC or D
strategy and havingn neighbors following theC strategy is
equal ton or bn, respectively.d Notice, furthermore, that the
dominant part of the total income is received by the coop-
erators whose average incomes exceed those of defectors at
each level. This fact comes from the formation of colonies
by cooperators explaining why their average income remains
positive for their vanishing concentrations. Although along

FIG. 3. The frequency of cooperators vsb on all the hierarchical
levels forQ=5 stopd and 6sbottomd.

FIG. 4. The frequency of cooperators in the whole system as a
function of b andQ.

FIG. 5. The averagesnormalizedd payoffs as a function ofb at
each hierarchical level forQ=4. The topsmiddled plot shows the
average payoffs of cooperatorssdefectorsd while the bottom figure
indicates the weighted average payoffs at each level.
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the boundary of these colonies the defectors exploit coopera-
tors, their average income is lower because most of them are
surrounded by defectors and receive zero income. Evidently,
the average payoff in the whole systemsas well as the de-
fectors’ payoffs for each leveld disappears continuously when
approaching the critical pointsb→bcd from below.

In the six-level system, the rank of the average defector
payoff differs from that of the cooperator payoff. The aver-
age income of defectors is the highest at the second and the
first levels. The reason for this is that forQ=6, the highest
measure of cooperation is found at the middle levels and as
the result of the geometrical arrangement of the structure,
these cooperators can be exploited the most by the defectors
located geometrically above them.

For Q=2 and 3 the average payoffs exhibit similar fea-
tures as are found forQ=4 ssee Fig. 5d while for Q=5 the

system behavior is analogous to the case of the six-level
system.

For the differentQ values theb dependence of the total
payoff per gamesin the whole systemd is very similar to the
measure of cooperation plotted in Fig. 4. This means that the
four-level hierarchy provides the highest average income to
the players for such connectivity structures.

IV. SUMMARY

This work is devoted to studying the effect of the hierar-
chical structure on the measure of cooperation in a society
where the pairwise interaction between the members is mod-
eled by an evolutionary PDG with two strategiessC andDd.

Using MC simulations we have determined the frequency
of cooperators as a function ofb sthe measure of temptation
to choose defectiond at the different hierarchical levels in the
Q-level structures. These systems exhibit a continuousscriti-
cald transition from theC+D state to the homogeneousD
state ifb tends tobc depending onQ. During this transition
the cooperators become extinct simultaneously at each level
of the hierarchical structures.

The lowest measure of cooperation is always found at the
bottom level. In the close vicinity of the transition point the
frequency of cooperators is increasing gradually when going
upward on the hierarchical structures. For lowerb values,
however, significantly different behavior is observed ifQ
.4; namely, the highest frequency of cooperators is found in
the middle levels; meanwhile the total payoff per game de-
creases ifQ is increased for a fixedb. Surprisingly, the
present simulations indicate clearly the existence of an opti-
mum number of hierarchical levels where such a community
can reach the highest income. For the present hierarchical
lattices the four-level structure provides the highest income
sproductivityd.

Another important message of the present investigations
is related to the importance of “horizontal lattice structure”
sor the additional horizontal linksd in the hierarchical struc-
tures. As is mentioned in the Introduction, the cooperators
die out exponentially in a similar evolutionary PDG model if
the players are located on a complex hierarchical network
suggested by Ravasz and Barabásif19g. We think that further
systematic research is required to clarify the relationship be-
tween the maintenance of cooperation and the topological
structure of connectivity.
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APPENDIX: EVOLUTIONARY PRISONER’S
DILEMMA GAME ON A SCALE-FREE

HIERARCHICAL NETWORK

In this model, the players are located on a scale-free net-
work, where the distribution of the clustering coefficients is
similar to that in social systems. The dynamical rule in this
model is the same as described in Sec. II; the difference
occurs in the structure of the network.

FIG. 6. The averagesnormalizedd payoffs vsb at each hierar-
chical level forQ=6.
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The construction of the network suggested by Ravasz and
Barabásif19g is the following. In the first step, there is a
small cluster of five densely linked nodesfFig. 7sadg. In the
next step, we generate four replicas of this cluster and con-
nect the four external nodes of the replicated clusters to the
central node of the old cluster, creating a large 25-node mod-
ule fFig. 7sbdg. Continuing the process, we again generate
four replicas of this 25-node cluster, and connect the 16 pe-
ripheral nodes of each replica to the central node of the old
module fFig. 7scdg, obtaining a new module of 125 nodes.
These replication and connection steps can be iterated indefi-
nitely; in each step the number of nodes is multiplied by a
factor of 5.

The generated graph has a power-law degree distribution
with a degree exponentg=1+ln 5/ ln 4=2.161. In this net-
work for Nù125 the average clustering coefficient isC
.0.743. The network’s hierarchical structure is apparent:
there are several, small, fully connected five-node graphs,
which are clustered into larger 25-node graphs. The 25-node
graphs are clearly separated from each other, and they are
clustered into much larger 125-node graphs, etc.

The hierarchical levels are introduced in the following
way. Being in the center of bigger cluster means being at
higher level in the hierarchy. Figure 7sbd shows a three-level
hierarchy: there is only one player at the firstshighestd hier-
archical level, the one in the center of the entire structure; the
center nodes of the four “replicas” are at the second level,
while the other nodes are at the thirdslowestd level sthere are
20 nodes of this typed. One iterative step increases the num-
ber of hierarchical levels by 1. The analyzed network has
H=7 hierarchical levels; therefore the number of players
snodesd is N=5H−1=56=15 625.

We have performed Monte Carlo simulations as described
previously by varyingb for fixed temperaturesT=0.01, 0.02,
and 0.05d, to analyze what happens in a society where the
players can followC or D strategies.

Two different stages can be distinguished as the system
evolves. The first one is a transient process, where most of
the small groups of cooperators die out. After this period
s.4000 MCSd, the cooperators remain on such groups of

sites where they can defend themselves against the defectors’
“attacks.” In this state the frequency of cooperators rather
depends on the initial distribution of strategies than the value
of b.

The small groups of cooperators can survive in two types
of configurations. In the first case, they occupy a five-node
subgraphfsee the graph in Fig. 7sadg with central node at the
level H−1. The other basic unit of theC groups is composed
of the four peripheral nodes of a five-node graph with a
central node located at a hierarchical levelhùH−1.

Within such cliquesf20g, if all the players cooperate, then
sdue to the many internal linksd they receive such a high
income from each other that it provides protection against
the externalD invaders even for the highestb value. For this
particular structure the normalized payoff of the attacking
defectors is reduced drastically by the many neighboringD
strategies. Occasionally, however, these groups can be in-
vaded by defectors in the presence of noise. If a singleD
strategy gets into a clique then its offspring invade the whole
group within a short time because these internal defectors
swho have only a few defector neighborsd exploit all the
internal cooperators.

The above process implies a decrease in the number of
cooperators’ cliques as well as in the average frequency of
cooperators. Figure 8 shows a noisy steplike decrease ofC
frequency in time where the magnitude of the steplike de-
crease corresponds to the disappearance of a cooperator
clique described above. As the players in the small coopera-
tor groups have higher average payoffs than the defectors,
they invade continuously the territory of the defectors. At the
same time, due to the network’s topology, the mutual coop-
eration cannot persist within these territories; therefore theD
strategy will recapture them in a short time.

As a result of the above process the system will end up in
the absorbingD state for anyb. The average lifetime of the
rare cooperator cliques depends onb andT. More precisely,
the extinction of the cooperators becomes slower for lowerb
andT. The probability of the first successfulD attack against
a C clique can be estimated by the application of Eq.s5d, and
the corresponding theoretical predictions are consistent with
the results of the simulations.

FIG. 7. Iterative stepssindicated bynd in the construction of the
scale-free network.

FIG. 8. The frequency of cooperators as a function of time at the
two lowest hierarchical levels.
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