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The e�ect of heterogeneous in
uence of di�erent individuals on the maintenance of co-operative behaviour is

studied in an evolutionary Prisoner's Dilemma game with players located on the sites of regular small-world

networks. The players interacting with their neighbours can either co-operate or defect and update their states

by choosing one of the neighbours and adopting its strategy with a probability depending on the payo� di�erence.

The selection of the neighbour obeys a preferential rule: the more in
uential a neighbour, the larger the probability

it is picked. It is found that this simple preferential selection rule can promote continuously the co-operation of

the whole population with the strengthening of the disorder of the underlying network.

PACS: 02. 50. Le, 05. 50.+q, 87. 23. Cc, 89. 65.�s

Game theory[1�4] was introduced qualitatively to
study complex behaviours of biological, ecological, so-
cial and economic systems. Of particular renown is the
evolutionary prisoner's dilemma game (PDG), which
has attracted most attention in theoretical and exper-
imental studies.[3] Recently, much attention has been
focused on applications of the PDG in the area of
behaviour sciences, biology and economics, etc.[5�7]

Intriguingly, the methods developed in statistical me-
chanics, such as phase transitions, criticality and the
concept of universality classes, etc., can be applied to
study the spatial evolutionary game theory and has
turned out to be very fruitful.[8�10]

In the original PDG the players could make two
choices: either to co-operate with their co-players or
to defect. They are o�ered some payo�s dependent
on their choices, which can be expressed by 2�2 pay-
o� matrices in agreement with the four possibilities.
The players obtain rewards R(P ) if both choose to
co-operate (defect). If one player co-operates while
the other defects, then the co-operator (C) obtains
the lowest payo� S (sucker's payo�), while the de-
fector (D) gains the highest payo� T (temptation to
defect). Thus the elements of the payo� matrix sat-
isfy the conditions:T > R > P > S and 2R > T + S,
so that leads to the so-called dilemma situation where
mutual co-operation is bene�cial in a long perspective
but egoism can produce big short-term pro�t.

In studying of the PDG, one of the most interesting
items is to study under what conditions the mutual co-
operation will emerge and sustain stably or how to fa-
cilitate the co-operation of the whole population.[2�4]

In the PDG, the state where all players are defec-
tors has proven to be an evolutionary stable state,[11]

which has inspired numerous investigations of suitable
extensions that enable co-operative behaviour to per-
sist. Nowak and May[11] have introduced a spatial
evolutionary PDG model, in which individuals located
on a lattice play with their neighbours and with them-

selves. The dynamics of the game is govern by a deter-
ministic rule: individuals adopt the strategy that has
received the highest payo� among its neighbours in-
cluding themselves in the previous round. It has been
shown that the spatial e�ects promote the survival
of co-operators.[11�15] Szab�o and T}oke extended the
deterministic dynamics of the model to a stochastic
evolutionary one: rather than following the most suc-
cessful neighbour's strategy straightly, the adoption
of one of the neighbouring strategies is allowed with
a probability dependent on the payo� di�erence.[8]

This revised version took account into the irrational
choices of the players and observed that below cer-
tain critical values bc (noise-dependent), a stable ab-
sorbing state of all C emerged. Recently the spatial
PDG have been studied on di�erent complex network
models, it was found that co-operation can be main-
tained on these networks in a wide range of network
parameters.[9;16�20] In addition, the dynamic network
model[21] and the dynamic payo� matrices[22] were
also introduced to sustain high concentration of co-
operators in the evolution of PDG.

In this Letter, we study the PDG using the Szab�o{
T}oke version[8] on regular small-world networks with
slightly di�erent dynamics. The interaction neigh-
bourhood is restricted to the nearest neighbours and
no self-interactions are included; rather than ran-
domly selecting a neighbour in comparison,[8;9;20] the
players select one of their neighbours to update their
states according to a proportional rule (see the de�ni-
tion of the model below). Our main aim is to investi-
gate how the underlying structure of interaction and
the dynamics a�ect the game evolution. Using sys-
tematic Monte Carlo (MC) simulations, we calculate
the density of co-operators as a function of the temp-
tation to defect b for di�erent disorder levels � of the
network. It is found that with the increasing of the
disorder of the underlying network and the emergence
of heterogeneous in
uential e�ect among the players,
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the co-operative behaviour can be enhanced reason-
ably.

The model and simulation. We consider an evo-
lutionary PDG with players located on regular small-
world networks with a � portion of random rewired
links, where � characterizes the disorder extent of
the network. Figure 1 illustrates an example whose
creation is similar to those suggested by Watts and
Strogatz.[23] Note that each site has the same �xed
number of neighbours. If � = 0:0, this structure repro-
duces the square lattice and for � = 1:0 it is equivalent
to a random regular graph.[24] The players are pure
strategists and can follow only two simple strategies:
C (co-operate) and D (defect). Each player interacts
with its neighbours and collects the payo�s depending
on the payo�-matrix elements. The total payo� of a
certain player is the sum over all interactions. Fol-
lowing the previous studies,[8;11;16;18] the elements of
the payo� matrix can be rescaled, i.e. we can choose
R = 1, P = S = 0, and T = b (> 1) without loss of
generality in the evolutionary PDG.

Fig. 1. Structure of a regular small-world network whose
construction starts from a square lattice under periodic
boundary conditions. First the randomly chosen AB link
is removed and the site B is rewired to the randomly cho-
sen site C. To have four connections at site C we eliminate
one of the previous links (here CD) and we add a new link
DE at random. This process is repeated until � portion
of the nearest neighbour bonds are replaced by random
links. Finally the last site (here H) is wired to the �rst
one (A). This �gure is taken from Ref. [20].

In society, some special persons may in
uence oth-
ers much stronger than the average individual, still
these in
uential persons are coupled back to their so-
cial surroundings.[18] In other words, di�erent neigh-
bours would have di�erent in
uence on one's be-
haviour. In general, one can expect that the in
uence
between two people is asymmetric. To model this
situation we de�ne a quantity Aij (i; j = 1; : : : ; N),
which describes the in
uence weight of jth player to
ith player and possesses asymmetric property: i.e.,
independent of the corresponding quantity Aji. For

simplicity, we assume that Aij follows a power law
distribution P (A) � A�
 and does not change with
time.[25] In this way, we hope to catch some general
e�ects that asymmetric in
uence among the players
might have on the dynamical behaviour of the game.

The randomly chosen player i revises its strategy
by selecting one of its neighbours j with a probability
� according to a proportional rule:

�ij =
AijP

k2
i
Aik

; (1)

where 
i is the community composing of the nearest
neighbours of i. Equation (1) means that the larger
the in
uential weight of a neighbour, the more the
probability selected to compare with. Accepting the
idea suggested by Szab�o,[8;9;20] given the total payo�s
(Ei and Ej) from the previous round, player i adopts
the neighbour's strategy with the probability

W =
1

1 + exp [�(Ej �Ei)=K]
; (2)

where Ej is the neighbour's payo� andK characterizes
the noise introduced to permit irrational choices. For
all the simulation experiment described in the follow-
ing, the value of K is �xed at 0:1. Generate a random
number r uniformly distributed between zero and one,
if r < W , the neighbour's strategy is imitated.

Two groups of systems will be considered subse-
quently. In the �rst case, 
 !1 with � = 0:0; 0:1; 1:0
is studied. This means that the neighbours of each
player will be selected with equal probability to com-
pare with those during the whole process of the evo-
lution. In the second case, 
 = 0:8 with the corre-
sponding � values is investigated: i.e., the in
uential
weight is taken into account. Starting from a random
initial state, the rules of the model are iterated with
parallel updating by varying the value of b. The total
sampling times are 5000MC steps and all the results
shown in the following are averaged over the last 2000
steps.

Results and discussion. In the following we show
the results of simulations performed in systems with
N = 100 � 100 players. Our key quantity is the
co-operator density �C , the average fraction of play-
ers adopting the strategy C in the equilibrium state.
First we consider the model with random selection
case (i.e., the case of 
 !1). For di�erent values of
�, we recover qualitatively the results of the stochas-
tic model.[10] From the open symbols in Fig. 2, one can
see that �C decreases monotonically with increasing b
up to a certain threshold bc, where the co-operators
vanish. With longer-range links emerging on the lat-
tice, the level of co-operation is promoted reasonably,
which is di�erent from the previous researches whose
results support that the local interaction may pro-
mote the co-operation of the whole population (see
Refs. [11{13,15] and the references therein). For in-
creasing b, the spatial correlations result in a critical
transition on the square lattice (� = 0:0), whereas
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on other regular small-world networks (� > 0:0) the
lack of correlations lead to a linear decrease in co-
operation, that is, a mean-�eld type transition.[10]

Fig. 2. Average density of co-operators, �c, as a func-
tion of the temptation-to-defect b in the equilibrium state.
Open and closed symbols correspond to the case of random
selection (
 ! 1) and preferential selection (
 = 0:8) of
one neighbour to compare with respectively. The di�erent
symbols describe di�erent disorder extent of the network:
squares for � = 0:0 (regular lattice); circles for � = 0:1
(typical regular small-world network), and triangles for
� = 1:0 (regular random network).

Fig. 3. Cooperator average density �c multiplied by sys-
tem size N as a function of the temptation-to-defect b in
the equilibrium state for 
 = 0:8. To view clearly the mi-
nor level of co-operators, the y-axis is plotted by log-scale.

We now consider the in
uence of the preferential
selection on the evolution of the game. The results
obtained for 
 = 0:8 are illustrated by the closed sym-
bols in Fig. 2 and in Fig. 3. There are some remarkable
di�erences from the random selection case. There is
no absorbing states arising in the whole parameter
region 1:0 � b � 2:0 (Fig. 3). All co-operators and de-
fectors coexist during the evolutionary process though
the same monotonical decreasing trend of �C with the
increasing temptation-to-defect. As is indicated, even
in the extreme defection circumstance b � 2:0, co-
operators can survive and persist with a minor level.
For convenience, the data are plotted with a log-line
scale. In Fig. 4, we depict �C as a function of b for

di�erent values of 
 in the case of � = 0:1 (the qual-
itative properties of the result hold for � = 0:0, and
1:0). There exists an optimal value for 
 � 0:3, un-
der which the co-operation is maximally enhanced.
For the large values of 
, the co-operation is inhib-
ited (we have found that the result for 
 = 2 is very
close to that for the random selection case 
 ! 1).
We conclude that the preferential selection gives rise
to the emergence of in
uential players; and if some
of them are co-operators, then compact communities
consisting of their neighbours and themselves could be
formed and survive stably in the background of defec-
tors, which would contribute to the persistence of the
co-operation.

Fig. 4. �c as a function of the temptation to defect b
for 
 2 [0:1; 1:5]. The roughness of the front surface is
due to the intensive 
uctuation of the co-operators under
cruel surviving condition (large values of b and 
). The
data are averaged over several times, and parameter value
� = 0:1.

In order to check this statement, we also mea-
sured the persistence, the number P (t; tw) of sites of
co-operators that do not change strategy between an
initial waiting time tw, and the time t � tw.

[26] In ad-
dition, the correlation function Q(t; tw), which char-
acterize the number of sites of co-operators at time t
that has been arisen at time tw in spite of �nite 
ip-
ping of the strategy during the two time interval, is
also explored. In a distinct view, the results of these
two functions for tw = 3001 (this time can be selected
arbitrarily as long as the system has attained equilib-
rium) are summarized in Fig. 5. For the preferential
selection case, after an initial decrease, the persistence
attains, for large times, a plateau whose value depends
both on � and 
. If the persistence does not go to zero,
we know that there is a fraction of sites of co-operators
that 
ip only �nitely many times (blocking), and do-
main wall movements are constrained (pinning).[26]

For the present system we studied, it is indicated that
communities of co-operators exist stably in the back-
ground of defectors. However, for the random selec-
tion case, the persistence goes to zero in the long-time
limit, which means that all the co-operators are re-
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Fig. 5. (a){(c) preferential selection case for b = 1:60; (d){(e) random selection case for b = 1:016. Squares and circles
correspond to the persistence function P (t; tw) and the correlation function Q(t; tw) of the system in equilibrium state
respectively. In the present case, tw = 3001 is selected as an initial waiting time. That the persistence goes to zero in the
long-time limit indicates the random walk and annihilation of the co-operators, whereas the plateau value of the persistence
implies the stable maintenance of the communities of the co-operators. The same information of the evolution can also be
given by the behaviour of the correlation function, which sustains the level of value of the original time in the preferential
selection case and displays mean-�eld behaviour in the random selection case.

newed completely after �nite waiting time. This is
reminiscent of the random walk and annihilation.[8]

The behaviour of correlation function Q(t; tw) also
gives out the same evolutionary characters of the sys-
tem. For preferential selection case, this quantity 
uc-
tuates weakly around the initial value Q(tw; tw), in-
dicating the stable maintenance of the communities
of co-operators. For random selection case, the ran-
dom walk and annihilation of co-operators causes the
long-time correlation to be independent of the initial
state, which can be calculated roughly by a mean-
�eld approximation method. Since the co-operators
can be regarded as walking randomly, the probabil-
ity of revisiting those sites, which had been visited
before, will be in proportion to the average density
of the co-operators. Assuming that the number of
co-operators is equal to N(tw) at time tw (note that
the system has already attained equilibrium before
this time), the mean-�eld approximation will give out,
Q(t; tw) � N(tw) � N(tw)=N , in the long-time limit
t!1. From Fig. 5, one can �nd that the analysis is
in good agreement with the numerical simulation.
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