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Evolutionary prisoner’s dilemma game with dynamic preferential selection
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A modified prisoner’s dilemma game is numerically investigated on disordered square lattices characterized
by aφ portion of random rewired links with four fixed number of neighbors of each site. The players interacting
with their neighbors can either cooperate or defect and update their states by choosing one of the neighboring
and adopting its strategy with a probability depending on the payoff difference. The selection of the neighbor
obeys a dynamic preferential rule: the more frequency a neighbor’s strategy was adopted in the previous rounds,
the larger probability it was picked. It is found that this simple rule can promote greatly the cooperation of the
whole population with disordered spatial distribution. Dynamic preferential selection are necessary to describe
evolution of a society whose actions may be affected by the results of former actions of the individuals in the
society. Thus introducing such selection rule helps to model dynamic aspects of societies.

PACS numbers: 02.50.Le, 05.50.+q, 87.23Cc, 89.65.-s

I. INTRODUCTION

Game theory [1, 2, 3, 4] were introduced to study com-
plex behaviors qualitatively of biological, ecological, social
and economic systems. Of particular famous is the evolution-
ary prisoner’s dilemma game (PDG), which was introduced
by Axelrod [3] to study the emergence of cooperation among
selish individuals, have attracted most attention in theoretical
and experimental studies. Recently, more and more attentions
have been focused on the applications of the PDG in the area
of behavior sciences, biology and economics, etc [5, 6, 7].
In the original PDG the players could make two choices: ei-
ther to cooperate with theirs co-players or to defect. They
are offered some payoffs depended on their choices, which
can be expressed by2 × 2 payoff matrices in agreement with
the four possibilities. The players get rewardsR(P ) if both
choose to cooperate (defect). If one player cooperates while
the other defects, then the cooperator(C) gets the lowest pay-
off S (sucker’s payoff), while the defector(D) gains the high-
est payoffT (temptation to defect). Thus the elements of the
payoff matrix satisfy the conditions:T > R > P > S and
2R > T + S, so that lead to a so-called dilemma situation
where mutual cooperation is beneficial in a long perspective
but egoism can produce big short-term profit.

In the studying of the PDG, one of the most interesting
items is to study under what conditions will the mutual co-
operation emerge and sustain stably or how to facilitate the
cooperation of the whole population [2, 3, 4]. In the PDG, the
state where all players are defectors has proved to be evolu-
tionary stable state [8], which has inspired numerous investi-
gations of suitable extensions that enable cooperative behav-
ior to persist. Nowak and May [8] have introduced a spatial
evolutionary PDG model in which individuals located on a
lattice play with their neighbors and with themselves. The
dynamics of the game is govern by a deterministic rule: in-
dividuals adopt the strategy that has received the highest pay-
off among its neighbors including themselves. It had been
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shown that the spatial effects promote the survival of cooper-
ators [8, 9, 10, 11]. Szabó and Tőke extended the determin-
istic dynamics of the model to a stochastic evolutionary one:
rather than following the most successful neighbor’s strategy
straightly, the adoption of one of the neighboring strategies
is allowed with a probability dependent on the payoff differ-
ence [12]. This revised version took account into the irrational
choices of the players and observed that below certain critical
valuesbc (noise-dependent) a stable absorbing state of allC
emerged. Recently the spatial PDG have been studied on dif-
ferent social networks models, it was found that cooperation
can be maintained on these networks in a wide range of net-
work parameters [13, 14, 15, 16, 17, 18]. In addition, dynamic
network model [19] and dynamic payoff matrices [20] were
also introduced to sustain high concentration of cooperators
in the evolution of PDG.

In the present work, we study the PDG using Szabó-Tőke
version [12] on disordered lattices with slightly different dy-
namics. Rather than randomly selecting a neighbor and
adopting its strategy with a probability between two rounds
[12, 17, 18], the players select one of their neighbors to up-
date their states according to a dynamic preferential rule:the
neighbor whose strategies were adopted more frequent by
them in the previous rounds will be selected with lager proba-
bility. Our main aim is to investigate how the underlying struc-
ture of interaction and the preferential rule affect the evolution
the game. Using systematic Monte Carlo (MC) simulations,
we calculate the density of cooperators as a function of the
temptation to defectb for different disorder levelsφ of the lat-
tice and impact factorα of the “successful ”strategy (see the
definition of the model). It is found that both the structuralpa-
rameterφ and the preferential selection rule have an influence
on the evolutionary results of the game. In the case of regular
square latticeφ = 0, the preferential selection rule benefits
slightly the spreading of defectors, while for mixed popula-
tion φ > 0 cooperative behavior can be greatly enhanced by
forming clusters of cooperators in a wide range of parameter
b. In addition, disordered structure is also proved to be favor
for the persistence of cooperation. These results are distinct
from previous researches [8, 9, 10, 11] which believe that the
spatial structure may promote the survival of cooperators.
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II. MODEL AND SIMULATION

We consider an evolutionary PDG with players located on
disordered square lattices with aφ portion of random rewired
links and fixed number of neighbors of each site. The players
are pure strategists and can follow only two simple strategies:
C (always cooperate) andD (always defect). Each player
plays a PDG with itself and with its neighbors and collects
payoff depended on the payoff-matrix elements. The total
payoff of a certain player is the sum over all interactions.
Following previous studies [8, 12, 13, 15], the elements of
payoff matrix can be rescaled, i.e., we can chooseR = 1,
P = S = 0, andT = b(> 1) without any loss of generality
in the evolutionary PDG.

In society, some special persons may influence others
munch stronger than the average individual, still these influ-
ential persons are coupled back to their social surroundings
[15]. In other words, different neighbors would have different
impact on one’s behavior. In general, one can expect that the
influence between two people is asymmetric and would evolve
with time. To model this situation we define a quantityAij(t),
which describes the impact weight ofjth player toith player
at timet and possesses asymmetric property, i.e., independent
of the corresponding quantityAji(t). In this way, we hope to
catch some general effects that dynamic asymmetric influence
among the players might have on the dynamical behavior of
the game.

The randomly chosen playeri revises its strategy by select-
ing one of its neighborsj with a probabilityγ according to a
preferential selection rule:

γij =
Aij(t)∑

k∈Ωi
Aik(t)

, (1)

whereΩi is the community composing of the nearest neigh-
bors ofi. Eq. (1) means that the larger the impact weight of a
neighbor, the more probability it is selected to compare with.
If and only if their strategies are different, theith player’s
state as well as the neighbor’s impact weight will be updated,
otherwise nothing happens (no strategy transformation and
weight updating). Accepting the idea suggested by Szabó
[12, 17, 18], given the total payoffs (Ei andEj) from the pre-
vious round, playeri adopts the neighbor’s strategy with the
probability

W =
1

1 + exp [−(Ej − Ei)/K]
, (2)

whereEj is the neighbor’s payoff andK characterizes the
noise introduced to permit irrational choices. Note that the
decision is only affected by their payoff difference. Sincethe
work by Szabó-Tőke [12] the parameterK is usually fixed
to 0.1, therefore in the present study we use the same value.
Generate a random numberr uniformly distributed between
zero and one, ifr < W , the neighbor’s strategy is imitated and
a revising onAij(t) is performed according to the following
rule

Aij(t + 1) = Aij(t)(1 ± α), (3)

where the minus corresponds to the case ofr > W with no
strategy updating forith player. For the initial condition, all
Aij(0) are assigned as1.0. The parameterα in Eq. (3) can
be depicted as impact factor which characterizes qualitatively
the relative change of the impact weight of once comparison.
Since in most realistic cases the influence of the successors
would be greater than those losers on one’s behavior, this rule
could be termed as: ‘win-strengthen, lose-weaken’.

Two groups of systems will be considered subsequently. In
the first caseα = 0.0 with φ = 0.0, 0.1, and1.0 are stud-
ied. This means that the impact weight is independent of
time, namely the neighbors of each player will be selected
with equal probability to compare with during the whole pro-
cess of the evolution. This allows us to understand how the
underlying lattice structure would affect the evolution ofthe
PDG. In the second caseα = 0.01 with correspondingφ val-
ues are investigated, i.e., the dynamic preferential rule is taken
into account to study what influence of this rule will have on
the evolutionary PDG. Starting from a random initial state,the
rules of the model are iterated with parallel updating by vary-
ing the value ofb for fixed φ andα values. We have found
that a small amount of external noise is efficient to avoid the
slowing-down phenomenon towards the stable state of the sys-
tem. To do this, after a round of play, we chose one player at
random and flip its strategy. This is enough to speed the sys-
tem to attain dynamic equilibrium. The total sampling times
are6 × 104 MC steps and all the results shown below are av-
erages over the last5000 steps.

III. RESULTS

In the following we show the results of simulations per-
formed in systems with300 × 300 players. Our key quantity
is the cooperator densityρC , the average fraction of players
adopting the strategyC of the equilibrium state. The main
features of the steady-state phase diagram are similar to the
results obtained in Ref. [12], i.e., there exist two different ab-
sorbing states(ρC = 1 andρC = 0) whose stability regions
are separated by the active phase. We have found numerically
thatρC ≃ 1 in all cases we are interested ifb < 5/4, which
can be regarded as a homogeneous cooperation state. Since
our main aim goes beyond this trivial steady-state, we will
only concentrate on the region ofb > 5/4, where many new
features may emerge.

Our main results, i.e., theb dependence of the average den-
sity ρC of cooperators in the equilibrium state for different
values ofφ andα, are shown in Fig. 1. First we consider
the model without preferential selection (α = 0). In the case
of φ = 0.0, which corresponds to square lattice structure, we
recover the result of the stochastic model [12].ρC decreases
monotonically with increasingb until a certain thresholdbc,
where the cooperators vanish. With more long range links
emerging on the lattice (φ = 0.1), the level of cooperation is
promoted unexpectedly, which is contrary to the previous re-
searches whose results support that the local interaction may
promote the cooperation of the whole population (see Refs.
[8, 9, 10, 11] and the references therein). Particularly, inthe
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FIG. 1: Average density of cooperatorρc as a function of the temp-
tation to defectb in the equilibrium state. Open and closed symbols
correspond to the case of random selection and preferentialselection
of one neighbor to compare with respectively.

case ofφ = 1.0 corresponding to a random mixed population,
where there is no spatial structural advantage, the cooperation
is enhanced extensively. Even in the caseb > 2.0, minor
fractional cooperators can be found in a sea of defectors. Re-
cently, Huaert and Doegeli have studied another famous evo-
lutionary game, snowdrift game, on different types of lattice
[21]. They have found that spatial structure eliminates coop-
eration for intermediate and high cost-to-benefit ratio of co-
operation because benefits of costly cooperative acts accrue
not only to others but also to the cooperator itself [21, 22].
Review of the present PDG model we studied, each player
C plays with itself besides its nearest neighbors, which indi-
cates that it will gain at leastR payoffs even in the worst case
(surrounding by defectors). In a different interpretation, be-
sides their neighbors, the cooperators’ investment will benefit
themselves too. In addition, the high cost-to-benefit ratioof
cooperation in snowdrift game corresponds to large values of
the temptation to defectb in PDG. Then there is not surprising
that the disordered structure would promote the cooperation
in the present model.

We now consider the influence of the dynamic preferential
selection on the evolution of the game. The results obtained
for α = 0.01 are summarized in Fig. 1 using open symbols.
Though the qualitative behavior referred by the calculations
is similar to those of the previous version, there are some
remarkable differences. For well-structured populations, dy-
namic preferential selection promotes cooperation for small b;
however, for largeb, the fraction of cooperators is lower than
in random selection case, i.e., the defectors are favored. While
for mixed populations (φ = 0.1 and1.0), cooperative behav-
ior can be greatly promoted and maintained in a wide range of
the parameterb. Even in the extreme defection circumstance
(b > 2.0), cooperators can survive and persist with a minor
level as illustrated by open triangles in Fig. 1. We expect that
the dynamic preferential selection induces the emergence of
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FIG. 2: Snapshots of equilibrium configurations of cooperators
(white) and defectors (black) in the evolutionary PDG on a disor-
dered lattice (φ = 0.1) for b = 1.906. A 50× 50 portion of the full
300× 300 players is illustrated.
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FIG. 3: The average fraction of those who cooperate at a special time
t = 59201 in the steady-state, whom again adopts strategyC in the
subsequent evolutionary process (squares); and the fraction of those
who always cooperate after timet = 59201 (circles).

influential players; and if some of them are cooperators, then
compact communities consisting of their neighbors and them-
selves could be formed and survive stably in the background
of defectors, which would contribute to the persistence of the
cooperation.

In order to check this statement and also get an intuitive
understanding of the evolution, four typical snapshots of the
steady-state distribution of cooperators and defectors are il-
lustrated in Fig. 2. These snapshot are a50 × 50 portion
of the full 300 × 300 players. From these configurations,
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one can observe how the communities of cooperators persist.
Though their center, size, and shape change continuously and
two communities may unite or single community may divide
into more parts or disappear, their space distribution is rough
persevered in a long time scale (even after six hundreds MC
time steps). In a distinct view, the average fraction of those
who cooperate at a special timet = 59201 in the steady-state,
whom again adopts strategyC in the subsequent evolutionary
process, is reported in Fig. 3, also illustrated the fraction of
those who always cooperate after that time. A detailed nu-
merical analysis results in approximate eighty percent andten
percent of them respectively after eight hundreds MC steps.
These results suggest that, instead of the random walk and
annihilation of the clusters of cooperators [12], they fluctuate
stably in the background of defectors.

IV. CONCLUSIONS

To sum up, we have explored the general question of coop-
eration formation and sustainment from the perspective of co-
evolution between the dynamics of the players’ state and their
interactions. Both factors of the underlying structure andthe
dynamics of the game were considered. On the one hand, dis-
ordered lattices are introduced to study the effect of the topo-
logical structure of interaction. Our investigations support the
results obtained in Refs. [21, 22], i.e., spatial extensiongener-
ally fails to promote cooperative behavior in a system where
every individual contributes to a common good and benefits
from its own investment. In the present model, this condition

is realized by simply letting the players play with themselves
besides their neighbors.

On the other hand, considering the asymmetric influence in
many nature populations, we defined the individuals’ impact
weight, which describes the strength of the influence of the
players to their neighbors. Based on this quantity, a dynamic
preferential selection rule was introduced to the dynamicsof
the game. The state updating of the players is performed by
selecting one of their neighbor to compare with and deter-
mine whether adopt it’s strategy or not dependent on their
payoff difference. The larger impact weight of a neighbor,
the more probability it was selected. The simulation results
have indicated that this selection rule have a remarkable in-
fluence on the evolutionary results of the PDG. In the case of
well-structured populationsφ = 0, the preferential selection
rule benefits slightly the spreading of defectors for largeb;
while for mixed populationsφ > 0, cooperative behavior can
be greatly promoted and maintained by forming communities
consisting of influential cooperators and their neighbors in a
wide range of parameterb. Dynamic preferential selection
are necessary to describe evolution of a society whose actions
may be affected by the results of former actions of the individ-
uals in the society. Thus introducing such selection rule helps
to model dynamic aspects of societies.
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