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ABSTRACT This paperdemonstrates thamulti-agent systemshave the capacity to model a region in all its
complexity. Anexample isdeveloped to show that theseols are not only capable of spatializing and
distributing the behaviourof individuals, but above all, thatthey allow individuals to integratedifferent
perceptions oflpace as well as theonstraints imposed othem by acommunity. Adialectic is established
betweenindividuals, spacesand society, which is used to simulate a regionusing clearly defined social
representations and spatial practices, which are suitable for testing our geographical theories and hypotheses.

RESUME: Il s’agit de mettreen évidencda capacitédessystemesmulti-agents amodéliser un territoire en sa
complexité. Unexempleest développépour démontrerque ces outils sont non seulemensusceptibles de
spatialiser et dedistribuer le comportementdes individus mais qu’ils autorisent surtout l'intégration de
perceptions différenciées dd'espace par les individus et de contraintegui leurs sont exercéespar une
collectivité. Une dialectiques’instaure entreindividus, espaces esociété, qui contribue ala simulation d'un
territoire par le biais depratiquesspatiales et de représentations sociatdairementdéfinies, propres atester
nos théories et hypothéses géographiques.

Key worbs modelling, multi-agent systems, geographical space,social representations, sustainable
development

MOTS CLES modélisation, systémemulti-agents,espacegéographiquereprésentationsociale, développement
soutenable.




1. Background:

This paper relates to reseatblat hasbeen undertakehy the authorsspecifically on the
modelling of spatial or socialynamics. It presentthe methodologal approach that is
common to their research. Bousquet and (.e Pageare interested in the modelling of
interactions between natural and social dynamgisg multi-agentsystemgMAS) in the
context ofresearch omenewableresourcemanagement J. Rouchier specialises in the
relationships of exchangé&gtween individuals in a socieand, particularly, onthe role
of trust in the contexbf renewableresource managemetL. Bonnefoy is interested in
neworks of individuds' spatial pradiceswhich corstitute a region orare influenced by a
region. The authors hope that this paper will encourage a fresh apprdabelhcemcept of
region because the development of reseanctihe suject tends to follow asccial theory
that sometimes neglects spatial constraints and sources and vice versa.

Multi-agent systems are used becalmsy thave "thepotential to modeindividuals, their
behaviour and interéions directly and offe radically new solutions tomodelling”
[Ferber, 1995]. Weonsiderthat theseproperties could béeneficial togeography. In
fact, "multi-agent modelling i9ased orthe capacityof currentsoftwareprogrammes to
give individualsa degree ofautonomy"”. Thandividuals or agentsanrepresenpeople,
animals,trees, etc., ormore broadly, a townyvillage, herd orforest. Anagent is an
"entity capable of acting on itself or its environmevttjch reacts to itshanges antias a
partial representation of its environment" . 8yolving in amodelled spee—inthe form
of a regular grid in which resourcase spread out, deed a more complex reconstruction
of an observed realityeach agenbuilds up itsown repesentation of space and by
acting,the agentransformsthe spacdor others.Interactionsare central tahis type of
modelling.

This kind of approach is in itself a theoretical and methodological response—ie a theory is
really played out—to dealingvith complex phenomena and ftas an important
contribution tomake toenvironmentaissues. Fotthe geographer, it imnotherway of
putting a behavioural approach in a sgatontext at thdevel of individuals. This is
achieved bydefining the agents andhe rules that governheir interaction, and not by
applying healy parametrizedormulasthat represent dynamisystemsand whichtake

more account oinflows and outflows thanthe behavioural aspects of interactions .
Lastly, it is aneffectiveway for researchern® constructexperiments, irother words to

play out theirtheories, spatial ntels or hypotheses and somulateand comparevhat
happens in a multi-agent universe with an observed "reality".

2. Multi-agent systems and geographical space

A novel geographicabpproachusing MAS involved modelling thedynamics of the
evolution of asystem oftowns [Bura, 1993]particularly thehierarchies in terms of the
urban functions and the population. The towns observed expansion, fiithatkvith the
theories on urban hierarclnd activities beaime morespecializedoecause osupply and
demandmechanisms. Heever,the agents' (towns')ntrinsic immobility meant that the
model did not use the multi-agents’ capacities to the full in terms of spatial interaction.

Some research hé&gen conducted oife application oMAS to problems ofspatialized
resource managemeiitor exampleSchmitz[Schmitz, 1997]studieddifferent ways of
organizing agents for managing a resource distributespace. Inaddition to research in
the field of ecology and ethology, where scientists seek to undetb@mchanisms for
finding food [Folse, 1989 ; Roese,1991; Drogoul, 1993;Krebs, 1996; Pepper, 1999],
studieshave alsobeen conducted on societies scial agents thananage common
resources [Epstein and Axtell, 1996; Kohler and E., 1996].

These models do natcorporate the different levels avhich spacecan beconsidered.
When resourcesare put into a spatiatontext, this isusually a question okimple
geographical coordinates in a continuous space or elementary cells in a defined The
representatio of natural spatializedorocesses oragents' representations of space

" The application used here benefited from advances made with the software Common Pool Resources for
Multi-Agent Systems (CORMAS) developed at CIRAD.



presupposeshat spatial entities amnodelled onseveral different levelsvhich can be
manipulated by the agents.

F. Bousquet andD. Gautier [Bousquet, 1999]have demonstratedwo ways of
approachingthe integration ofspace iNnMAS using the example of aprocess of
agricultural expnsion: farmergultivate landaroundtheir village, whose population is
growing; animalgoam freelywhich degrade¢he forest savannalat varying rates. The
first approach is alassic-typantegration wiere space ishe support forthe resources
used by herds (forest) and farméiestile areas).The agents haveules that govertheir
spatial behaviour.They modifytheir environmenand perceiveall the nodifications that
occur within their field operception objectivelyin the second modelthe spatial entities
such aghe forest, fields and savareh are establishedh priori. In this way, the authors
presen the spatialstructure ofthe multi-agentuniverse. These spatialnits have the
characteristics ohgents buthe herdsand farmersare only apparent inthe rules that
govern howthe entitiesfunction. It is as ifthe forestmakesway for the savannah, the
fertile areas may way for fields, etc. Témgthors consider that thetsgo approaches mark
the beginning of research on the integration of space in MAS.

When thetwo modelsare consideredrom a geographicaliewpoint, there are several
points tonote. Inthe first model,space isentral to the irractions betweeagents and
the model takes account of the individual moeata of the farmer and heagjents their
interactions as wels the sp#al occurrenceghat arelinked to the relativeposition of
resources and their transformation. However, some asmectackingwhen itcomes to
converting the modedf this supportspace into a model of region. Firstly,the level of
interaction between space and society is zero because nathme, space is mehg the
support forthe forest, savannah, etand individuals onlact ontheseelements if they
happen to meet. Secondly, over timedlgents' individual action producaspace where
spatial entities like théorest, fields, savannand thevillage community aresimply the
result of a visuatonstruction assembldaly the observer(the simulator). There are no
models of othetypes of contingencies, namethe relativeimportance of sociaissues
on behaviour and afollectiveand individualrepresentations afpace. For exanig the
collective representation of therest which forms duringthe simulation cannot be
reintroduced inthe simulation. Only the observer-simulator'sperception can be
introducedempirically when the results ofthe simulation are interpretedyhich is a
different point of view again.

In the secnd model, which ighe opposite ofthe aboveapproachthe agentsare spatial
entities which presupposesheir existencea priori. The observer-simulator models a
geographical construction which requit@thorough undeestdingof how tobalance the
degree of spatiajeneralizatiorand thesemantidevel of theseentitiesand theirrules of
exchange. Although modelling exchanges betweatiagentities may seesmnatural, it
is possible that the behaviour of indivals could give rise tepatial structurethatcan be
identified by the agentsduring or after thesimulation, which is nothe casehere. In
particular, exchangeare totdly objective, everythingccurs as ifan unexpectegower
was reguling the relationships betweerentities, overridingindividual action. In
addition, there is no longer any real spatialization apart fhaposition of objectsn the
multi-agentspace andhe dynamicscan only be managedjuantitatively.Lastly, in this
particular example, it is highhkely that theresultswill only confirm the originalspatial
hypotheses [Bonnefoy, 1998]. Nonetheless, this apprcactproduceesults of interest
for resource management or the development @&frea. Toachievethis, the scale of the
study must be appropriate to the definitionkgethe construction dhe spatial entities. In
this sense, it isadvisable tavork on a smallescale and tanvolve severavillage units
and differentiatedtopographic configurations, in other wis to provide the complexity
required for the chosen spatial scale.

One of the bendB of MAS is their capacityto revealhow different stakeholders use
space and their perception ofind, ifthe caseshould arisethe characterization dfpes
of space, their differentiation and organization, which is every geographer's
preoccupation. We envisagemadel thatassociatesndividual spatial practices and the
group's appreciation of space. Heltee region is nodonger aspatializedsub-unit of the



MAS, on the contrary, thmMAS becomes thenodelledregion. This method is nbjust a
guestion of integrating space into multi-agsystems, it ishe arrangemeraf theoretical
concepts of geographical space. It involves the constructiodiafezticbetween a space
produced by the societyand a spacehat restricts individuals, usingindividual and
collective representations. Thigalls for what Distributed Artificial Intelligence experts
refer to more generally as learning. In addition, the existing interaction between space and
society musbe integrated, i¢he dynamiaconstraint tht the space—which is produced
by society—imposes othe society.Our exampleuses spatiatepresentations to model
the interactions betweetlhe path taken byhepherds wharaze theirflocks in the
undergrowth and forestryresourcewith the aid of spatiatepresentations. Thgrazing
is actively controlled, to agreater orlesser extent, bythe individual or collective
representations wth are but up duringthe simulation,integratingthe successivestates
of the forestry resourcéetween savannah deteriaoat andre-growth. Inthe model of
interactions, the representationsct asmediator between theagents andhe common
resource [Bousquge Barreteau etal.,, 1999]. Here, howevelthe representations are
individual or collective constructionsthat come from spdial practices during the
simulation instead obeing common references establistegriori as in the case of
religious practices, forexample[Lansing, 1994] Thus, inthe model, weconsiderthree
elements that interact dynamically: individuals' spatial practices, individual representations
of space andollective spatiatepresentationThesethree elementgiteract astime goes
by in the machineind the individuapractices andepresentations simultaneousnsue
from the collective representation and influence it.

3. Description of the model of the forest's social representations:

The aimof the model is to determine whether multi-ageyistemshave a valuable
contribution to make to the understanding of a geographical spagenore generally, to
investigate thaelynamics betweemdividual andcollectiverepresentations arttow they
are manifested. Above all, the modelseful as an illustration. We&andraw upa work
hypothesis and ask whethdéine combination ofindividual and collective spatial
representations in anulti-agent "forest" system is sufficient for simulating the
management of the foreagsource. In othewords, how muctemphasishouldthere be
in the model on the shepherd agent's "awarenedhéaieed to manades environment
and onthe restrictionsthat the communitymposes onindividual spatialpractices if a
system for usinghe forestry resource+anging fromsimple predation to sustainable
management—is to be established?

The model is asollows: eachshepherdagent takesis flock to graze in dorest that is
divided into groves. This leads to a degradation of the savdaredt. Atthe samdime,
the forest regrows naturally according tprabability that gives priorityo regeneration at
the edges of the forest. Through their spatial practibeshepherdagentsmemorize the
areas where they have been and ftireir representations: tretate of thavhole forest is
then judgedn the basis ofthesepartial perceptions.The shepherdagents proceed by
extrapolation to form their global representatiothef forest. Thenore forest spaceabey
come across,the more their representatios of an abundanforest andvice versa.
Periodically, these different individuedpresentations (refed to as indiidual thresholds
in the model)'meet” in the villageand acollective repesentation iut together. Here,
this construction is symbolizday anaverageevaluationwhich sets aollectivethreshold
limiting the future grazing. Intheory, the grovesthat are smallethan the collective
threshold will not bgrazed. Howeveeveralstrategiesare open tothe shepherd agent.
His individual practicegan conform to thgroup'sorders, inwhich casehis strategy is
called "collective”. He can ignore the collective rules and gnéz#ock systematically, a
strategy which iscalled "personal”. Lastly, hecan go against the collectivelles by
modifying his practices, argb strike aniddle coursebetweenhis habitual practices and
the collective threshold. This strategy is called "arrangement”. Inthe model, the
shepherds' strategies aréabtishedat the start othe simulatiorand arepermanent. The



elementswvillage, shepherdforestand land arddentified by variables andorocesses
which give them their autonomy in the programme (Figute 1)

Group Situated agent Aggregate Cell

Land
Forest
Village Shepherd oo
Individual threhold components regowth prob.
flag
Collective strategy
threshold

Move regowth

compute threshold
Consumme

Vote
Manage forests

spatial update

Figure 1: the model's components. Inheritance from Cormas classes

In a multi-agent systemspace can beepresented by grid made up of cells—that
represent a particular use or resource—onto which the agents move as a functioe of a
step that regulatebe artificial world. Inour casethe shepherdagents andheir flocks
move at random but, &&r aspossible, lhey stayin the forestonce they haveeached it.
The forest is a set of cells that may or may not be adjacent (Figure 2).

. | | n
Figure 2: initial state. The forest is in dark grey (686 cells are arranged into 1llgroves),
the savannah is pale grey. Theshepherds and their flocks are represented by a dot. This
multi-agent universe is a closedgrid of 50 x 50 squares, each one has eight adjoining
squares.

Each grove (group of forest cells,@re isolated forestell) is identified cyclically by the
communityand, depending on its size (the numbersgfuares itcontains) andhe set

2 Figures 1, 3 and 4 have been set up using Unified Modelling Language which makesssilsie to overcome
the constraints relating to the multi-agent systems' programming environment.



collective threshold, an indicator (flag) indicates the village agent's decision concerning its
use. The shephemyentwho thenwants to ganto thegrove may or may not graze his
animals. The followingdiagram shows the agents'generalbehaviour and peeption

which depends otheir surroundigs (in or outsidethe forest and theirstrategy(Figure

3). It will be detailed during the course of the simulations.

Surroundings = zero forest

no
Strategy = individual

a surrounding celll's
flag > individual threshold

Strategy = collective

no

Strategy = arrangement

random move a surrounding cell's flag

and no transformation no ‘ > arranged threshold
of the land |

‘ ¥

e

é Move and transform the land

Figure 3: behaviour and perception of theshepherd agent. The section in
the dotted box is a variation of the "personal" strategy.

The model's rhythns setaccording to theationaledescribed abovevhich isillustrated
in Figure 4.Here, wecan sedhe series ofdifferent sequencesnentioned above: the
shepherd agentsehaviourand perception;forest regrowth which depends a random
draw; the calculation of the size wéw groves. Théast stageshave a longeperiodicity:
the calculation of the individughreshold based attie routesundertakenthe calculation
of the collectivethreshold andhe differences betweerthe collective and individual
thresholds;updatingthe flags thatban grazingwhich the shepherdagentswill cross
depending on their strategy. Then, the cycle begins again.
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equest ind. threshold

compute collective threshold

collective threshold compute arranged threshold

set the access totrue or false

if t=n* period L

~

L update flag H

Figure 4: diagram of sequencing for one time step.

4. Several simulations

We plan successive simulations where the play of individual and collective representations
will increase. In each simulation, 48epherd agents m®throughthe space at ralom.

Two simulationsnvolve the "personal”strategy.This "method ofmodelling interactions

is similar to what economistefer to as externalitiegBousquetet al., to be published).

In fact, the shepherd agenpsacticeinfluencesthe practice obthersevenwhenthere is

no direct contactbetweenthem. Inthe first scenario the representationsre nonexistent

and theshepherdgrazeshis flock assoon as hecomesacrossthe resource. Ineach
simulation, the forest disappeafier 120 to 250time steps.This scenaridllustrates the
tragedy of thecommons whereollective goodsare exploited to thpoint of exhaustion
because profits are individualized and costs are shared [Hardin, La&8Jresearclthat
integatesawareness ahe resource and s@t interactions, in particulaffor example,
[Bousquet, Duthoit et al., 1996]), hdemonstratedhe shortcomings of thisiypothesis.

In addition, the major criticism of thitheory concerrihe fact that commoresources are

not necessarily freely available. Societies organize rules to regulate access, and this is one
of the objects of our simulations.

A secondscenario includemdividual representations dhe forest thatcome wihin the
"personal” stategy andtake no account of the group. It is teeepherd's owrpast
perception of the f@st—hislearning—thatconditions where he grazéss flock. If the
forest isdegradedihe shepherd does nohemorize manywvooded spacesn his route
and his new individual threshold goes utich mears hewill not be able to graze small
groves(Figure 3). Inthis scenario, wecould consider thahe shepherdagent becomes
"aware" of the finite nature of theresource beingmodelled. The shepherdgent
anticipates in accordanceith his perception of theimmediate surroundings. The
individual threshold iscomparable to an indicatdnat is inverse tothe flock size. In
"reality”, the limitation that theshepherd imposesn himself can be interpreted as him
giving up a number of animate adjust flock size t¢he forest'snew carrying capacity.

% In fact, the "route memory" cumulates the number of squarksedt perceived in a perioaf 10 time steps in
order to make up the individual threshold that results from the balance period — route memory (with aqoetiod
to 10). In this way, the individual maximum threshold is 10.



The results ofthe simulationsshow that amodel with the capacity to integrate the
individual representation and individuadanagerrent of a resource-flock combination,
provides an alternative to the tragedy of the commons (table 1).

Of the initial forest, 25% is maintained in 20 groves (Figure 5 auerl). The average
number ofsquarescovered by theshepherdagent islow (26 squares).Given the
considerable standard deviation, these figures shewuge disparitpetween individual
spatial (comingacross alarge grove, etc.) oreconomic opportunities (absence of
competitionwith othershephercagents). Theaverage individuathreshold is very high
which suggests that flocks are small.

Strategy Forested |Number of | Average Mean
cells groves grazing threshold
I ndividual 150 20 26 8
Collective 230 61 32 5
Mixed 233 63 32 6

Table 1: Results of simulations with the different strategies

Individual strategy Collective strategy Mixed strategy
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Figure 5: state of the forest after 300 time steps

Our next simulations introduchké restrictions imposed lilge group. Thdirst strategy is
"collective”. An average of the individuahtesholg (in otherwords the individual

perceptions of the state of the forest) is calculatedy 10 time stepsnce theyhave been
updated, and groves that are smaller than this threaheldxcludedrom grazingwhich

is indicated byhangingflags" todenote &an. Theresult ofthe simulationsshowsthat

much more of the forest is maintained than in the preweaample(35% ofinitial forest)

but it is fragmented into small groves (Figure 5 and Table 1).

This is only the spatial translation of the metlisdd by thegroup (and bythe simulator)
to impose a restriction on the shephagénts becaudbe banrelates to aninimumsize.
If arestriction of thistype imposed bythe group beardittle relation to areal situation
(protected forest spaces are often large and thefewaref them), itseems to be socially
effective here: thélocks graz more andhe deviationsare smaller.There is an apparent
normalization carried out by thgroup which reducesthe inequalitiesbetween the
shepherchgents. Inaddition,the averagéhreshold indicatethatflock size isgreater. It
coud be that the fragmentation of tHerestinto small grovesmeans thathere are more



spatial opportunitiesavailable to eaclshepherdagentfor reachingforest areas. The
inadequacy of this spatial explanation becomes clear later on.

The dynamics andhe regulationsare activated by thegents' othe group's incomplete
knowledge ofthe forest environment. Theollective thresholdcan be compared to the
events in thismulti-agentuniverse in order taletermine thedifference because the
"average" individual "learning” is a quantitative rfienspatial) interpretation @he size of

the forest. When the value tife collectivethreshold idfive atthe endof the simulation,

this presupposes thdhe averageshepherdagent estimates thdalf of the space is
wooded. Yet, only 10% dhe spacés forested.The same applies to tipeevious model

in which the shephercagentsperceived tha0% of land was wooded when fact the
figure was only 7%. It is truéhat in our model, one forest squan be counted several
times in the referencgeeriod. But this very biased repsentatin is obviouslypart of the
regulation. Deviation is caused bynumeroudactors. The first, which is very important,
isthe use of amaverage taepresenthe behaviour of agroup! Anotherfactor is that the
orders for management apply to the next 10 time steps while g@amigues the forest
grows back and the orders also out ofsync(in time) because theyeflect the memory

of the routes undertaken during the prexgdiO time stepd.he natural increase grove

size can invalidate the grazing ban. Groves that are only just bigger than those subject to a
ban can be totally deforested beftine next collectivalecision istaken because it is the
village agent and not th&hepherdagent thahasthe power to impose a baffhis raises

an interesting question about whetle not an individuathould begiven responsibility

in the context of sustainable management. This optiasisimulated in the model sthat

its impact on forest cover could bssessedhe shepherdagent can exercisgelf control

by comparing the collective threshalith the sizeof the grove that he wants hanimals

to graze. Theeffect isimmediatebecause theertiadue to thedecision-making intervals
disappears. Howevethe results from dimited number of simulations were ndhat
different from the above strategy. In fact, it does not answer the frightening question as to
what becomes of collective responsibility when there is a "transfer” to individual reason.

The "arrangement"” strategy, based on the "collective" strategy, appears like a dispensation
adopted by theshepherd agent. Bgneetinghalfway, heallows hisflock to graze the
groves thaare of thesize setcollectively plus half the difference betweeidt and his

own threshold of perception (cf. Figure 3). This violatiotha&fgroup's orderscould be
considered as a necessdglay because givesthe agentime toreduce the size of his

flock (individual thresholdyvhich would occuranywaysincethe forest in hisimmediate
environment will continue taliminish. Simulations of this typeroduce results very
similar to the "collective" strategy

We observed thathe number offorested squaresfluctuated considerably from one
simulation toanother. The figuresxplicitly translde theoscillations betweefpersonal”
and "collective” strategies. It is also interestingiote that when anindividual adaptation
of the collective rule is modelled, theransre deviation between ageimmsrelation to the
accumulation of grazed spaces. This adaptémas to slightlymore forestfragmentation
and slightly smalleflocks (collectivethreshold is 6 istead of5). Theseresultshave a
small contribution tanake to the hypothesis odlationshipgproposedabove concerning
the fragmentation of thdorest into small groves, the grazingopportunity and the
difference in grazing betweeagents witha "collective” strategy. Inthe light of the last
results, itappears thatespectinghe collectiverules reduceghe iniial deviation intime,
i.e. the deviation linked tthe relative position—advantageonisotherwise—ofeach one
(in relation to the forest and the other shepherd agents).

5. Conclusion

This model, which is a versimple construction, cdme used tsimulate awide range of
situations anch greatdeal of interactiorbecause of the dyamicestablished between the
space andthe individual and collective representations. In factthe individual
representations only reflect the learning processethetishepherdagentgoes through to

find the forest spaces. It does not reflect the "objective reality” of this multi-agent universe
because thagenthas only evolved in a vergmall part ofthe availablespace and his



personal and past experience are no indicafitime actual state of tHerest. Fromthese
individual perceptions, a collective representation emevhesh provides aommon rule
and meanshat eachshepherd hasaccess tdhe othershepherdstepresentations. This
incomplete knowledge meanghat there is adisparity betweenthe reality and the
percegion of the multi-agentuniverse,which helpsenrich thedynamics andegulate the
resource. Thus, the"personal” strategy refers tbe concept okxternality, we could
say that the "collective" strateggfers to theheory ofconventionsthe "collectivization”
of representations within thegents' saety whichacts here aa stimulus tothe triptych
of individual, space and society. In terms of modellthgre is anediatorand acatalyst
between the three poles which are drilsgrihe disparity beteen theevents that occur in
the multi-agenuniverse.Modelling the play of spatl representationdeveloped by the
agents during the course of thaation is interestingn the framework ofMAS and as an
approach ta@eographical space and evemstainable resoura@anagementMulti-agent
modelling can includexperts'representations as Wels theirdecisionswhich means it
is possible to understartdeir implicationsfor aresource andiow theyare linked in a
sodal context. Theresearch presentetiere illustratesthe theoreticalissues being
discussed inthe field of MAS on acounting for social constraints andndividual
autonomy[Gilbert, 1995] in a gnamic environmentCollectively, the agentsdecide on
the restrictionsthat they inpose on themselvesfor using anenvironment, theyadapt
individually to thesesocialrestrictionsand, thustransformtheir commonenvironment,
then strengthen or change the social rules depending on their degree of satisfaction.
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