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1 Introduction

Sahni (1974) showed that computing a pure Nash equilibrium in a finite
n-player game in normal form is NP-complete as a function of the number
of players. More recently, Gilboa and Zemel (1989) considered the related
problem of computing a mixed Nash equilibrium. They showed that given
a game G and an integer k, computing whether there exists a mixed Nash
equilibrium where each player gets a payoff of at least k is NP-complete as
a function of the number of strategies while computing a correlated equilib-
rium where each player gets a payoff of at least k is decidable in polynomial
time. These results are the most basic complexity results concerning solu-
tion concepts for non-cooperative games in normal form'. They suggest that
one should not expect to find a polynomial time algorithm for determining
a Nash equilibrium in an arbitrary finite game in normal form. Thus if we
expect to be able to compute a Nash equilibrium, we will have to restrict the
instances to classes of games other than the class of arbitrary finite games in
normal form. We have at our disposal a very large number of classes from
which to choose.

Here we consider the class of spatial games. An n-player spatial game is
a game in normal form where the payoff of each player is the weighted sum of
the payoffs from playing each of his neighbors, where the set of neighbors of a
player is given by the spatial structure of the game. Spatial games are studied
by Blume (1993), Ellison (1993), Young (1998), and Baron et al. (2002),
among others. This type of strategic interaction is of interest for economists
because it arises quite naturally in social situations. Consider the following
example. Players are firms where each firm is regarded as a repository of
competencies. Represent each firm by the vertex of a graph and join two
firms by an edge if they cooperate in a process of production. Thus the
firms are organized in a network of two-firm cooperative agreements where a
firm may cooperate with several firms. We say that two firms are neighbors
if they cooperate in a process of production. Each firm has to choose an
activity among a finite set of activities. Activities are complementary in the
sense that they represent different phases of a process of production. Thus
each firm prefers to choose an activity unlike the activities chosen by its
partners. The total payoff of a player is the sum of the payoffs he gets from
all his cooperative agreements. An obvious goal is to compute the maximum
payoff the players can get at an equilibrium of this spatial game. We show

'For complexity considerations in extensive form games see Koller and Megiddo (1992),
Koller, Megiddo, and von Stengel (1996), Chu and Halpern (2001). Conitzer and Sandholm
(2002) strengthen and extend the results by Gilboa and Zemel. Furthermore, they obtain
hardness results for games of incomplete information and stochastic games.



that the problem of computing a Nash equilibrium, where each player gets
a total payoff of at least k, is NP-complete as a function of the number of
players. On the positive side, this problem becomes solvable in polynomial
time when the number of strategies is two for each player. The presentation
of the paper is as follows. In section 2 we define the spatial game and give
a brief introduction to the theory of computational complexity. In section 3
we prove the NP-completeness result.

2 Preliminaries

Spatial Games

The basic building block is a two-player game G, called the base game,
with a common finite action set X, and combined payoff function 7 : X X
X — IR? which assigns to each strategy profile x = (x1,z2) the pair 7(z) =
(m1(x), mo(x)) of payoffs. We associate with G a spatial game

G = (1,Ty, (Si)ier, (u;)ier)

in the following way. The player set is I = {1,...,n}. Every player i € I
has strategy set S; = X. Moreover, the elements of I form the vertices of a
weighted graph I, of order n, with the interpretation that player ¢ is located
at vertex i. E denotes the set of edges of I',,. Two vertices or players ¢ and
j are neighbors, if {i,j} € E. N(i) denotes the set of neighbors of i. T, is
undirected in the sense that j € N(i) if and only if i € N(j). Furthermore,
we assume that N (i) # () for all 4, i.e. none of the vertices is isolated. Each
{i,7} € E has a weight w;; that measures its relative importance. Note that
w;; is not necessarily equal to wj;. Payoffs in the spatial game G are given

by
wi(s) = > wymi(si,s;)
JEN (i)
for i € I, s = (s5)jer € [1;e1 S5 = S, that is, a player collects the aggregate
weighted payoffs from playing with each of his neighbors.
Let s* € § be a stragegy profile of the spatial game G. The profile s* is a
Nash equilibrium if for all i € I, s; € S;,

ui(8%) > u(si, 8%5)

where s*; = (s7);z. Clearly, wi; = w;; = 0 has the same effect on payoffs
as {i,7} ¢ E. We can set w;; = wj; = 0 for {i,5} ¢ E and assume without
loss of generality that w;; > 0 or wy; > 0 for {i,j} € E. Then {i,j} € E
it and only if w;; + wj; > 0. That is E is determined by the weight matrix
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W = [w;;]. Hence for given X and n, the variable inputs for an instance of
the spatial game consist of the entries of the weight matrix W = [w;;].

NP-Completeness

For a comprehensive introduction to NP-completeness the reader is referred
to Garey and Johnson (1979). Let P denote the class of problems that can
be solved on a deterministic Turing machine by a polynomial time algorithm,
that is, polynomial in the length of inputs for an instance of the problem. Let
NP denote the class of all decision problems which can be solved in polyno-
mial time by a nondeterministic Turing machine. Instead of using the notion
of nondeterminism, one can define the class NP in terms of the concept of
polynomial-time verification. A verification algorithm is an algorithm
which takes as input an instance of the problem and a candidate solution to
the problem, called a certificate, and verifies in polynomial time whether the
certificate is a solution to the given instance. Thus the class NP is the class
of problems which can be verified in polynomial time.

The fundamental open question in computational complexity is whether
P = NP. By definition P C NP. It is not known, however, whether all
problems in NP can, in fact, be solved in polynomial time by a deterministic
Turing machine. The generally accepted belief is that P # NP. In an effort
to determine whether P = NP, the class of NP-complete problems has been
introduced. We say that a problem P, is polynomial-time reducible to a
problem P, written P, <, P, if

(i) there exists a function f which maps any instance of P; to an instance
of P, in such a way that I; is a “yes” instance of P if and only f(I;)
is a “yes” instance of P.

(ii) for any instance Iy, the instance f(/;) can be constructed in polyno-
mial time.

If P; is polynomial-time reducible to P, we can say that any algorithm for
solving P, can be used to solve P;. Intuitively, problem P; is “no harder”
to solve than problem P,. A problem P is said to be NP-complete if (7)
P € NP, and (it) for every problem P' € NP, P’ <, P. If a problem
satisfies condition (i7) but not necessarily condition (7), then we say that it
is NP-hard. Let NPc denote the class of NP-complete problems.

The binary relation <, is transitive on the set of decision problems. Because
of this, a method frequently used in demonstrating that a given problem is



NP-complete is the following:

(i) show that P € NP, and
(ii) show there exists a problem P’ € NPc, such that P’ <, P.

It follows from the definition of NP-completeness that if any problem in NPc
can be solved in polynomial time, then every problem in NPc can be solved
in polynomial time, and P = NP. On the other hand, if there is some
problem in NPc that cannot be solved in polynomial time, then no problem
in NPc can be solved in polynomial time.

3 The NP-Completeness Result

We show that the problem of determining a Nash equilibrium in a spatial
game is NP-complete as a function of the number of players. To state this
problem in the accepted format, we convert it to a decision problem in con-
sidering the problem of deciding whether the Nash profile gives a payoff of
at least k € IN.

NASH FOR SPATIAL GAMES (NSG)

INSTANCE: A finite spatial game G = (I, ', (Si)ier, (u:)icr) and a positive
integer k. The finite spatial game is given by X, n, and a weight matrix
QUESTION: Does there exist a Nash equilibrium in G in which each player
obtains the payoff of at least k 7

Proposition 1 NSG € NPc.

Proof: We follow the method described in section 2. We must do two things.
First we must show that NSG € NP. The nondeterministic Turing machine
just guesses an arbitrary strategy profile s € S and has to consider n- (| X|—1)
deviations and to take the n(n — 1) weights into account in the computation
in order to verify whether the Nash equilibrium and payoff conditions are
satisfied at s where the time of computing a single payoff is of the order n.
Second we must construct a reduction from a known NP-complete problem
to NSG. We use the GRAPH k-COLORABILITY problem.

GRAPH k-COLORABILITY
INSTANCE: A graph T',, = (V, E) and a positive integer k < |V].
QUESTION: Is I'), k-colorable, i.e. does there exist an assignment of &
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colors {1,2,...,k} to the vertices of I';, so that neighboring vertices are
assigned different colors ? This problem is NP-complete for an arbitrary k.

Given an instance I';, = (V, F) and k of GRAPH k-COLORABILITY,
we construct an instance G of NSG as follows. In a FIRST STEP, we restrict
ourselves to graphs I',, = (V, F) without isolated points. The set of vertices
constitutes the set of players. The neighborhood of player 7 is exactly the
set of vertices adjacent to vertex i, i.e. N(i) = {j € V : {i,j} € E} and
N(i) # 0 if 4 is not isolated. For distinct players ¢ and 7 in V, define the
weights w;; as follows:

- )1 if {Z,]} e E;
Wi = Wji = { 0 otherwise.

The finite set of strategies is S; = X = {1,...,k} for every player i € V.
The base game payoff of player ¢ when he encounters a player j € N (i) is
given by

[ KNG s # s
mi(si, 85) = { 0 otherwise

We must show that an instance of GRAPH k-COLORABILITY is a “yes”
instance if and only if the constructed game G has a Nash equilibrium in
which each player gets a payoff of at least k.

First assume that I', is k-colorable. Then no two neighboring vertices
are assigned the same color. Create a strategy profile s* as follows : s} = ¢;
where ¢; is the color assigned to vertex ¢. The strategy profile s* is a Nash
equilibrium in which each player gets a payoff of at least k for G because (i)
each player i gets the maximum payoff k/|N(7)| in each bilateral encounter,
(7) his total payoff is k.

Conversely, suppose that G has a Nash equilibrium s* in which each player
gets a payoff of at least k. Notice that the maximum total payoft the players
can get in this game is in fact k. Each player gets a total payoff of k£ only
if he gets k/|N(i)| in each bilateral encounter i.e. only if for each pair of
neighbors, the players choose a different strategy. We can therefore create a
“yes” instance of GRAPH k-COLORABILITY.

It should be clear that our construction for creating an instance of NSG
from an instance of GRAPH k-COLORABILITY, can be carried out in poly-
nomial time. The length of an instance of GRAPH k-COLORABILITY is
O(n + |E| + k). The graph of the constructed spatial game is exactly I,
the cardinality of the common strategy set is k, and the base game payoff
can be determined with the elements of I',,. In particular, k/|N(i)| can be
computed when the graph structure is given. Therefore, an instance of NSG



can be constructed from an instance of GRAPH k-COLORABILITY in poly-
nomial time. Let f; denote the above mapping that associates instances of
GRAPH k-COLORABILITY for graphs without isolated points and NSG.
In a SECOND STEP we associate to any instance of GRAPH k-COLORABILITY

an instance of GRAPH k-COLORABILITY without isolated points. Denote
this mapping f;. fi is constructed as follows. k remains unchanged. If
I, = (V, E) is any graph, its image assumes the form I} = (V, E*). In case
I',, has no isolated points, set E* = E. In this case, [, = I} and I, is
k-colorable if and only if I'} is. In case I';, does have isolated points, let J
denote the set of isolated points and label them ji,...,7,. In the special
case J =V, set E* = {{j1, 52}, {42, Js}s- - - {Jm-1,Jm}}- Then both I';, and
I'* are k-colorable in the following way: Choose color ¢, = r mod k for node
Jr, ™ = 1,...,m. In the subcase J # V, choose any j, € V\J and set
E* = FEU{{jo,j1}, {s, 72}, -, {Jm=1,3m}}. Obviously, if I} is k-colorable,
then I',, is also k-colorable, since ' C E*. Suppose I, is k-colorable. Then I'},
is k-colorable as well. Namely, fix any k-coloring of I, and denote by ¢y the
color given to node j, in that coloring. Keep the colors of nodes in V\J. As-
sign color ¢, = ¢y +r mod k to node j,., r = 1,...,m. Then the new coloring
is a k-coloring of I'}. Hence we have constructed a mapping f; that assigns to
any graph I'), a graph I} without isolated points such that I, is k-colorable
if and only if I'} is. The identification and labeling of isolated points plus the
construction of the chain {{jo,j1},{J1, 72}, -+ {Jm_1,Jm}} can be achieved
in polynomial time. The composition f = f5 o f; constructs in polynomial
time a corresponding NSG instance from any GRAPH k-COLORABILITY
instance.

End of Proof.

Comments:

1. The GRAPH k-COLORABILITY problem is known to be in P when
k = 2. Therefore, the NSG problem is in P, when each player has two
strategies and the base game is an anti-coordination game (that is a base
game in which players prefer to choose a strategy unlike the strategy chosen
by their opponents).

2. In the main step of the proof, the constructed NSG instance satisfies
symmetry of the weights, w;; = wj;. Therefore, NSG remains NPc when
restricted to the subclass of spatial games with symmetric weights.

3. The construction in the last step of the proof can be modified to
show that GRAPH k-COLORABILITY remains NPc when restricted to
connected graphs.



4. Proposition 1 forms a contrast to the results obtained by Gilboa and
Zemel (1989) and Mailath, Samuelson and Shaked (1997). As underlined in
the introduction, Gilboa and Zemel (1989) showed that computing a corre-
lated equilibrium where each player gets a payoff of at least k is decidable in
polynomial time. On the other hand Mailath, Samuelson and Shaked (1997)
showed that a correlated equilibrium is equivalent to a Nash equilibrium of
a specific spatial game. This equivalence can be implemented in polynomial
time by simple manipulation of a set of equations. Proposition 1 still remains
valid, since the Mailath-Samuelson-Shaked model of local interaction is quite
different from ours.
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