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ABSTRACT Interspecific mutualisms are widespread,
but how they evolve is not clear. The Iterated Prisoner’s
Dilemma is the main theoretical tool to study cooperation, but
this model ignores ecological differences between partners
and assumes that amounts exchanged cannot themselves
evolve. A more realistic model incorporating these features
shows that strategies that succeed with fixed exchanges (e.g.,
Tit-for-Tat) cannot explain mutualism when exchanges vary
because the amount exchanged evolves to 0. For mutualism to
evolve, increased investments in a partner must yield in-
creased returns, and spatial structure in competitive interac-
tions is required. Under these biologically plausible assump-
tions, mutualism evolves with surprising ease. This suggests
that, contrary to the basic premise of past theoretical analyses,
overcoming a potential host’s initial defenses may be a bigger
obstacle for mutualism than the subsequent recurrence and
spread of noncooperative mutants.

Mutually beneficial interactions between members of different
species play a fundamental role in all ecosystems (1, 2), but
their evolution has challenged theoreticians for decades. In
1971, Trivers (3) pointed out the relevance of the Prisoner’s
Dilemma, in which two unrelated players benefit by cooper-
ating but do even better by cheating their partners. Ten years
later, Axelrod and Hamilton (4) proposed the Iterated Pris-
oner’s Dilemma, in which the same partners interact repeat-
edly, as the basic framework for finding cooperative solutions
to this problem. Although other approaches have been devel-
oped (1, 5–11), analyses of reciprocation have dominated the
theoretical literature on cooperation without kinship ever
since (11–18).

The general conclusions from this large body of work are
that strategies that reward cooperation and punish defection or
that persist in previously successful behaviors (Tit-for-Tat,
Pavlov, and their relatives) often do well. However, two
assumptions underlying these analyses are inconsistent with
the biology of most interspecific mutualisms (19): that the
players compete directly with their partners and that the
payoffs associated with cooperation, defection, cheating, and
being cheated are constants. The former assumption ignores
the reality that partners in interspecific mutualisms (e.g., corals
and dinoflagellates, higher plants and mycorrhizal fungi)
usually have different ecological requirements. The latter
assumption makes it impossible to analyze how initially neutral
relationships evolve into mutually beneficial ones and is prob-
ably also invalid for many cases of intraspecific cooperation
(11).

We therefore reframed the problem as a game in which
payoffs vary according to investments made while still satis-
fying the inequalities of the Prisoner’s Dilemma (4). If a player
invests I, it incurs a cost C(I) to itself and provides a benefit

B(I) to its partner, and failure to invest has neither costs nor
benefits (Fig. 1 A and B). As long as players interact only once,
no investment is the best strategy, even though both players
would be better off if both invested. In the classical Iterated
Prisoner’s Dilemma, this paradox is solved (4, 12–16) by
strategies that lead to repeated mutual investments. However,
if the amount of investment can itself evolve, investments of
each player should decrease to 0 whenever the partner’s
decision to invest depends only qualitatively on whether a
player cooperates at all, rather than quantitatively on how
much the player invests. For in that case the partner’s response
does not depend on the amount of one’s investments, and
because investments are costly, they should be minimized. It
follows that Tit-for-Tat and Pavlov (and similar, successful
strategies in the Iterated Prisoner’s Dilemma) have the same
pitfalls as simple cooperation in the noniterated Prisoner’s
Dilemma once the assumption of fixed costs and benefits is
relaxed.

To solve this new dilemma, we assumed that the investment
decision in one round of the iterated game depends quanti-
tatively on the payoff received in the previous round. This
assumption is biologically equivalent to the plausible notion
that healthy organisms have more to offer their partners. In
our evolutionary game, hosts and symbionts are described by
their investment strategies, which are given by two parameters:
a, the initial offer, and b, the reward rate or rate of increase of
investment as a function of past payoff (Fig. 1C). In each round
of the iterated game, investments lead to benefits and costs
that are given by two functions B(I) and C(I) (Fig. 1B). For
these functions, we used the formulas B(I) 5 B0(1 2
exp[2B1I]) and C(I) 5 C0I, where B0, B1, and C0 are param-
eters determining the cost–benefit relation (thus we assumed
that costs increase linearly with investment I, but benefits level
off, Fig. 1B).

The interaction between a host with strategy (a,b) and a
symbiont with strategy (a9,b9) is defined as follows. The
partners start by investing a and a9, respectively. Therefore, in
the first iteration, the host gets the payoff B(a9) 2 C(a), i.e.,
it gets the benefit B(a9) from the symbiont’s investment and it
pays a cost C(a) because of its own investment. Similarly, the
symbiont gets the payoff B(a) 2 C(a9). In every further
iteration, the host invests a 1 bp, where p is the payoff to the
host from the previous iteration, except if that payoff was
negative, in which case the investment is 0. Similarly, the
symbiont invests a9 1 b9p9 in every further iteration, where p9
is the payoff to the symbiont from the previous round, except
if that payoff was negative, in which case the investment is 0.
For example, in the second iteration, the host invests a 1
b[B(a9) 2 C(a)] and the symbiont invests a9 1 b9[B(a) 2 C(a9)]
unless B(a9) 2 C(a) or B(a) 2 C(a9) are negative, in which case
the corresponding investment is 0. The total payoff of the
mutualistic interaction within one generation is the sum of the
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To simulate evolution, we assigned hosts and symbionts a
starting phenotype for a and b and tested them against mutants
in each generation. If in any generation the mutant host does
better than the existing host in the iterated game against the
existing symbiont, then the mutant phenotype replaces that of
the existing host. Replacement in the symbiont occurs analo-
gously. This evolutionary scenario assumes that ‘‘invasion
implies fixation,’’ i.e., that initial increase of a rare mutant will
lead to replacement of the former resident by the mutant, and
that ecological, that is, replacement, dynamics occur on a much
faster time scale than evolutionary dynamics, so that replace-
ment has occurred before the next mutation arises. The
evolution of mutualism from a neutral relationship occurs
when the parameters a and b evolve away from 0 in both
partners.

Simulations confirmed that when the reward rate b is fixed
at 0 (as in classical Tit-for-Tat or Pavlov), then the initial offer
a evolves monotonically to 0 (Fig. 2A). When both a and b were
allowed to vary, the reward rate b, and consequently the initial
offer a, again invariably evolved to 0 in our simulations (Fig.
2 B and C), but the evolutionary dynamics were much more
complex. If the host has a higher reward rate than the
symbiont, it is better for the host to have a low initial offer to
keep costs down, whereas it is better for the symbiont to have

a high initial offer because otherwise returns would be too low
(and vice versa, e.g., generations 1,100–1,300 and 2,000–2,200
in Fig. 2 D and E). Mutations can lead to switches in the
ranking of the reward rates in the host and the symbiont. Until
the corresponding switch in the initial offers evolves, there may
be transient periods during which selection favors higher
parameter values in both partners (e.g., generations 1,400–
1,900 in Fig. 2 D and E), causing the average payoff to increase
temporarily. Thus, even though all parameters and payoffs
eventually evolve to 0, the evolutionary dynamics are not
monotonic. This complexity, together with earlier results from
spatial game theory (17, 18, 20, 21), suggested that considering
spatially structured populations in which competitive interac-
tions occur locally could yield different results.

Therefore, we placed the hosts and the symbionts on sep-
arate spatial lattices (Fig. 1D). The iterated game was played
between hosts and symbionts at corresponding positions on
these lattices, after which competition occurred between near-
est neighbors on each lattice separately. Thus, hosts and
symbionts at corresponding positions in the two lattices inter-
act according to their phenotypes as described above. The
payoffs from these interactions are then used to determine the
winners in intraspecific competition within hosts and within
symbionts. At each position in both lattices, we compared the
payoffs of the occupant with the payoffs of the eight nearest
neighbors (Fig. 1D). The individual with the highest payoff
among those compared then was placed at this focal position.
To complete the evolutionary scenario, we assumed that, after

FIG. 1. Model structure. (A) Payoff matrix for partners that invest
I or do nothing D. As long as B(I) . C(I), the payoffs satisfy the
assumptions of the Prisoner’s Dilemma. (B) Benefit B(I) and cost C(I)
functions used in simulations. (C) Strategy for repeated interactions,
defined by the initial offer (intercept a) and by the reward rate (slope
b). (D) Spatial lattices for host and symbiont; example illustrated shows
30 host-symbiont pairs; heavy vertical arrow symbolizes mutualistic
(between lattice) interaction; horizontal arrows symbolize competitive
(within lattice) interactions.

FIG. 2. Representative examples of simulations without spatial
structure. (A) With 0 reward rates, the initial offer evolves monoton-
ically to zero. (B and C) More complex dynamics when both initial
offer and reward rate evolve. (D and E) Detailed view of dynamics,
showing transient period of increasing mutualism (generations 1400–
1900). For simulations shown here, cost and benefit parameters were
B0 5 4.7, B1 5 1.8, and C0 5 0.6 (Fig. 1B), with 15 iterations per
mutualistic interaction.
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competition, mutations occur at each lattice position with a
certain probability. Mutants had a phenotype drawn from a
bivariate normal distribution with mean the previous occu-
pant’s phenotype and variance a certain percentage of the
mean.

The dual lattice structure with two separate lattices for hosts
and symbionts corresponds to the idea of biological markets
(9) and reflects the fact that, in nature, ecological differences
between hosts and symbionts normally limit direct competition
between them. Nevertheless, interspecific mutualisms contrib-
ute indirectly to the outcome of intraspecific competition
because successful mutualists are potentially better competi-
tors. Our use of spatial lattices implies that competition for
reproductive success is stronger between neighboring individ-
uals than between individuals far apart. Thus, the bigger the
size of the lattices, the larger the total number of hosts and
symbionts relative to the size of the local neighborhood within
which competition occurs. One rather restrictive assumption in
our model is equal lattice size for hosts and symbionts and
hence equal population size of the two partners. Future work
should allow for different lattice sizes and for empty lattice

sites, thus allowing the species abundances to vary between the
partners and over time.

In our model, numerical simulations showed that, with the
addition of spatial structure, the initial offer a and the reward
rate b can increase from very low levels, and long term
persistence of mutualism is possible (Fig. 3A). Maintenance of
mutualism is characterized by large fluctuations in the average
payoffs in the host and in the symbiont (Fig. 3A). These
fluctuations are due to fluctuations in the average reward rates
and initial offers in the host and the symbiont (Fig. 2). At any
one point in time, the partner with the higher average reward
rate and lower average initial offer has the higher average
payoff. However, the ranking of average reward rates and
initial offers in the two partners changes frequently (Fig. 2),
leading to the observed fluctuations in average payoffs. A large
number of numerical simulations showed that spatial structure
can maintain mutualistic relationships for a wide range of
model parameters (see below).

Our results are related to those of Mar and St. Denis (22),
who also modeled continuously varying strategies in the Iter-
ated Prisoner’s Dilemma. They similarly concluded that a
continuous version of Tit-For-Tat does well against a number

FIG. 3. Representative examples of simulations with spatial structure. (A) Mutualism persisting with large fluctuations in the average payoffs.
(B) Same as A but with stochastic competition and much smaller fluctuations. (C) Asymmetry in generation time (100 symbiont generations per
host generation) resulting in asymmetry in the payoffs and loss of mutualism. (D) Same as C but with stochastic payoffs, leading to persistence
with payoff asymmetry. For these simulations, B0 5 7, B1 5 2.5, and C0 5 0.1 (Fig. 1B). There were 15 iterations per mutualistic interaction, mutation
probability per lattice site was 0.02, mutational variance was 5% of the mean, lattice size was 25 3 25, and a and b were set initially to 0.005 across
both lattices.
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of other strategies in spatial games, but there are three
important differences between their approach and ours. First,
their strategies are not defined by investment decisions. Sec-
ond, they do not consider the dual lattices that account for
ecological differences between potentially mutualistic species.
Most importantly, they do not simulate evolutionary dynamics
by introducing a constant stream of randomly generated
mutant strategies but by competition between a limited and
fixed number of strategies. This a priori prevents a gradual
evolutionary decay of cooperation. Thus our results provide
more robust support for the importance of spatial structure
when strategies vary continuously.

Unfortunately, analytical results for the conditions that
favor the evolution of mutualism are not feasible. Even in the
nonspatial case (Fig. 2), the iterative procedure for the mu-
tualistic interaction renders the dependence of the total payoff
on phenotypic values analytically intractable. To appreciate
the complications, recall that the evolutionary dynamics to-
ward loss of mutualism in the nonspatial case are not mono-
tonic (Fig. 2 D and E). In particular, the direction of selection
on mutualism in one of the partners depends on the present
phenotype of the other partner, leading to complicated inter-
actions which nevertheless always result in the eventual loss of
mutualism. In the spatial model with dual lattices, there is even
less hope for analytical results. An intuitive explanation of why
mutualism can persist with spatial heterogeneity is as follows.
Across the lattices, various dynamically homogeneous pockets
of decaying mutualism (Fig. 2) develop. Interactions at the
boundaries of such pockets lead to transient local selection for
more mutualistic phenotypes with higher average payoffs
(similar to the transient effects shown in Fig. 2 D and E).
Therefore, new and more mutualistic pockets form that again
start to decay and at the boundaries of which new transients are
generated. This leads to continual recurrence of mutualistic
types (think of a boiling sea of mutualistic bubbles) with overall
maintenance of mutualism. However, persistence does not
imply an evolutionary steady state. Instead, initial offers and
reward rates vary in space and time, inducing fluctuations in
average payoffs (Fig. 3A). This variation suggests that real
world mutualisms should be characterized by considerable
genetic heterogeneity in the amount that partners invest in
each other, a result similar to those obtained by Ikegami and
Kaneko (23).

We varied specific features of the model to see how biolog-
ically important factors should influence the evolution of
mutualism. Larger populations were modeled by increasing the
size of the spatial arrays. Increasing the duration of a rela-
tionship was modeled by increasing the number of iterations in
the mutualistic interaction per generation. The effects of
vertical transmission were simulated by assuming that hosts

that win the competition bring their symbionts with them with
a certain probability, i.e., the success of these symbionts was
determined by the success of their hosts rather than by
competition among symbionts. Nonlocal dispersal was mod-
eled by competition occurring not with nearest neighbors but
with eight individuals randomly chosen from the lattice. The
sensitivity of the results to different costs and benefits was
assessed by varying the parameters B0, B1, and C0 in the cost
and benefit functions. We also tested two types of stochasticity.
For stochastic competition (Fig. 3B), the occupant at each
lattice site was left unchanged with a certain probability. For
stochasticity in the payoff (Fig. 3D), we drew the actual benefit
from investment I in any round of the iterated game from a
normal distribution with mean B(I) and variance a certain
percentage of the mean.

The results of these modifications are summarized in Table
1. Larger population size, greater number of interactions per
generation, high benefit-to-cost ratios, and vertical transmis-
sion favored mutualism, whereas dispersal across the lattice
rather than to neighboring sites was disadvantageous. These

FIG. 4. Effects of population size and stochasticity on persistence
of mutualism. Mean and SD of the times until the average payoff fell
below 0.001 is shown for 10 runs starting from randomized low initial
phenotypic values (a, b , 0.005) for a range of population (lattice)
sizes; lines leaving the upper horizontal indicate persistence beyond
300000 generations. (A) No stochasiticity. (B) Same as A but with
stochastic competition and stochastic payoffs. F, baseline parameters
B0 5 8, B1 5 4.2, and C0 5 0.4 in the benefit and cost functions; other
scenarios were obtained by varying one of these parameters: Œ, B0 5
1.3; l, B1 5 0.7; ■, C0 5 12; different parameters with a high
cost-benefit ratio were used for �: B0 5 20, B1 5 4.2, and C0 5 50. The
number of iterations per mutualistic interaction was 10.

Table 1. Summary of the effects of different parameters on the
evolution of mutualism

Increase of parameter
Effect on initial spread

and persistence

Population (lattice) size positive (cf. Fig. 4)
Number of mutualistic interactions

(iterations) per generation
positive

Maximum benefit B0 positive (cf. Fig. 4)
Unit cost C0 negative (cf. Fig. 4)
Vertical transmission positive
Nonlocal dispersal negative
Stochasticity in contest positive (cf. Figs. 3B and 4)
Stochasticity in payoff positive (cf. Figs. 3D and 4)
Asymmetry in generation time negative (cf. Fig. 3C)
Asymmetry in mutation rate or

magnitude
negative

The robustness of these patterns was confirmed by hundreds of
simulations by using a variety of baseline conditions.
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results parallel those summarized by others (10, 11, 16).
Contrary to previous results (11, 16, 24), however, were the
effects of stochasticity in our model (Fig. 3 B and D). Both
types of stochasticity were highly beneficial for the evolution
of mutualism (Fig. 3 B and D). Our interpretation of this result
is that stochasticity generates many more of the instances of
transient local selection for more mutualistic phenotypes that
lead to the overall maintenance of mutualism (see above). Also
unexpected was the effect of asymmetries in evolutionary rate,
which were modeled by giving hosts and symbionts different
values for generation time, mutation rate, or mutation mag-
nitude (Fig. 3C). Without exception, the partner with the
higher evolutionary rate [probably the smaller symbiont in
many natural systems (25) (but see also ref. 26)] had a higher
investment and a lower payoff, a result consistent with other-
wise puzzling patterns of unequal relative benefits in inverte-
brate–algal and lichen mutualisms (2).

Table 1 summarizes the effects of these parameters in
isolation, but the likelihood of mutualism in natural systems
will be determined by the combined influence of various
factors. Of particular importance are the positive effects of
stochasticity and large population size because the real world
is noisy and vastly larger than the spatial arrays we were able
to use. Fig. 4 reflects the results of numerous simulations that
demonstrate that large spatial arrays and stochasticity can
rescue otherwise doomed mutualisms for a large range of
parameter combinations in the cost and benefit functions.

Our analyses do not apply to indirect mutualisms or mutu-
alisms without repeated interactions, for which other ap-
proaches are more appropriate (1, 5–11). We also made a
number of simplifying assumptions. For example, we assumed
equal lattice sizes for hosts and symbionts and hence equal
population size of the two partners, which is unrealistic for all
intracellular symbioses. In addition, we assumed one-on-one
interactions between hosts and symbionts, that is, we assumed
that one host interacts with only one symbiont in every
generation and vice versa. More realistically, one could assume
that a host interacts with several symbionts in one generation
(and vice versa), which would increase the potential for conflict
among cooperators and cheaters. Finally, we made the sim-
plifying assumption that all reproduction is asexual. The effects
of relaxing these and other unrealistic assumptions will be
explored in future studies.

Nevertheless, our model represents the first specific attempt
to combine the Prisoner’s Dilemma approach with the basic
features of interspecific mutualisms. Overall, our results sug-
gest that the transition from neutral to mutually beneficial
interactions should often occur. Moreover, selection for higher
benefits and lower costs, an option we did not model, should
further stabilize mutualism once it evolves. Thus, the real
evolutionary challenge for mutualism may not be the spread of
cheaters in established associations, as has been assumed
traditionally by theoreticians, but rather the ability to survive
in intimate association in the first place. This may explain why

symbionts, although much more diverse than previously real-
ized, often have relatively few independent origins (26, 27).
Highly conserved molecular mechanisms for the formation of
associations (28) and the origin of new mutualisms through
lateral genetic transfer (29) also support this perspective.
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