Generating and Solving I mperfect I nfor mation Games

DaphneKoller
University of California
Berkeley, CA 94720
daphne@cs.berkeley.edu

Abstract

Work on game playing in Al has typically ignored
games of imperfect information such as poker. In
this paper, we present aframework for dealing with
such games. We point out several important issues
that arise only in the context of imperfect infor-
mation games, particularly the insufficiency of a
simple game tree modd to represent the players
information state and the need for randomizationin
the players optimal strategies. We describe Gala,
an implemented systemthat providestheuser witha
very natura and expressive language for describing
games. From a game description, Gala creates an
augmented game tree with information sets which
can be used by various algorithms in order to find
optimal strategies for that game. In particular, Gala
implements the first practical algorithm for finding
optimal randomized strategies in two-player imper-
fect information competitive games [Koller et al.,
1994]. Therunning timeof thisalgorithmispolyno-
mial in the size of the game tree, whereas previous
algorithms were exponential. We present exper-
imental results showing that this algorithm is also
efficient in practice and can thereforeformthebasis
for agame playing system.

1 Introduction

Theideaof getting acomputer to play a game has been around
since the earliest days of computing. The fundamental ideais
asfollows: When it isthe computer’s turn to move, it creates
some part of the game tree starting at the current position,
evaluates the ‘leaves of this partia tree using a heuristic
evaluation function, and then does a minimax search of this
tree to determine the optimal move at the root. This same
simpleideais till the core of most game-playing programs.
This paradigm has been successfully applied to alarge class
of games, inparticular chess, checkers, othell o, backgammon,
and go[Russdll and Norvig, 1994, Ch. 5]. There have been far
fewer successful programs that play games such as poker or
bridge. Weclaim that thisisnot an accident. These gamesfall
into two fundamentally different classes, and the techniques
that apply to one do not usually apply to the other.

The essentia differenceliesintheinformationthat isavail-
ableto the players. In games such as chess or even backgam-
mon, the current state of the game is fully accessible to both

1185

Avi Pfeffer
University of California
Berkeley, CA 94720
ap@cs.berkeley.edu

players. Theonly uncertainty isabout futuremoves. Ingames
such as poker, the players have imperfect information: they
have only partiad knowledge about the current state of the
game. This can result in complex chains of reasoning such
as. “Since | have two aces showing, but she raised, then she
is either bluffing or she has a good hand; but then if | raise
alot, she may redize that | have at least a third ace, so she
might fold; so maybe | should underbid, but" It should
be fairly obviousthat the standard techniques are inadequate
for solving such games. no variant of the minimax agorithm
duplicatesthe type of complex reasoning we just described.

In game theory [von Neumann and Morgenstern, 1947], on
the other hand, virtually all of the work hasfocused on games
with imperfect information. Game theory is mostly intended
to deal with games derived from “red life” and particularly
fromeconomic applications. Inreal lifeonerarely has perfect
information. The insights developed by game theorists for
such games aso apply to the imperfect information games
encountered in Al applications.

It is well-known in game theory that the notion of a strat-
egy isnecessarily different for games with imperfect informa
tion. In perfect information games, the optimal movefor each
playerisclearly defined: at every stagethereisa*“right” move
that is a least as good as any other move. But in imperfect
information games, the situationis not as straightforward. In
the simple game of “scissors-paper-stone,” any deterministic
strategy is alosing one as soon asiit is reveaed to the other
players. Intuitively, in games where there is an information
gap, it is usualy to my advantage to keep my opponent in
the dark. The only way to do that is by using randomized
strategies. Once randomized strategies are alowed, the exis-
tence of “optimal strategies’ in imperfect information games
can be proved. In particular, this means that there exists an
optimal randomized strategy for poker, in much the same way
as there exists an optima deterministic strategy for chess.
Kuhn [1950] has shown for a simplified poker game that the
optimal strategy does, indeed, use randomization.

The optimality of a strategy has two consequences. the
player cannot do better than this strategy if playing against
a good opponent, and furthermore the player does not do
worseeven if hisstrategy isrevealed to hisopponent, i.e., the
opponent gains no advantage from figuring out the player’'s
strategy. This last feature is particularly important in the
context of game-playing programs, since they are vulnerable
to thisform of attack: sometimes the code is accessible, and
ingeneral, sincethey alwaysplay the same way, their strategy

can be deduced by intensive testing. Given these important
benefits of randomized strategies in imperfect information
games, itissomewhat surprising that noneof the Al papersthat
deal withthese games (e.g., [Blair et al., 1993; Gordon, 1993;
Smith and Nau, 1993]) utilize such strategies.

Inthiswork, weattempt to sol vethe computational problem
associated with imperfect information games: Givenaconcise
description of a game, compute optimal strategies for that
game. Two issues in particular must be addressed. Firgt,
how do we specify imperfect information games? Describing
the dynamics of the players information states in a concise
fashionisanontrivial knowledgerepresentation task. Second,
given a game tree with the appropriate structure, how do we
find optimal strategies for it?

We present an implemented system, called Gala, that ad-
dresses both these computational issues. Galaconsistsof four
components. Thefirst isaknowledge representation language
that allows a clear and concise specification of imperfect in-
formation games. As our examples show, the description of
agame in Galaisvery similar to, and not much longer than,
a natural language description of the rules of the game. The
second component of the system generates game trees from a
game description in the language. These game trees are aug-
mented with information sets, a standard concept from game
theory that captures the information states of the players.

The third component of the system addresses the issue of
finding good strategies for such games. Obvioudly, the stan-
dard minimax-type agorithms cannot produce randomized
strategies. The game theoretic paradigm for solving gamesis
based on taking the entire game tree, and transforming it into
a matrix (called the normal or strategic form of the game).
Various techniques, such aslinear programming, can then be
applied to thismatrix in order to construct optimal strategies.
Unfortunately, this matrix istypically exponentid in the size
of the game tree, making the entire approach impractical for
most games.

In recent work, Koller, Megiddo, and von Stengel [1994]
present an aternative approach to dealing with imperfect in-
formation games. They define a new representation, caled
the sequenceform, whose sizeislinear inthe size of thegame
tree. They show that many of the standard a gorithms can be
adapted to find optima strategies using this representation.
This results in exponentialy faster algorithms for solving a
large class of games. In particular, they present an effective
polynomial time algorithm for solving two-player fully com-
petitive games (such as poker). We have implemented this
algorithm as part of the Gala system, and tested it on large
examples of several games. The resultsare encouraging, sug-
gesting that, in practice, the running time of the algorithmis
asmall polynomial in the size of the game tree.

Thefinal component of Galapresentsthe optimal strategies
inaway that is comprehensible to the user. For any decision
point in the game, it tells the user which actions should be
played with which probability. The system aso provides
other information, such as one player’ sbeliefs about the state
of another agent, or the expected value of a branch in the
tree. This functionality makes Gala a useful tool for game-
theory researchers and educators, as well as for users who
wish to use Gala as a game-theory based decision support
system. Finaly, Galacan aso play the game according to the
computed strategy, making it a basis for a computer game-

playing system for imperfect information games.

2 Somebasic gametheory

Gametheory isthe strategic analysis of interactive situations.
Several aspects of a situation are modeled explicitly: the
players involved, the aternative actions that can be taken by
each player at various times, the dynamics of the situation,
the information avail able to players, and the outcomes at the
end. Given such a model, game theory provides the tools
to formally analyze the strategic interaction and recommend
‘rationd’ strategies to the players.

The standard representation of a game in computer science
isatree, inwhich each nodeisapossiblestate of thegame, and
each edgeisan action availableto aplayer that takesthe game
toanew state. At each nodethereisasingleplayer whoseturn
itistochoosean action. The set of edges|eading out of anode
are the choices avalable to that player. The player may be
chance or ‘nature’, in which case the edges represent random
events. Theleaves of the tree specify apayoff for each player.
This representation is inadequate for games with imperfect
information, because it does not specify theinformation states
of the players. A player cannot distinguish between states of
the game in which she has the same information. Thus, any
decision taken by the player must be the same at al such
nodes. To encode this constraint, the game tree is augmented
with information sets. An information set contains a set of
nodesthat areindistinguishableto a player at thetime she has
to make adecision.

Figure 1 presents part of the game tree for a simplified
variant of poker described by Kuhn [1950]. The game has
two players and a deck containing the three cards 1, 2, and
3. Each player antes one dollar and is dealt one card. The
figure shows the part of the game tree corresponding to the
deals (2,1), (2,3), and (1,3). The game has three rounds.
In the first round, the first player can either bet an additional
dollar or pass. After hearing the first player’s bet, the second
player decides whether to bet or pass. If player 1 passes and
player 2 bets, player 1 gets one more opportunity to decide
whether or not to bet. If both bet or both pass, the player
with the highest card takes the pot. If one player bets and
the other passes, then the betting player winsone dollar. Let
(¢,d) denote the hands dealt to the two players. Initialy,
player 1 only knows his own card, so for each possible ¢, he
has one information set U, containing two nodes; each node
correspondsto thetwo possibilitiesfor player 2’shand. In her
turn, player 2 knows d as well as player 1's action at thefirst
round. Hence, she has two information sets for each d—V7
and V)—correspondingto player 1'spreviousaction. Finaly,
player 1 hasan information set U at the third round.

Given a game tree augmented with information sets, one
can define the notion of strategy. A deterministic strategy,
like a conditional plan in Al, isa very explicit “how-to-play
manua” that tellsthe player what to do at every possible point
inthe game. In the poker example, such amanual for player 1
would contain an entry: “If | hold a3, and | passed on the
first round, and my opponent bets, then bet 1. In general,
adeterministic strategy for player i specifies a move a each
of her information sets. Since the player cannot distinguish
between nodesinthe sameinformation set, thestrategy cannot
dictate different actions at those nodes.

1186

Figure 1: A partial game tree for simplified poker, containing three of the six possible deals. A move to the left corresponds to
apass, amoveto theright to abet. The information sets are drawn as ellipses; some of them extend into other parts of thetree.

Deterministic strategies are adequate for games with per-
fect information, where the players aways know the current
state of the game. In those games the information sets of both
players are dways single nodes, and a deterministic strategy
s; for player i is a function from those nodes at which it is
her turn to move to possible moves at that node. The fact
that deterministic strategies suffice for such gamesisthebasis
for the standard minimax agorithm (and its variants) used for
games such as chess. In such games, called zero-sum games,
there are two players whose payoffs always sum to zero, so
that one player wins precisely what the other loses. Asshown
by Zermelo [1913], the strategies produced by the minimax
algorithm are optimal in a very strong sense. Player i can-
not do better than to play the resulting strategy if the other
player isrational. Furthermore, she can publicly announce
her intention to do so without adversely affecting her pay-
offs. A generalized version of the minimax algorithm shows
the existence of optimal deterministic strategies for general
games of perfect information. The resulting strategy com-
bination (s1, ..., s,) has the important property of being in
equilibrium: for any i, player i cannot pick a better strategy
than s; if the other players are al playing their strategy s;.
Thisis aminimal property that we want of a“solution” to a
game: Without it, we are drawn back into the web of second
guessing that characterizes imperfect information games. (If
she playsthe“orthodox” strategy, then | should do X, but she
will figure out that thisis better for me, so she'll actually do
Y, butthen...))

It should befairly obviousthat deterministic strategies will
in general not have these properties in games with imperfect
information. Deterministic strategiesare predictable, and pre-
dictable play gives the opponent information. The opponent
can then find a strategy calculated to take advantage of this
information, thereby making the origina strategy suboptimal .
Unpredictable play, on the other hand, maintainstheinforma:
tion gap. Therefore, players in imperfect information games
should use randomized strategies.

Randomized strategies are anatural extension of determin-
istic strategies. Whereadeterministic strategy choosesamove
at eachinformation set, arandomized strategy (formally call

ed118

a behavior strategy) specifies a probability distribution over
the moves a each information set. In our poker example,
a randomized strategy p1 for player 1 can be described by
defining the probability of betting at each information set U.
and U/, ¢ = 1,2, 3. A combination of randomized strategies
M1, - - -, Hn, ONe for each player, induces a probability distri-
bution on the leaves of the tree, thereby alowing us to define
the expected payoff h;(p1, . . ., pn) for each player i.

In his Nobel -prize winning theorem, Nash showed that the
use of randomized strategies alows us to duplicate the suc-
cessful behavior that we get from deterministic strategies in
the perfect information case. In general games, thereis al-
waysacombination py, . . ., p,, Of randomized strategies that
isinequilibrium: for any 7, and any strategy s/,

That is, no player gains an advantage by diverging from the
equilibrium solution, so long as the other players stick to it.

Just as in the case of perfect information games, the equi-
librium strategies are particularly compelling when the game
iszero-sum. Then, as shown by von Neumann [von Neumann
and Morgenstern, 1947], any equilibrium strategy is optimal
against a rationa player. More precisdly, the equilibrium
pairs p1, o are precisely those where yi1 is the strategy that
maximizes max,,; min,,, ha(pq, py) and p, isthe strategy that
maximizes max,,, mi N ho (), 15) (which, since hy = —hy,
is precisely min,; max,; hi(uy, pi3)). Intuitively, p is the
optimal defensive strategy for player 1: it provides the best
worst-case payoff. It isthese strategies that we will be most
concerned with finding.

hi(/l]_,... a,u;aa,un)

3 Gala: agamedescription language

As we mentioned, the first component of Gala is a knowl-
edge representation language for describing games. Thisis
a Prolog-based language, that uses the power of a declara
tive representation to alow clear and concise specification
of games. The idea of a declarative language to specify
-games was proposed by Pell [1992], who utilizesit to specify

gane(blind_tic_tac_toe,

[players : [a, b],
objects : [grid_board : array(’ $size', '$size’)],
params : [size],
flow : (take_turns(mark,unless(full),until(win))),

mark : (choose(’ $player’, (X Y, Mrk),
(empty(X, Y), nenmber(Mark, [x, o]))),
reveal (* $opponent’, (X, Y)),
place((X, Y), Mrk)),
full : (\+(enpty(_,)) ->

out corme(draw)),
win : (straight_line(_, _, length = 3, contains(Mark)) ->
out cone(wi ns(’ $player’)))]).

Figure 2: A Galadescription of blind tic-tac-toe

symmetric chess-like games—a class of two-player perfect-
information board games. Our language is much more gen-
eral, and can be used to represent a very wide class of games,
in particular: one-player, two-player and multi-player games;
games where the outcomes are arbitrary payoffs; and games
with either perfect or imperfect information. As we will
show, the expressive power of Gala allowsfor clear and con-
cise game descriptions, that are generally of similar length to
natural language representations of the rules of the game.

Toillustrate some of thefeatures of Gala, Figure 2 presents
an example of a complete description for “blind tic-tac-toe,”
an imperfect information version of standard tic-tac-toe. The
players take turns placing marks in squares, but in histurn a
player can chooseto mark either an x or an o; herevealsto his
opponent the square in which he makes the mark, but not the
type of mark used. Asusual, the goal isto complete aline of
three squares with the same mark.

A game description in Gala is a list of features, each one
describing some aspect of the game. For example, pl ayers
[a, b] indicates that the game isto be played between two
playersnamed ‘a and ‘b’.

The Galalanguage has several layers: the lower ones pro-
vide basic primitives, whilethe higher layers use those primi-
tivesto provide more complex functionality. The lowest layer
providesthe fundamental primitivesfor defining the structure
of a game. The choose(Pl ayer, Myve, Constraint) primitive
describes the possible moves available to pl ayer a a given
point in the game. It alows riayer to make any move mve
satisfying constrai nt. This last argument can be an arbitrary
segment of Prolog code. In our example, mve consists of a
square, specified by its coordinates x and v, and a mark nark;
constrai nt requires that the square be empty and that vark be
either x or o. The first argument to choose can aso be nat ure,
inwhich case one of anumber of eventsischosen at random.
By default, these random events have uniform probability,
but a different probability distributionmay be specified. The
out come primitivedescribestheoutcome of thegame at the end
of a particular sequence of moves. This will often be a list
of payoffs, one for each player; but, as the example demon-
dtrates, Gala allows other possibilities. The reveal (P ayer,
Fact) primitive describes the dynamics of the players infor-
mation states. It adds Fact to Pl ayer’s information state. The
information added can be simple or an arbitrary Prolog ex-
pression. In blind tic-tac-toe, a player chooses both a square
and amark but reveal s to his opponent only the mark.

At a somewhat higher level, the f1 ow feature describes the
course of the game. The game can be divided into phases:
some may take place just once, while others can be repeated

1188

until agoal isreached. In blind tic-tac-toe, for example, the
playerstake turns executing the sequence of actions specified
in the mark feature, until the condition specified in the ful |

or thewi n feature is satisfied. The uni ess condition is tested
before the turn. Gala aso alows gameflow to be nested

recursively. Each phase can be described by its own series
of features, which may includetiow. The flow of bridge, for
example, can be described as follows:

flow : (play_phase(bidding),
phase(bi ddi ng,

[flow : (take_turns(bid,
phase(take_tricks,

[flow : (play_rounds(trick, 13), ...

In order to allow a natural specification of the game, Gala
provides a separate representation for the game state, where
relevant information about the current state of the game is
stored. Inblind tic-tac-toe, thegame state containsthe current
board position. Thisinformation isaccessed, for example, by
choose in order to determine which moves are possible: only
those squares that are enpty are legal moves. The game state
ismaintained by modifyingit appropriately, e.g., by thepl ace
operation, when the players make their moves. Much of
the functionality in the higher levels of the Gala language is
devoted to accessing and manipulating the game state.

The intermediate levels of Gala provide a shorthand for
concepts that occur ubiquitously in games. These include lo-
cationsand their contents, pi ecesand their movement patterns,
and resources that change hands, such as money. In blindtic-
tac-toe, the statements that deal with the contents of squares
areaninstanceof locationsand their contents. Other examples
of functionality supported by thislevel aremove(queen(white),
(d, 1), (d,8)) and pay(ganbl er, pot, Bet).

On a more abstract level, we have observed that certain
structures and combinations appear in virtualy al games.
Whilethese are usually sets of one sort or another, they come
in many flavors. For example, a flush in poker is a set of
five cards sharing a common property; a straight, on the other
hand, is a sequence of cards in which successive elements
bear arelation to one another; a full house is a partitioninto
equival ence classes based on rank in which the classes are of
a specific size. A word in Scrabble and a 21 in Blackjack
are another type of combination: a collection of objects bear-
ing no particular relationship to each other but forming an
interesting group in totality.

TheProloglanguageprovidesafew predicatesthat describe
sets and subsets. We have supplemented these with various
predicates that make it easy to describe many of the combi-
nations occuring in games. For example, chai n(Predi cate,
set) determines whether set is a sequence in which succes-
sive elements are related by Predicate; partition(Relation,
set, Oasses) partitions set into equivalence a asses based
onrel ation. For a more elaborate example, consider the fol-
lowing code, which concisaly testsfor all types of poker hand
except flushes and straights.

pl ay_phase(take_tricks)), ...

until (contract _reached))),

det ai | ed_partition(nmatch_rank,
associ ate(Si zes, Type,
[([4, 1], four_of_a kind), ([3, 2], full_house),
([3, 1, 1], three_of _a_kind), ([2, 2, 1], two_pairs),
([2, 1, 1, 1], one_pair), ([1, 1, 1, 1, 1], nothing)])
The predicate det ai l ed_partition takes two inputs, a set—
in this case Hand—and an equivalence relation—in this case
mat ch_rank, Which relates two cards if they have the same
rank. It partitionsthe set into equivalence classes, and pro-
duces three outputs: alist a asses of the equivalence classes

Hand, d asses, Ranks, Sizes),

in decreasing order of size; a corresponding list of the defin-
ing property of the equivalence classes, in this case the ranks
present in the hand; and a list sizes of the sizes of the dif-
ferent classes. In thisexample, if Hand iIS[90, 64, 94, 69,
661, thena asses wouldbe[[6&4, 69, 6¢], [99, 94]], Ranks
would be[s, 9], and sizes wouldbe[3, 21. In poker, sizes
contains the relevant structure of the hand, and it is used to
classify the hand using an association list. The above hand,
for example, isimmediately classified as afull house.

The high level modules of Gala build on the intermediate
levels to provide more specific functionality that is common
to a certain class of games, such as boards that form a grid,
playing cards, dice, andsoon. Intheblindtic-tac-toeexample,
we declare a grid-board object. This makes awhole range of
predicates avail ablethat depend on the board being rectilinear.
Thestrai gnt _1i ne predicateisan example; it testsfor astraight
lineof three squares containing thesame mark. Thispredicate
is defined in terms of chai n. In genera, high-level predicates
are typicaly very easy to define in terms of the intermediate
level concepts, so that adding a module for a new class of
games requires little effort.

A useful feature of Galaisthat it alows some parameters
of the game to be | eft unspecified in the game description and
provided when the game is played. In blind tic-tac-toe, the
board size is such a parameter. This makes it very easy to
encode a large class of games in a single program. These
parameters can actually be code-containing features. Thus, it
is possible to provide the movement patterns of piecesin a
game at runtime. Thisallowsasimpleinterface between Gala
and Pell’s Metagame program [Pell, 1992], which generates
symmetric chess-like games randomly.

Given a description of a game in the Gala language, Gala
generates the corresponding game tree with information sets
as described in Section 2. The tree is defined by the choose,
reveal and out core primitives. The Gala interpreter “plays’
the game and constructs the game tree as it encounters these
operations. When it encounters a choose primitive, a node
is added to the tree, and an edge is added for every option
available to the player. The interpreter then explores each
branch of the tree corresponding to each of the options. If
the first argument to choose is a player, the system aso adds
the node to the appropriate information set of that player:
the one that contains al the nodes where the player has the
same information state. The information state consists of al
factsreveaed to the player by thereveal primitive, thelist of
choices available to the player, and al decisions previously
taken by the player. If the first argument to choose S random
then the node is marked as a chance node, and the probability
of each random choice is recorded. When the interpreter
encountersthe out core primitive, it adds a leaf to the tree and
backtracks to explore other branches.

4 Solvingimperfect information games

How do we find equilibrium strategies in imperfect informa-
tion games? This is, in genera, a very difficult problem.
Consider the poker example from Section 2. There, we spec-
ified a strategy for each of the players using six numbers.
When trying to solve a game, we need to find an appropriate
set of numbers that satisfies the properties we want. That is,
we want to treat the parameters of the strategy as variables,
and solve for them. The general computational problemis:

1189°

Maximize,
subject to

min, h(z, y)
@ represents a strategy for player 1 (%)
y represents a strategy for player 2

where h (2, y) denotes the expected payoff to player 1 if the
strategies corresponding to «, y are played.

It turns out that the heart of the problem is finding an
appropriate set of variablesfor representing the strategy. The
first attempt is to use the move probabilitiesin the behavior
strategy. In the poker example, we would then have = =
{z., 2!, : ¢ =12 3} representing player 1's strategy, and
y = {y5, 9} : d= 1,2 3} representing player 2's strategy.
The problem is that this payoff is a nonlinear function of
the z’sand y's. In order to avoid this problem, which would
forceusto usenonlinear optimizationtechniques, thestandard
solution agorithmsin game theory do not use game trees and
behavior strategies as their primary representation. Rather,
they operate on an alternativerepresentation called thenormal
form. In the two-player case, the normal formisamatrix A
whose rows are al the deterministic strategies of the first
player and whose columns are al the deterministic strategies
of the second. The entry in the ith row and jth column isthe
expected payoff to the players when player 1 plays strategy
st and player 2 plays strategy s3. A randomized strategy
can now be viewed as a probability distribution over al the
deterministic strategies. Hence, = is smply a probability
distribution over rows:; it has avariable z; for each row, such
that z; > Oforall 4, and >, z; = 1. If player 1 plays
and player 2 plays y, then the expected payoff of the game
issmply 27 Ay. Under thisrepresentation of strategies, (x)
takesaparticularly smpleform. Itisthenfairly easy to show
that that appropriate vectors = and y can be found from A
using standard linear programming methods.

For non-zero-sum games, the normal form also forms the
basis for essentiadly all solution algorithms. Gala provides
access to the normal form algorithmsusing an interface to the
GAMBIT system, developed by McKelvey and Turocy [McK-
evey, 1992]. GamBIT provides a toolkit for solving various
classes of games, includinggames with morethan two players
and games where the interests of the players are not strictly
opposing. Since Gaa allows a clear and compact specifi-
cation of such games, the combined system provides both a
representation language and solution agorithms for games
describing multi-agent interactions.

Unfortunately, the normal-form algorithms are practical
only for very small games. The reason isthat the normal form
istypicaly exponential in the size of the game tree. Thisis
easy to see: A deterministic strategy must specify an action at
each information set. The total number of possible strategies
is therefore exponentia in the number of information sets,
which is usualy closely related to the size of the game tree.
Consider our poker example, generadized to a deck with &
cards. For each card ¢, player 1 must decide whether to pass
or bet, and if he has the option, whether to pass or bet at the
third round. There are three courses of action for each ¢, so
the total number of possible strategiesis 3%. Player 2, onthe
other hand, must decide on her action for each card d and
each of the two actions possiblefor thefirst player in thefirst
round. The number of different decisionsis therefore 2k, so
thetotal number of deterministic strategiesis2?* = 4*. Since
the normal form hasarow for each strategy of one player and
column for each strategy of the other, it is aso exponential

in &k, whilethesize of thegametreeisonly 9k + 1. Ingenera,
the normal-form conversion istypically exponentid in terms
of both time and space.

This problem makes the standard solution agorithms an
unredlistic option for many games. Due to the large branch-
ing factor in many games, even the approach of incrementally
solving subtreeswoul d not suffice to solvethisproblem. (This
approach aso encounters other difficulties in the context of
imperfect information games; see Section 6.) Recently, a
new approach to solving imperfect information games was
developed by Koller, Megiddo, and von Stengel [1994]. This
approach usesaconversionto an alternativeform caled the se-
guence form, which alowsit to avoid the exponential blowup
associated with the normal form. We will describe the main
ideas briefly here; for more details see [Koller et al., 1994].

The sequence form is based on a different representation
of the strategic variables. Rather than representing proba
bilities of individual moves (as in the non-linear representa-
tion above), or probabilities of full deterministic strategies
(as in the normal form), the variables represent the realiza-
tion weight of different sequences of moves. Essentidly, a
sequence for a player corresponds to a path down the tree,
but it isolates the moves under that player’s direct control,
ignoring chance moves and the decisions of the other players.
In our poker game, for example, player 1 would have 4% + 1
sequences. In addition to the empty sequence (which corre-
spondsto theroot of the game) he has four sequences for each
card ¢: [bet on ¢] (inwhich case thereisno third round), [pass
on ¢], [pass on ¢, bet in the last round], and [pass on ¢, pass
in the last round]. Player 2 also has 4k + 1 sequences: the
empty sequence, and for each card d, the four sequences [bet
on d after seeing a pass], [pass on d after seeing a pass], [bet
on d after seeing a bet], [bet on d after seeing a bet]. Given a
randomized strategy, therealization weight of asequencefor a
player isthe product of the probabilitiesof the player’smoves
encoded in the sequence. Essentially, the realization weight
of the sequence corresponding to a path down the tree is a
conditional probahility: the probability that this path is taken
given that the other players and nature all cooperate to make
this possible. The probability that a path is actually taken in
a game is therefore the product of the realization weights of
all the players’ sequences on that path, times the probability
of al the chance moves on the path.

The sequence form of atwo-player game consists of a pay-
off matrix A andalinear system of constraintsfor each player.
In atwo player game, the ith row of A corresponds to a se-

quence o} for player 1, and the jth column to a sequence o
for player 2. The entry a;; istheweighted sum of the payoff
at the leaves that are reached by this pair of sequences (they
are weighted by the probabilities of the chance moves on the
path). If a pair of sequences is not consistent with any path
to aleaf, thematrix entry iszero. So, for example, the matrix
entry for the pair of sequences [bet on 2] and [pass on 1 after
seeing a bet] is1. The matrix entry for the pair [bet on 2]
and [pass on 1 after seeing a pass] is 0, since thispair is not
consistent with any leaf.

We now solve (%) using realization weights as our strate-
gic variables. We will have avariable z,, for each sequence
o1 of player 1, and a variable y,, for each sequence o of
player 2. Using the analysis above, we can show that the
expected payoff of the game h(z,vy) isz” Ay. Thisispre-

1190

cisely analogousto the expression we obtained for the normal
form. It remains only to specify constraintson = and y guar-
anteeing that they represent strategies. For the normal form,
these constraints simply asserted that these vectors represent
probability distributions. In this case, the constraints are de-
rived fromthefollowingfact: If o isthe sequence for player
leading to an information set at which player i has to move,*
and my, ..., my are the possible moves at that information
set, then we must have that z, = zom, + -+ + Zom, - The
only other constraints are that the realization weight of the
empty sequenceis 1 (because the root of the gameis reached
inany play of the game), and that 2, > O for al o.

Note that the sequence form is a most linear in the size of
the game tree, since there is a most one segquence for each
nodein thegametree, and one constraint for each information
set. Furthermore, it can be generated very easily by a single
pass over the game tree. The format of the sequence form
resembl esthat of thenormal forminmany ways, andit appears
that many normal-form solution a gorithms can be converted
to work for the sequence form. The work of [Koller et al.,
1994] focuses on thetwo-player case. They provide sequence-
form variantsfor the best normal-form a gorithmsfor solving
both zero-sum and genera two-player games. The result
which is of most interest to usisthe following:

Theorem 4.1: The optimal strategies of a two-player zero-
sumgame are the solutionsof a linear program each of whose
dimensionsislinear in the size of the game tree.

The matrix of thelinear program mentioned in the theorem
is essentially the sequence form. The resulting matrix can
then be solved by any standard linear programming a gorithm,
such as the simplex algorithmwhich is known to work well
in practice. We can aso use a different linear programming
algorithm whose worst-case running time is guaranteed to be
polynomial. Hence, thistheorem is the basis for an efficient
polynomia time algorithm for finding optima solutions to
two-player zero-sum games.

5 Experimental results

The sequence-form agorithm for two-player zero-sum games
has been fully implemented as part of the Gala system. The
system generates the sequence form, creates the appropriate
linear program, and solves it using the standard optimization
library of cPLEX. We compared this algorithm to the tradi-
tional normal form agorithm by using GAMBIT to convert the
game trees generated by Gala to the normal form, and CPLEX
to solve the resulting linear program. We experimented with
two games: the simplified poker game described in Section 2,
increasing the number of cards in the deck; and an inspection
game which has received significant attention in the game
theory community as amodel of on-siteinspectionsfor arms
control treaties[Avenhauset al., 1995]. Theresulting running
timesareshownin Figure3. They areasonewould expectina
comparison between apolynomial and exponentia algorithm.

These results are continued for the sequence form in Fig-
ure4. (It wasimpossibleto obtain normal-form resultsfor the
larger games.) There, we also show the division of time be-
tween generating the sequence form and solving the resulting

Thisformulation requiresthat the players never forget their own
moves or information they once had. This implies that there is at
most one sequence s leading to this information set.

250

600

. .
Normal form ——

Sequence form —
500 1

400 r
300

200

total running time (sec)

100 ¢

0 M

0 500 1000 1500 2000 2500 3000
number of nodes in tree

Inspection game

Figure 3: Normal form vs. sequence form running time

Normal form ——
Sequence form —
200
(&)
Q
&
g 150}
=
£
% 100 |
<
°
50
O \ e s S————— R |
0 500 1000 1500 2000 2500 3000
number of nodes in tree
Poker
160 T
Solve
140 Total
120
— 100
(8]
3
E’ 80
£
=] 60 L
40
20 1
O M

10000 15000 20000

number of nodes in tree

Poker

0 5000 25000

2500

Solye ——
Tgtal —
2000

1500 r

time (sec)

1000 -

500

10000 15000 20000

number of nodes in tree

Inspection game

0 5000 25000

Figure 4: Timefor generating and solving the sequence form

linear program. For the poker games, we can see that gener-
ating the sequence form takes the bulk of the time. Solving
even the largest of these games takes less than 10 seconds.
This leads us to believe that these techniques can be made
to run considerably faster by optimizing the sequence-form
generator. Finaly, note that the algorithm is much faster for
poker games than for the inspection games. In the full paper,
we explain these results, and define certain characteristics of
a game that tend to have a significant effect on the running
time of the sequence-form agorithm.

As we remarked above, the final component of the Gala
system reads in the strategies computed by this agorithm,
and interprets them in a way that is meaningful with respect
to the game. In particular, it allows the strategies to be ex-
amined by the user, who can then use them as part of the
decision-making process. We have discovered that examin-
ing these strategies often yields interesting insights about the
game. Figure 5 shows the strategies for both playersin an
eight card simplified poker. Consider the probahility that the
gambler betsin thefirst round: itisfairly high on al, some-
what lower on a2, 0 on the middle cards, and then goesup for
the high cards. The behavior for thelow cards correspondsto
bluffing, a characteristic that one tends to associate with the
psychol ogical makeup of human players. Similarly, after see-
ing a passin thefirst round, the dealer bets on low cards with
very high probability. Psychologically, weinterpret thisas an

1191°

attempt to discourage the gambler from *changing his mind’
and betting onthefinal round. In morecomplex games, wesee
other examples where “human” behavior (e.g., underbidding)
is game-theoretically optimal.

6 Discussion

Asin the case of perfect information games, game trees for
full-fledged games are often enormous. Although we expect
to solve games with hundreds of thousands of nodes in the
near future, full-scale poker is much larger than that and it is
unlikely we will be able to solve it completely. Of course,
chess-playing programs are very successful in spite of the
fact that we currently cannot solve full-scale chess. Can
we apply the standard game-playing techniques to imperfect
information games? We believe that the answer isyes, but the
issueisnontrivial. Even the concept of a“subtree’ isnot well-
defined in such games. For one thing, the program cannot
simply create the subtree starting at the current state, since it
does not know precisely which node of the game tree is the
actua state of the game; it knows only that the node is one of
thosein acertaininformation set. In addition, information sets
belonging to other players may cross the “subtree boundary,”
aswasthecase in Figure 1. It isnot obvioushow to deal with
these problems. We hopeto address thisissuein future work.
Another approach that may well provefruitful isbased on the
bservation that there is a lot of regularity in the strategies

1 :
first round ——
0.8
j=2}
£
g
] 0.6
ks
2
= 0.4 |
Q
<)
o
0.2
0

1 2 3 4 5 6 7 8
Card received

Dealer

1 ¢
er seeing pass ——
after seeing bet —
0.8
j=2}
£
b5
a 0.6
©
2
= 0.4 |
Q
e
o
02
0

1 2 3 4 5 6 7 8
Card received
Gambler

Figure5: Strategiesfor 8 card poker

for small poker games: the player often behaves the same for
a variety of different hands. This suggests that in order to
solve large games, we could abstract avay some features of
the game, and solve the resulting simplified game compl etely.
For thegame of poker, we could abstract by partitioning the set
of possible deals into clusters, and then solve the abstracted
game. Our experimenta results indicate that the resulting
strategies would be very close to optimal.

M ost of thetechniqueswe discussed in thispaper a so apply
to more general classes of games. Gala providesthefunction-
ality for specifying arbitrary multi-player games. Currently,
these can only be solved using the traditional (normal-form)
algorithms accessed through our GAMBIT interface, and these
are practica only for small games. However, the sequence
form can be used to represent any perfect recall game, and the
results of [Koller et al., 1994] indicate that many of the stan-
dard techniques could carry over from the normal form to the
sequence form. We hope to use the sequence form approach
for more general games, and show that the resulting expo-
nential reduction in complexity indeed occursin practice. If
S0, theresulting system may allow an analysis of multi-player
games, a class of games that have been largely overlooked.
Perhaps more importantly, the system could also be used to
solve games that model multi-agent interactionsin ‘red life'.

We believe that the Gala system facilitates future research
into these and other questions. Its ability to easily specify
games of different types and to generate many variants of
each game allows any new approach to be extensively tested.
We intend to make this system available through a WWW
site (http: // wwmv. cs. ber kel ey. edu/ “daphne/ gal a/),
in the hope that it will provide the foundation for other work
on imperfect information games.

Acknowledgements

We are deeply grateful to Richard McKelvey and Ted Turocy
for going out of their way to ensurethat thecamsiIT functional -
ity we needed for our experimentswasready ontime. We also
thank the International Computer Science Institute at Berke-
ley for providing usaccessto the cPLEX system. We also wish
to thank Nimrod Megiddo, Barney Pell, Stuart Russdll, John
Tomlin, and Bernhard von Stengel for useful discussions.

References

[Avenhaus et al., 1995] R. Avenhaus, B. von Stengd, and
S. Zamir. Inspection games. In Handbook of Game Theory,
\ol. 3, to appear. North-Holland, 1995.

[Blair etal., 1993] JR.S. Blair, D. Mutchler, and C. Liu.
Gameswithimperfect information. In\Wbrking NotesAAAI
Fall Symposiumon Games: Planning and Learning, 1993.

[Gordon, 1993] S. Gordon. A comparison between prob-
abilistic search and weighted heuristics in a game with
incompleteinformation. In Working Notes AAAI Fall Sym-
posiumon Games. Planning and Learning, 1993.

[Koller et al., 1994] D. Koller, N. Megiddo, and B. von Sten-
gel. Fast agorithms for finding randomized strategies in
game trees. In Proceedings of the 26th Annual ACM Sym+-
posiumon the Theory of Computing, pages 750759, 1994.

[Kuhn, 1950] H.W. Kuhn. A simplified two-person poker.
In Contributionsto the Theory of Games |, pages 97-103.
Princeton University Press, 1950.

[McKelvey, 1992] R.D. McKevey. GAMBIT: Interactive Ex-
tensive Form Game Program. Californialnstitute of Tech-
nology, 1992.

[Pell, 1992] B. Pdl. Metagame in symmetric, chess-like
games. In Heuristic Programming in Artificial Intelligence
3 —The Third Computer Olympiad. Ellis Horwood, 1992.

[Russdll and Norvig, 1994] S.J. Russell and P. Norvig. Ar-
tificial Intelligence: A Modern Approach. Prentice Hall,
1994.

[Smith and Nau, 1993] S.J.J. Smith and D.S. Nau. Strategic
planning for imperfect-information games. In Working
Notes AAAI Fall Symposium on Games. Planning and
Learning, 1993.

[von Neumann and Morgenstern, 1947] J. von Neumann and
O. Morgenstern. The Theory of Games and Economic
Behavior. Princeton University Press, 2nd edition, 1947.

[Zermelo, 1913] E. Zermelo. Uber eine Anwendung der
Mengenl ehreauf die Theoriedes Schachspiels. In Proceed-
ings of the Fifth I nternational Congress of Mathematicians
I1, pages 501-504. Cambridge University Press, 1913.

1192

