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Abstract
Work on game playing in AI has typically ignored
games of imperfect information such as poker. In
this paper, we present a framework for dealing with
such games. We point out several important issues
that arise only in the context of imperfect infor-
mation games, particularly the insufficiency of a
simple game tree model to represent the players’
information state and the need for randomization in
the players’ optimal strategies. We describe Gala,
an implemented system that provides the user with a
very natural and expressive language for describing
games. From a game description, Gala creates an
augmented game tree with information sets which
can be used by various algorithms in order to find
optimal strategies for that game. In particular, Gala
implements the first practical algorithm for finding
optimal randomized strategies in two-player imper-
fect information competitive games [Koller et al.,
1994]. The running time of this algorithm is polyno-
mial in the size of the game tree, whereas previous
algorithms were exponential. We present exper-
imental results showing that this algorithm is also
efficient in practice and can therefore form the basis
for a game playing system.

1 Introduction
The idea of getting a computer to play a game has been around
since the earliest days of computing. The fundamental idea is
as follows: When it is the computer’s turn to move, it creates
some part of the game tree starting at the current position,
evaluates the ‘leaves’ of this partial tree using a heuristic
evaluation function, and then does a minimax search of this
tree to determine the optimal move at the root. This same
simple idea is still the core of most game-playing programs.
This paradigm has been successfully applied to a large class
of games, in particular chess, checkers, othello, backgammon,
and go [Russell and Norvig, 1994, Ch. 5]. There have been far
fewer successful programs that play games such as poker or
bridge. We claim that this is not an accident. These games fall
into two fundamentally different classes, and the techniques
that apply to one do not usually apply to the other.

The essential difference lies in the information that is avail-
able to the players. In games such as chess or even backgam-
mon, the current state of the game is fully accessible to both

players. The only uncertainty is about future moves. In games
such as poker, the players have imperfect information: they
have only partial knowledge about the current state of the
game. This can result in complex chains of reasoning such
as: “Since I have two aces showing, but she raised, then she
is either bluffing or she has a good hand; but then if I raise
a lot, she may realize that I have at least a third ace, so she
might fold; so maybe I should underbid, but ����� .” It should
be fairly obvious that the standard techniques are inadequate
for solving such games: no variant of the minimax algorithm
duplicates the type of complex reasoning we just described.

In game theory [von Neumann and Morgenstern, 1947], on
the other hand, virtually all of the work has focused on games
with imperfect information. Game theory is mostly intended
to deal with games derived from “real life,” and particularly
from economic applications. In real life one rarely has perfect
information. The insights developed by game theorists for
such games also apply to the imperfect information games
encountered in AI applications.

It is well-known in game theory that the notion of a strat-
egy is necessarily different for games with imperfect informa-
tion. In perfect information games, the optimal move for each
player is clearly defined: at every stage there is a “right” move
that is at least as good as any other move. But in imperfect
information games, the situation is not as straightforward. In
the simple game of “scissors-paper-stone,” any deterministic
strategy is a losing one as soon as it is revealed to the other
players. Intuitively, in games where there is an information
gap, it is usually to my advantage to keep my opponent in
the dark. The only way to do that is by using randomized
strategies. Once randomized strategies are allowed, the exis-
tence of “optimal strategies” in imperfect information games
can be proved. In particular, this means that there exists an
optimal randomized strategy for poker, in much the same way
as there exists an optimal deterministic strategy for chess.
Kuhn [1950] has shown for a simplified poker game that the
optimal strategy does, indeed, use randomization.

The optimality of a strategy has two consequences: the
player cannot do better than this strategy if playing against
a good opponent, and furthermore the player does not do
worse even if his strategy is revealed to his opponent, i.e., the
opponent gains no advantage from figuring out the player’s
strategy. This last feature is particularly important in the
context of game-playing programs, since they are vulnerable
to this form of attack: sometimes the code is accessible, and
in general, since they always play the same way, their strategy
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can be deduced by intensive testing. Given these important
benefits of randomized strategies in imperfect information
games, it is somewhat surprising that none of the AI papers that
deal with these games (e.g., [Blair et al., 1993; Gordon, 1993;
Smith and Nau, 1993]) utilize such strategies.

In this work,we attempt to solve the computational problem
associated with imperfect information games: Given a concise
description of a game, compute optimal strategies for that
game. Two issues in particular must be addressed. First,
how do we specify imperfect information games? Describing
the dynamics of the players’ information states in a concise
fashion is a nontrivialknowledge representation task. Second,
given a game tree with the appropriate structure, how do we
find optimal strategies for it?

We present an implemented system, called Gala, that ad-
dresses both these computational issues. Gala consists of four
components. The first is a knowledge representation language
that allows a clear and concise specification of imperfect in-
formation games. As our examples show, the description of
a game in Gala is very similar to, and not much longer than,
a natural language description of the rules of the game. The
second component of the system generates game trees from a
game description in the language. These game trees are aug-
mented with information sets, a standard concept from game
theory that captures the information states of the players.

The third component of the system addresses the issue of
finding good strategies for such games. Obviously, the stan-
dard minimax-type algorithms cannot produce randomized
strategies. The game theoretic paradigm for solving games is
based on taking the entire game tree, and transforming it into
a matrix (called the normal or strategic form of the game).
Various techniques, such as linear programming, can then be
applied to this matrix in order to construct optimal strategies.
Unfortunately, this matrix is typically exponential in the size
of the game tree, making the entire approach impractical for
most games.

In recent work, Koller, Megiddo, and von Stengel [1994]
present an alternative approach to dealing with imperfect in-
formation games. They define a new representation, called
the sequence form, whose size is linear in the size of the game
tree. They show that many of the standard algorithms can be
adapted to find optimal strategies using this representation.
This results in exponentially faster algorithms for solving a
large class of games. In particular, they present an effective
polynomial time algorithm for solving two-player fully com-
petitive games (such as poker). We have implemented this
algorithm as part of the Gala system, and tested it on large
examples of several games. The results are encouraging, sug-
gesting that, in practice, the running time of the algorithm is
a small polynomial in the size of the game tree.

The final component of Gala presents the optimal strategies
in a way that is comprehensible to the user. For any decision
point in the game, it tells the user which actions should be
played with which probability. The system also provides
other information, such as one player’s beliefs about the state
of another agent, or the expected value of a branch in the
tree. This functionality makes Gala a useful tool for game-
theory researchers and educators, as well as for users who
wish to use Gala as a game-theory based decision support
system. Finally, Gala can also play the game according to the
computed strategy, making it a basis for a computer game-

playing system for imperfect information games.

2 Some basic game theory

Game theory is the strategic analysis of interactive situations.
Several aspects of a situation are modeled explicitly: the
players involved, the alternative actions that can be taken by
each player at various times, the dynamics of the situation,
the information available to players, and the outcomes at the
end. Given such a model, game theory provides the tools
to formally analyze the strategic interaction and recommend
‘rational’ strategies to the players.

The standard representation of a game in computer science
is a tree, in which each node is a possible state of the game, and
each edge is an action available to a player that takes the game
to a new state. At each node there is a single player whose turn
it is to choose an action. The set of edges leading out of a node
are the choices available to that player. The player may be
chance or ‘nature’, in which case the edges represent random
events. The leaves of the tree specify a payoff for each player.
This representation is inadequate for games with imperfect
information, because it does not specify the information states
of the players. A player cannot distinguish between states of
the game in which she has the same information. Thus, any
decision taken by the player must be the same at all such
nodes. To encode this constraint, the game tree is augmented
with information sets. An information set contains a set of
nodes that are indistinguishable to a player at the time she has
to make a decision.

Figure 1 presents part of the game tree for a simplified
variant of poker described by Kuhn [1950]. The game has
two players and a deck containing the three cards 1, 2, and
3. Each player antes one dollar and is dealt one card. The
figure shows the part of the game tree corresponding to the
deals

�
2 � 1 � , � 2 � 3 � , and

�
1 � 3 � . The game has three rounds.

In the first round, the first player can either bet an additional
dollar or pass. After hearing the first player’s bet, the second
player decides whether to bet or pass. If player 1 passes and
player 2 bets, player 1 gets one more opportunity to decide
whether or not to bet. If both bet or both pass, the player
with the highest card takes the pot. If one player bets and
the other passes, then the betting player wins one dollar. Let��� ����� denote the hands dealt to the two players. Initially,
player 1 only knows his own card, so for each possible

�
, he

has one information set �
	 containing two nodes; each node
corresponds to the two possibilities for player 2’s hand. In her
turn, player 2 knows � as well as player 1’s action at the first
round. Hence, she has two information sets for each � — ���
and ���� —corresponding to player 1’s previous action. Finally,
player 1 has an information set ���	 at the third round.

Given a game tree augmented with information sets, one
can define the notion of strategy. A deterministic strategy,
like a conditional plan in AI, is a very explicit “how-to-play
manual” that tells the player what to do at every possible point
in the game. In the poker example, such a manual for player 1
would contain an entry: “If I hold a 3, and I passed on the
first round, and my opponent bets, then bet 1.” In general,
a deterministic strategy for player � specifies a move at each
of her information sets. Since the player cannot distinguish
between nodes in the same informationset, the strategy cannot
dictate different actions at those nodes.
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Figure 1: A partial game tree for simplified poker, containing three of the six possible deals. A move to the left corresponds to
a pass, a move to the right to a bet. The information sets are drawn as ellipses; some of them extend into other parts of the tree.

Deterministic strategies are adequate for games with per-
fect information, where the players always know the current
state of the game. In those games the information sets of both
players are always single nodes, and a deterministic strategy��� for player � is a function from those nodes at which it is
her turn to move to possible moves at that node. The fact
that deterministic strategies suffice for such games is the basis
for the standard minimax algorithm (and its variants) used for
games such as chess. In such games, called zero-sum games,
there are two players whose payoffs always sum to zero, so
that one player wins precisely what the other loses. As shown
by Zermelo [1913], the strategies produced by the minimax
algorithm are optimal in a very strong sense. Player � can-
not do better than to play the resulting strategy if the other
player is rational. Furthermore, she can publicly announce
her intention to do so without adversely affecting her pay-
offs. A generalized version of the minimax algorithm shows
the existence of optimal deterministic strategies for general
games of perfect information. The resulting strategy com-
bination

� �
1 � ����� � ��� � has the important property of being in

equilibrium: for any � , player � cannot pick a better strategy
than � � if the other players are all playing their strategy ��� .
This is a minimal property that we want of a “solution” to a
game: Without it, we are drawn back into the web of second
guessing that characterizes imperfect information games. (If
she plays the “orthodox” strategy, then I should do � , but she
will figure out that this is better for me, so she’ll actually do�

, but then ����� .)
It should be fairly obvious that deterministic strategies will

in general not have these properties in games with imperfect
information. Deterministic strategies are predictable, and pre-
dictable play gives the opponent information. The opponent
can then find a strategy calculated to take advantage of this
information, thereby making the original strategy suboptimal.
Unpredictable play, on the other hand, maintains the informa-
tion gap. Therefore, players in imperfect information games
should use randomized strategies.

Randomized strategies are a natural extension of determin-
istic strategies. Where a deterministic strategy chooses a move
at each information set, a randomized strategy (formally called

a behavior strategy) specifies a probability distribution over
the moves at each information set. In our poker example,
a randomized strategy 	 1 for player 1 can be described by
defining the probability of betting at each information set � 	
and � �	 , ��
 1 � 2 � 3. A combination of randomized strategies
	 1 � ����� ��	 � , one for each player, induces a probability distri-
bution on the leaves of the tree, thereby allowing us to define
the expected payoff  � � 	 1 � ����� ��	 � � for each player � .

In his Nobel-prize winning theorem, Nash showed that the
use of randomized strategies allows us to duplicate the suc-
cessful behavior that we get from deterministic strategies in
the perfect information case. In general games, there is al-
ways a combination 	 1 � ����� ��	 � of randomized strategies that
is in equilibrium: for any � , and any strategy 	 �� ,

 � � 	 1 � ����� ��	 � ���� � � 	 1 � ����� ��	 �� � ����� ��	 � � �
That is, no player gains an advantage by diverging from the
equilibrium solution, so long as the other players stick to it.

Just as in the case of perfect information games, the equi-
librium strategies are particularly compelling when the game
is zero-sum. Then, as shown by von Neumann [von Neumann
and Morgenstern, 1947], any equilibrium strategy is optimal
against a rational player. More precisely, the equilibrium
pairs 	 1 ��	 2 are precisely those where 	 1 is the strategy that
maximizes max ���

1
min ���

2
 1
� 	 �1 ��	 �2 � and 	 2 is the strategy that

maximizes max ���
2

min ���
1
 2
� 	 �1 ��	 �2 � (which, since  2


��  1,
is precisely min � �

2
max � �

1
 1
� 	 �1 ��	 �2 � ). Intuitively, 	 1 is the

optimal defensive strategy for player 1: it provides the best
worst-case payoff. It is these strategies that we will be most
concerned with finding.

3 Gala: a game description language

As we mentioned, the first component of Gala is a knowl-
edge representation language for describing games. This is
a Prolog-based language, that uses the power of a declara-
tive representation to allow clear and concise specification
of games. The idea of a declarative language to specify
games was proposed by Pell [1992], who utilizes it to specify
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game(blind_tic_tac_toe,
[players : [a, b],
objects : [grid_board : array(’$size’, ’$size’)],
params : [size],
flow : (take_turns(mark,unless(full),until(win))),
mark : (choose(’$player’, (X, Y, Mark),

(empty(X, Y), member(Mark, [x, o]))),
reveal(’$opponent’, (X, Y)),
place((X, Y), Mark)),

full : (\+(empty(_, _)) ->
outcome(draw)),

win : (straight_line(_, _, length = 3, contains(Mark)) ->
outcome(wins(’$player’)))]).

Figure 2: A Gala description of blind tic-tac-toe

symmetric chess-like games—a class of two-player perfect-
information board games. Our language is much more gen-
eral, and can be used to represent a very wide class of games,
in particular: one-player, two-player and multi-player games;
games where the outcomes are arbitrary payoffs; and games
with either perfect or imperfect information. As we will
show, the expressive power of Gala allows for clear and con-
cise game descriptions, that are generally of similar length to
natural language representations of the rules of the game.

To illustrate some of the features of Gala, Figure 2 presents
an example of a complete description for “blind tic-tac-toe,”
an imperfect information version of standard tic-tac-toe. The
players take turns placing marks in squares, but in his turn a
player can choose to mark either an x or an o; he reveals to his
opponent the square in which he makes the mark, but not the
type of mark used. As usual, the goal is to complete a line of
three squares with the same mark.

A game description in Gala is a list of features, each one
describing some aspect of the game. For example, players :

[a, b] indicates that the game is to be played between two
players named ‘a’ and ‘b’.

The Gala language has several layers: the lower ones pro-
vide basic primitives, while the higher layers use those primi-
tives to provide more complex functionality. The lowest layer
provides the fundamental primitives for defining the structure
of a game. The choose(Player, Move, Constraint) primitive
describes the possible moves available to player at a given
point in the game. It allows Player to make any move Move

satisfying Constraint. This last argument can be an arbitrary
segment of Prolog code. In our example, Move consists of a
square, specified by its coordinates X and Y, and a mark Mark;
Constraint requires that the square be empty and that Mark be
either x or o. The first argument to choose can also be nature,
in which case one of a number of events is chosen at random.
By default, these random events have uniform probability,
but a different probability distribution may be specified. The
outcome primitive describes the outcome of the game at the end
of a particular sequence of moves. This will often be a list
of payoffs, one for each player; but, as the example demon-
strates, Gala allows other possibilities. The reveal(Player,

Fact) primitive describes the dynamics of the players’ infor-
mation states. It adds Fact to Player’s information state. The
information added can be simple or an arbitrary Prolog ex-
pression. In blind tic-tac-toe, a player chooses both a square
and a mark but reveals to his opponent only the mark.

At a somewhat higher level, the flow feature describes the
course of the game. The game can be divided into phases:
some may take place just once, while others can be repeated

until a goal is reached. In blind tic-tac-toe, for example, the
players take turns executing the sequence of actions specified
in the mark feature, until the condition specified in the full

or the win feature is satisfied. The unless condition is tested
before the turn. Gala also allows gameflow to be nested
recursively. Each phase can be described by its own series
of features, which may include flow. The flow of bridge, for
example, can be described as follows:

flow : (play_phase(bidding), play_phase(take_tricks)), ...
phase(bidding,
[flow : (take_turns(bid, until(contract_reached))), ...
phase(take_tricks,
[flow : (play_rounds(trick, 13), ...

In order to allow a natural specification of the game, Gala
provides a separate representation for the game state, where
relevant information about the current state of the game is
stored. In blind tic-tac-toe, the game state contains the current
board position. This information is accessed, for example, by
choose in order to determine which moves are possible: only
those squares that are empty are legal moves. The game state
is maintained by modifying it appropriately, e.g., by the place

operation, when the players make their moves. Much of
the functionality in the higher levels of the Gala language is
devoted to accessing and manipulating the game state.

The intermediate levels of Gala provide a shorthand for
concepts that occur ubiquitously in games. These include lo-
cations and their contents,pieces and their movement patterns,
and resources that change hands, such as money. In blind tic-
tac-toe, the statements that deal with the contents of squares
are an instance of locations and their contents. Other examples
of functionality supported by this level are move(queen(white),

(d,1), (d,8)) and pay(gambler, pot, Bet).
On a more abstract level, we have observed that certain

structures and combinations appear in virtually all games.
While these are usually sets of one sort or another, they come
in many flavors. For example, a flush in poker is a set of
five cards sharing a common property; a straight, on the other
hand, is a sequence of cards in which successive elements
bear a relation to one another; a full house is a partition into
equivalence classes based on rank in which the classes are of
a specific size. A word in Scrabble and a 21 in Blackjack
are another type of combination: a collection of objects bear-
ing no particular relationship to each other but forming an
interesting group in totality.

The Prolog language provides a few predicates that describe
sets and subsets. We have supplemented these with various
predicates that make it easy to describe many of the combi-
nations occuring in games. For example, chain(Predicate,

Set) determines whether Set is a sequence in which succes-
sive elements are related by Predicate; partition(Relation,

Set, Classes) partitions Set into equivalence Classes based
on Relation. For a more elaborate example, consider the fol-
lowing code, which concisely tests for all types of poker hand
except flushes and straights.

detailed_partition(match_rank, Hand, Classes, Ranks, Sizes),
associate(Sizes, Type,

[([4, 1], four_of_a_kind), ([3, 2], full_house),
([3, 1, 1], three_of_a_kind), ([2, 2, 1], two_pairs),
([2, 1, 1, 1], one_pair), ([1, 1, 1, 1, 1], nothing)])

The predicate detailed partition takes two inputs, a set—
in this case Hand—and an equivalence relation—in this case
match rank, which relates two cards if they have the same
rank. It partitions the set into equivalence classes, and pro-
duces three outputs: a list Classes of the equivalence classes

1188



in decreasing order of size; a corresponding list of the defin-
ing property of the equivalence classes, in this case the Ranks

present in the hand; and a list Sizes of the sizes of the dif-
ferent classes. In this example, if Hand is [9

�
, 6 � , 9 � , 6

�
,

6 � ], then Classes would be [[6 � , 6
�
, 6 � ], [9

�
, 9 � ]], Ranks

would be [6, 9], and Sizes would be [3, 2]. In poker, Sizes
contains the relevant structure of the hand, and it is used to
classify the hand using an association list. The above hand,
for example, is immediately classified as a full house.

The high level modules of Gala build on the intermediate
levels to provide more specific functionality that is common
to a certain class of games, such as boards that form a grid,
playing cards, dice, and so on. In the blind tic-tac-toe example,
we declare a grid-board object. This makes a whole range of
predicates available that depend on the board being rectilinear.
The straight line predicate is an example; it tests for a straight
line of three squares containing the same mark. This predicate
is defined in terms of chain. In general, high-level predicates
are typically very easy to define in terms of the intermediate
level concepts, so that adding a module for a new class of
games requires little effort.

A useful feature of Gala is that it allows some parameters
of the game to be left unspecified in the game description and
provided when the game is played. In blind tic-tac-toe, the
board size is such a parameter. This makes it very easy to
encode a large class of games in a single program. These
parameters can actually be code-containing features. Thus, it
is possible to provide the movement patterns of pieces in a
game at runtime. This allows a simple interface between Gala
and Pell’s Metagame program [Pell, 1992], which generates
symmetric chess-like games randomly.

Given a description of a game in the Gala language, Gala
generates the corresponding game tree with information sets
as described in Section 2. The tree is defined by the choose,
reveal and outcome primitives. The Gala interpreter “plays”
the game and constructs the game tree as it encounters these
operations. When it encounters a choose primitive, a node
is added to the tree, and an edge is added for every option
available to the player. The interpreter then explores each
branch of the tree corresponding to each of the options. If
the first argument to choose is a player, the system also adds
the node to the appropriate information set of that player:
the one that contains all the nodes where the player has the
same information state. The information state consists of all
facts revealed to the player by the reveal primitive, the list of
choices available to the player, and all decisions previously
taken by the player. If the first argument to choose is random,
then the node is marked as a chance node, and the probability
of each random choice is recorded. When the interpreter
encounters the outcome primitive, it adds a leaf to the tree and
backtracks to explore other branches.

4 Solving imperfect information games
How do we find equilibrium strategies in imperfect informa-
tion games? This is, in general, a very difficult problem.
Consider the poker example from Section 2. There, we spec-
ified a strategy for each of the players using six numbers.
When trying to solve a game, we need to find an appropriate
set of numbers that satisfies the properties we want. That is,
we want to treat the parameters of the strategy as variables,
and solve for them. The general computational problem is:

Maximize � min �  ��� �	� �
subject to

�
represents a strategy for player 1

��
 �
� represents a strategy for player 2

where  ��� ��� � denotes the expected payoff to player 1 if the
strategies corresponding to

� ��� are played.
It turns out that the heart of the problem is finding an

appropriate set of variables for representing the strategy. The
first attempt is to use the move probabilities in the behavior
strategy. In the poker example, we would then have

� 

�� 	 � � �	 :

� 

1 � 2 � 3 � representing player 1’s strategy, and

� 
��� � � � � �� : � 
 1 � 2 � 3 � representing player 2’s strategy.
The problem is that this payoff is a nonlinear function of
the

�
’s and

�
’s. In order to avoid this problem, which would

force us to use nonlinear optimization techniques, the standard
solution algorithms in game theory do not use game trees and
behavior strategies as their primary representation. Rather,
they operate on an alternative representation called the normal
form. In the two-player case, the normal form is a matrix �
whose rows are all the deterministic strategies of the first
player and whose columns are all the deterministic strategies
of the second. The entry in the � th row and � th column is the
expected payoff to the players when player 1 plays strategy� �

1 and player 2 plays strategy � �
2 . A randomized strategy

can now be viewed as a probability distribution over all the
deterministic strategies. Hence,

�
is simply a probability

distribution over rows: it has a variable
� � for each row, such

that
� � � 0 for all � , and � � � � 
 1. If player 1 plays

�
and player 2 plays � , then the expected payoff of the game
is simply

��� ��� . Under this representation of strategies,
��
 �

takes a particularly simple form. It is then fairly easy to show
that that appropriate vectors

�
and � can be found from �

using standard linear programming methods.
For non-zero-sum games, the normal form also forms the

basis for essentially all solution algorithms. Gala provides
access to the normal form algorithms using an interface to the
GAMBIT system, developed by McKelvey and Turocy [McK-
elvey, 1992]. GAMBIT provides a toolkit for solving various
classes of games, includinggames with more than two players
and games where the interests of the players are not strictly
opposing. Since Gala allows a clear and compact specifi-
cation of such games, the combined system provides both a
representation language and solution algorithms for games
describing multi-agent interactions.

Unfortunately, the normal-form algorithms are practical
only for very small games. The reason is that the normal form
is typically exponential in the size of the game tree. This is
easy to see: A deterministic strategy must specify an action at
each information set. The total number of possible strategies
is therefore exponential in the number of information sets,
which is usually closely related to the size of the game tree.
Consider our poker example, generalized to a deck with �
cards. For each card

�
, player 1 must decide whether to pass

or bet, and if he has the option, whether to pass or bet at the
third round. There are three courses of action for each

�
, so

the total number of possible strategies is 3 � . Player 2, on the
other hand, must decide on her action for each card � and
each of the two actions possible for the first player in the first
round. The number of different decisions is therefore 2 � , so
the total number of deterministic strategies is 22 � 
 4 � . Since
the normal form has a row for each strategy of one player and
a column for each strategy of the other, it is also exponential
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in � , while the size of the game tree is only 9 � � 1. In general,
the normal-form conversion is typically exponential in terms
of both time and space.

This problem makes the standard solution algorithms an
unrealistic option for many games. Due to the large branch-
ing factor in many games, even the approach of incrementally
solving subtrees would not suffice to solve this problem. (This
approach also encounters other difficulties in the context of
imperfect information games; see Section 6.) Recently, a
new approach to solving imperfect information games was
developed by Koller, Megiddo, and von Stengel [1994]. This
approach uses a conversion to an alternative form called the se-
quence form, which allows it to avoid the exponential blowup
associated with the normal form. We will describe the main
ideas briefly here; for more details see [Koller et al., 1994].

The sequence form is based on a different representation
of the strategic variables. Rather than representing proba-
bilities of individual moves (as in the non-linear representa-
tion above), or probabilities of full deterministic strategies
(as in the normal form), the variables represent the realiza-
tion weight of different sequences of moves. Essentially, a
sequence for a player corresponds to a path down the tree,
but it isolates the moves under that player’s direct control,
ignoring chance moves and the decisions of the other players.
In our poker game, for example, player 1 would have 4 � � 1
sequences. In addition to the empty sequence (which corre-
sponds to the root of the game) he has four sequences for each
card

�
: [bet on

�
] (in which case there is no third round), [pass

on
�
], [pass on

�
, bet in the last round], and [pass on

�
, pass

in the last round]. Player 2 also has 4 � � 1 sequences: the
empty sequence, and for each card � , the four sequences [bet
on � after seeing a pass], [pass on � after seeing a pass], [bet
on � after seeing a bet], [bet on � after seeing a bet]. Given a
randomized strategy, the realization weight of a sequence for a
player is the product of the probabilities of the player’s moves
encoded in the sequence. Essentially, the realization weight
of the sequence corresponding to a path down the tree is a
conditional probability: the probability that this path is taken
given that the other players and nature all cooperate to make
this possible. The probability that a path is actually taken in
a game is therefore the product of the realization weights of
all the players’ sequences on that path, times the probability
of all the chance moves on the path.

The sequence form of a two-player game consists of a pay-
off matrix � and a linear system of constraints for each player.
In a two player game, the � th row of � corresponds to a se-
quence �

�
1 for player 1, and the � th column to a sequence �

�
2

for player 2. The entry � � � is the weighted sum of the payoff
at the leaves that are reached by this pair of sequences (they
are weighted by the probabilities of the chance moves on the
path). If a pair of sequences is not consistent with any path
to a leaf, the matrix entry is zero. So, for example, the matrix
entry for the pair of sequences [bet on 2] and [pass on 1 after
seeing a bet] is 1. The matrix entry for the pair [bet on 2]
and [pass on 1 after seeing a pass] is 0, since this pair is not
consistent with any leaf.

We now solve
��
 � using realization weights as our strate-

gic variables. We will have a variable
���

1 for each sequence
� 1 of player 1, and a variable

� �
2 for each sequence � 2 of

player 2. Using the analysis above, we can show that the
expected payoff of the game  � � �	� � is

� � � � . This is pre-

cisely analogous to the expression we obtained for the normal
form. It remains only to specify constraints on

�
and � guar-

anteeing that they represent strategies. For the normal form,
these constraints simply asserted that these vectors represent
probability distributions. In this case, the constraints are de-
rived from the following fact: If � is the sequence for player �
leading to an information set at which player � has to move,1

and � 1 � ����� ��� � are the possible moves at that information
set, then we must have that

� � 
�� ���
1

�
	�	�	�� � ����
. The

only other constraints are that the realization weight of the
empty sequence is 1 (because the root of the game is reached
in any play of the game), and that

��� � 0 for all � .
Note that the sequence form is at most linear in the size of

the game tree, since there is at most one sequence for each
node in the game tree, and one constraint for each information
set. Furthermore, it can be generated very easily by a single
pass over the game tree. The format of the sequence form
resembles that of the normal form in many ways, and it appears
that many normal-form solution algorithms can be converted
to work for the sequence form. The work of [Koller et al.,
1994] focuses on the two-player case. They provide sequence-
form variants for the best normal-form algorithms for solving
both zero-sum and general two-player games. The result
which is of most interest to us is the following:

Theorem 4.1: The optimal strategies of a two-player zero-
sum game are the solutions of a linear program each of whose
dimensions is linear in the size of the game tree.

The matrix of the linear program mentioned in the theorem
is essentially the sequence form. The resulting matrix can
then be solved by any standard linear programming algorithm,
such as the simplex algorithm which is known to work well
in practice. We can also use a different linear programming
algorithm whose worst-case running time is guaranteed to be
polynomial. Hence, this theorem is the basis for an efficient
polynomial time algorithm for finding optimal solutions to
two-player zero-sum games.

5 Experimental results
The sequence-form algorithm for two-player zero-sum games
has been fully implemented as part of the Gala system. The
system generates the sequence form, creates the appropriate
linear program, and solves it using the standard optimization
library of CPLEX. We compared this algorithm to the tradi-
tional normal form algorithm by using GAMBIT to convert the
game trees generated by Gala to the normal form, and CPLEX
to solve the resulting linear program. We experimented with
two games: the simplified poker game described in Section 2,
increasing the number of cards in the deck; and an inspection
game which has received significant attention in the game
theory community as a model of on-site inspections for arms
control treaties [Avenhaus et al., 1995]. The resulting running
times are shown in Figure 3. They are as one would expect in a
comparison between a polynomial and exponential algorithm.

These results are continued for the sequence form in Fig-
ure 4. (It was impossible to obtain normal-form results for the
larger games.) There, we also show the division of time be-
tween generating the sequence form and solving the resulting

1This formulation requires that the players never forget their own
moves or information they once had. This implies that there is at
most one sequence � leading to this information set.
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Figure 3: Normal form vs. sequence form running time
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Figure 4: Time for generating and solving the sequence form

linear program. For the poker games, we can see that gener-
ating the sequence form takes the bulk of the time. Solving
even the largest of these games takes less than 10 seconds.
This leads us to believe that these techniques can be made
to run considerably faster by optimizing the sequence-form
generator. Finally, note that the algorithm is much faster for
poker games than for the inspection games. In the full paper,
we explain these results, and define certain characteristics of
a game that tend to have a significant effect on the running
time of the sequence-form algorithm.

As we remarked above, the final component of the Gala
system reads in the strategies computed by this algorithm,
and interprets them in a way that is meaningful with respect
to the game. In particular, it allows the strategies to be ex-
amined by the user, who can then use them as part of the
decision-making process. We have discovered that examin-
ing these strategies often yields interesting insights about the
game. Figure 5 shows the strategies for both players in an
eight card simplified poker. Consider the probability that the
gambler bets in the first round: it is fairly high on a 1, some-
what lower on a 2, 0 on the middle cards, and then goes up for
the high cards. The behavior for the low cards corresponds to
bluffing, a characteristic that one tends to associate with the
psychological makeup of human players. Similarly, after see-
ing a pass in the first round, the dealer bets on low cards with
very high probability. Psychologically, we interpret this as an

attempt to discourage the gambler from ‘changing his mind’
and betting on the final round. In more complex games, we see
other examples where “human” behavior (e.g., underbidding)
is game-theoretically optimal.

6 Discussion
As in the case of perfect information games, game trees for
full-fledged games are often enormous. Although we expect
to solve games with hundreds of thousands of nodes in the
near future, full-scale poker is much larger than that and it is
unlikely we will be able to solve it completely. Of course,
chess-playing programs are very successful in spite of the
fact that we currently cannot solve full-scale chess. Can
we apply the standard game-playing techniques to imperfect
information games? We believe that the answer is yes, but the
issue is nontrivial. Even the concept of a ‘subtree’ is not well-
defined in such games. For one thing, the program cannot
simply create the subtree starting at the current state, since it
does not know precisely which node of the game tree is the
actual state of the game; it knows only that the node is one of
those in a certain information set. In addition, information sets
belonging to other players may cross the “subtree boundary,”
as was the case in Figure 1. It is not obvious how to deal with
these problems. We hope to address this issue in future work.
Another approach that may well prove fruitful is based on the
observation that there is a lot of regularity in the strategies
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Figure 5: Strategies for 8 card poker

for small poker games: the player often behaves the same for
a variety of different hands. This suggests that in order to
solve large games, we could abstract away some features of
the game, and solve the resulting simplified game completely.
For the game of poker, we could abstract by partitioning the set
of possible deals into clusters, and then solve the abstracted
game. Our experimental results indicate that the resulting
strategies would be very close to optimal.

Most of the techniques we discussed in this paper also apply
to more general classes of games. Gala provides the function-
ality for specifying arbitrary multi-player games. Currently,
these can only be solved using the traditional (normal-form)
algorithms accessed through our GAMBIT interface, and these
are practical only for small games. However, the sequence
form can be used to represent any perfect recall game, and the
results of [Koller et al., 1994] indicate that many of the stan-
dard techniques could carry over from the normal form to the
sequence form. We hope to use the sequence form approach
for more general games, and show that the resulting expo-
nential reduction in complexity indeed occurs in practice. If
so, the resulting system may allow an analysis of multi-player
games, a class of games that have been largely overlooked.
Perhaps more importantly, the system could also be used to
solve games that model multi-agent interactions in ‘real life’.

We believe that the Gala system facilitates future research
into these and other questions. Its ability to easily specify
games of different types and to generate many variants of
each game allows any new approach to be extensively tested.
We intend to make this system available through a WWW
site (http://www.cs.berkeley.edu/˜daphne/gala/),
in the hope that it will provide the foundation for other work
on imperfect information games.
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