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In the ultimatum game, two players are asked to split a certain sum of money. The proposer has to make
an o¡er. If the responder accepts the o¡er, the money will be shared accordingly. If the responder rejects
the o¡er, both players receive nothing. The rational solution is for the proposer to o¡er the smallest
possible share, and for the responder to accept it. Human players, in contrast, usually prefer fair splits. In
this paper, we use evolutionary game theory to analyse the ultimatum game. We ¢rst show that in a non-
spatial setting, natural selection chooses the unfair, rational solution. In a spatial setting, however, much
fairer outcomes evolve.
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1. INTRODUCTION

Since its introduction by Gu« th et al. (1982), the ultimatum
game has fascinated game theorists and experimental
economists. The rules can be stated in a couple of lines.
Two players are o¡ered a gift, provided they manage to
share it. One of the playersöthe proposerösuggests how
to split the o¡er, the other playeröthe responderöcan
either agree or else reject the deal. In each case the deci-
sion is ¢nal.

A rational responder bent on maximizing his utility
should accept even the smallest positive o¡er, because the
alternative is getting nothing. A rational proposer who
believes that his opponent is rational should therefore
claim almost the entire sum. But it was found in a large
number of experiments, in many countries and for varied
stakes, that this is not how humans play the game. Most
proposers o¡er a fair shareöin fact, some 60^80% of
proposers o¡er fractions between 0:4 and 0:5, and only
3% o¡er less than 0:2. They are well advised to do thisö
indeed, some 50% of responders reject any split o¡ering
them less than one-third of the sum (for surveys see
Thaler 1988; Gu« th & Tietze 1990; Roth et al. 1991; Bolton
& Zwick 1995; Roth 1995).

There are many explanations for this uneconomical
emphasis on a fair division; this seems to re£ect the
psychological fact that humans use a utility function
which does not simply correspond to the expected pay-
o¡, but is also a decreasing function of the di¡erence
between the pay-o¡ values of the two players engaged in
the game (Kirchsteiger 1994; Bethwaite & Tompkinson
1996; Fehr & Schmidt 1999). In particular, the rejection
of a low o¡er by the responder can be seen as a kind of
punishment in£icted by the responder on the proposer
(who loses much more than the responder, in that case).
Many theoretical and experimental investigations (see
Boyd & Richerson (1992), for instance, or Fehr &
Ga« chter (1999)) have stressed the important role of
punishment for inhibiting sel¢sh individuals.

A frequently used explanation for the human behaviour
in the ultimatum game is that the players do not realize
that they interact only once. They are expecting repeated

interactions, even if the experimenter makes it clear that
there will be no repetition. The game can be repeated in
di¡erent ways. A ¢xed proposer and responder may
simply play a number of times and sum their pay-o¡s
from each game. This may lead to an incentive for the
responder to reject low o¡ers to obtain more in sub-
sequent rounds. Alternatively, players may play a
repeated ultimatum game in which they take turns in the
role of proposer and have to divide a single sum. The
game can continue until they reach agreement. This is
equivalent to haggling over a price. If it is assumed that
the sum is discounted from round to round ( t̀he
shrinking pie’), one obtains a very convincing model of
bargaining (Rubinstein 1982; Binmore 1992).

The tacit expectation of a further round is certainly as
plausible to explain fairness in the ultimatum game, as to
explain cooperation in the prisoner’s dilemma. However,
it has been shown that a spatial population structure
changes the outcome of the one-round prisoner’s dilemma
to a considerable extent (Nowak & May 1992; Nowak et
al. 1994). In this paper, we investigate similar e¡ects of a
spatial structure on the ultimatum game. Again, neigh-
bourhood relations and structured interactions a¡ect the
evolution of the strategiesöin particular, fair shares
become a likely outcome.

This approach is related to Huck & O« chssler (1999),
where it is shownöin a non-spatial contextöthat ulti-
matum games played in small groups can lead to positive
o¡ers. Small groups localize the competition. For repro-
ductive success, the possibility that the co-player gets a
relative advantage might become more important than
the size of the player’s own pay-o¡. This e¡ect, however,
can only lead to o¡ers which are less than the reciprocal
of the group size. In our spatial set-up, we get consider-
ably higher o¡ers.

In a biological context, the ultimatum game could
perhaps describe two individuals trying to divide in
advance the reward of a task that they can only perform
jointly, such as cooperative hunting or forming an alliance
against another group member. If one individual is domi-
nant, then it is possible that that individual would deter-
mine the split and that the other individual would simply
have to take it or leave it. The ultimatum game could also
re£ect dilemmas of food sharing: if the players do not
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agree on a split, there is a possibility that someone will
take away the food or the food will disappear (for
example, in cases of stream feeding of ¢sh; M. Milinski,
personal communication). Hence, while the experimental
situation of an isolated, anonymous ultimatum game is
somewhat arti¢cial, it is very likely that situations similar
to it have shaped the fairness instinct of animals and
humans for millions of years.

In addition, experiments on the ultimatum game shed
a striking light on our mental equipment for social and
economic life. Why do fairness considerations matter
more, to many of us, than rational utility maximization ?

2. RANDOM ENCOUNTERS

We normalize the sum which is to be divided by the
two players to be equal to unity, and consider strategies
given by two parameters p and q in the unit interval. The
parameter p denotes the amount o¡ered to the other
player if one is in the role of the proposer, while q denotes
the minimum acceptance level (or aspiration level) when
one is the responder.

Let us suppose that in an interaction between a player
using strategy S1 ˆ (p1, q1) and a player using strategy
S2 ˆ (p2, q2), each player can be in the role of proposer
with equal probability. The expected value of the pay-o¡
for the S1 player against the S2 player, E(S1, S2), is given
(up to the factor 1

2, which we henceforth omit) by

E(S1, S2) ˆ

1 ¡ p 1 ‡ p2 if p15q2 and p25q1

1 ¡ p 1 if p15q2 and p25 q1

p 2 if p15 q2 and p25q1

0 if p15 q2 and p25 q1.

(1)

Consider the following evolutionary dynamics. There is
a population of N players. In each round (generation),
every player interacts with every other player. The pay-
o¡s are added up. For the next generation, players leave
o¡spring in numbers proportional to their ¢tness.

O¡spring inherit (or learn) their parent’s strategy subject
to some small mutation: their p- and q-values are
randomly chosen within an interval of size e centred
around their parent’s p- and q-values.

In simulations of a population of N ˆ 100 players, we
calculated the time averages of the mean p- and q-values,
·p and ·q respectively, and the average values (over time) of
the standard deviations of p and q within the population.
These are shown in table 1, for various values of e. For
very small e, the ·p- and ·q-values tend to zero. Thus accu-
rate reproduction (or imitation) of strategies favours the
rational outcome. For larger values of e, however, we
observe signi¢cant positive o¡ers and aspiration levels.
For example, e ˆ 0:1 leads to ·p º 0:27 and ·q º 0:10. It
should be noted that this e¡ect is not simply a conse-
quence of mutational noise, but involves selection at least
on the value of ·p.

In ½ 2(a), we show that heterogeneity in the population
favours non-zero o¡ers. In this context, we also refer to
the paper by Gale et al. (1995) where the important role
of errors is analysed in the context of mini-games (games
with only two levels of o¡er and demand).

Figure 1 shows the time evolution of ·p and ·q in a simula-
tion of a population of 100 individuals, who initially have
randomly assigned p- and q-values.The mutation error, e, is
0:1. For small mutation errors, evolution leads to a popula-
tion of near rational players.

(a) What is the best response to a random strategy?
We have seen in ½ 2 that a small error in imitating a

parent’s strategy can lead to a diversity of strategies
within the population. This leads to a pressure to o¡er a
non-zero amount. Perhaps it is smart to have a strategy
which, instead of being the optimal response to another
rational player, fares well against a population in which
there is some diversity. As an illustration that these are
not the same in the ultimatum game, we consider the best
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Table 1. Evolution in the non-spatial ultimatum game leads to
a population of near `rational’ players

(The table shows the mean o¡er and acceptance level and also
the standard deviations (spread within the population) in a
population of 100 individuals, for simulations with various
mutation errors, e. Initially all individuals have randomly
distributed o¡ers and acceptance rates. Everyone plays
everyone else and the number of o¡spring of a given
individual is proportional to his total pay-o¡. The values
given are averages over time, sampled at 104 generation
intervals between 105 generations and 106 generations. The
outcome approaches rational behaviour as e becomes
in¢nitesimally small. For larger e, the heterogeneity of the
population favours non-zero acceptance rates which in turn
favour non-zero o¡ers.)

e p q

0.001 0:064 § 0:002 0:049 § 0:002
0.002 0:077 § 0:004 0:053 § 0:005
0.01 0:109 § 0:016 0:051 § 0:019
0.02 0:145 § 0:027 0:057 § 0:031
0.1 0:269 § 0:089 0:104 § 0:080
0.2 0:327 § 0:142 0:141 § 0:120

1

0.6

0.8

p–

0.2

0.4

0 3.02.52.01.51.00.5

log10t

(a)

1

0.6
0.8

q–

0.2
0.4

0 3.02.52.01.51.00.5

(b)

Figure 1. This ¢gure shows the time evolution of the average
o¡er (a) and acceptance levels (b) in simulations of the non-
spatial ultimatum game. Initially the 100 individuals in the
population have random o¡ers and acceptance levels.
Everyone plays everyone else (both as proposer and
responder) and the number of o¡spring of a given individual
is proportional to his total pay-o¡. The mutation error, e, is
0.1. The time-scale is logarithmic to illustrate the long term
(albeit noisy) convergence.



response to a population the strategies of which are
randomly distributed. We note that the rational solution
does not maximize the expected pay-o¡ in a population
of players whose (p , q)-strategies are randomly distrib-
uted in the unit square. This can be shown as follows.

If we assume that the p- and q-values are uniformly
distributed between zero and unity, we see immediately
that the strategy S ˆ ( 1

2 , 0) does best. The average pay-
o¡, P, of a strategy S ˆ (p, q) against opponents in the
square is given by

P ˆ
1

0

1

0
(1 ¡ p)I‰p5q0Š ‡ p 0I‰p 05qŠdq0dp 0

ˆ (1 ¡ p)
p

0
dq0 ‡

1

q
p 0dp 0

ˆ p(1 ¡ p) ‡ 1
2(1 ¡ q2),

(2)

where I [ . . .] is the indicator function, taking value unity
if its argument is true and zero if it is false. The average
pay-o¡, P, is thus maximized by (p, q) ˆ ( 1

2 , 0).
Thus, the best response to the rational strategy is (0, 0)

itself, and the best response to a random strategy is
( 1

2 , 0).

3. THE ONE-DIMENSIONAL SPATIAL ULTIMATUM

GAME

So far we have assumed that players meet randomly. If
there is any social structureödue, for instance, simply to
a spatial arrangementöthe outcome can be very
di¡erent. Because encounters are no longer randomized,
the success of a strategy S2 invading a population using
strategy S1 depends not only on the pay-o¡s E(S1, S1)
and E(S2, S1), i.e. on encounters with the vast majority,

but also on E(S1, S2) and E(S2, S2). The invading
minority can a¡ect locally the resident’s pay-o¡. Beating
one’s neighbours is now all important.

Let us consider players located on a one-dimensional
lattice, each interacting with his two nearest neighbours.
Players also compete only with their nearest neighbours
for o¡spring. We once again assume that o¡spring are
apportioned probabilistically in proportion to the total
scores of the parents. The probability that the o¡spring at
a speci¢c site belongs to a given member of the neighbour-
hood of that site is equal to that player’s score divided by
the total score of the three players in the neighbourhood.
For a more general discussion of the formulation of spatial
games, see Killingback & Doebeli (1998).

Consider the strategies S1 and S2 with q14p15q24p2.
We know that in the non-spatial game there is a bistable
equilibrium between these two strategies, because each
strategy is the better response against itself. Hence a
small proportion of S2-strategists cannot invade a popu-
lation of S1-strategists. Suppose, however, that there is a
single S2-strategist (`mutant’) isolated in a sea of S1-stra-
tegists (`residents’). With the exception of the players at
the frontiers, all have pay-o¡ 2 (with one provided from
each neighbour). At the frontier, the S2-strategist will
obtain 2(1 ¡ p2), whereas its S1-neighbours obtain 1 ‡ p2

each (see ¢gure 2a). Hence the probability of each of the
neighbours of the mutant to become ousted by the mutant
in the next generation is 2(1 ¡ p 2)=‰2(1 ¡ p2) ‡ (1 ‡ p2)
‡ 2Š ˆ 2(1 ¡ p 2)=(5 ¡ p2) and the probability of the mutant
to become ousted by the resident-type in the next genera-
tion is 2(1 ‡ p 2)=‰2(1 ‡ p2) ‡ 2(1 ¡ p2)Š ˆ (1 ‡ p2)=2.
Thus the expected number of o¡spring of the mutant
exceeds unity if 2 £ 2(1 ¡ p 2)=(5 ¡ p 2)5(1 ‡ p2)=2, i.e. if
p < 0:26 . . .. For an adjacent pair of S2-players, the
critical condition is p2 < 0:43 . . . (see ¢gure 2b).

When there is a small cluster of at least three S2-strategists
(see ¢gure 2c), all players, except those at the frontier, have
pay-o¡ 2. The S1-player at each frontier obtains 1 ‡ p2, the
S2-player next to it obtains 2 ¡ p2. Hence the probability
that a site at the boundary switches from resident to
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2

(a)

1+p2 1+p2

2 - 2p2

2

2

(c)

1+p2 1+p2

2 - p2

2

2 2 - p2

2

(b)

1+p2 1+p2

2 - 2p2

2

2 - p2

Figure 2. When do mutant clusters spread in the one-
dimensional spatial ultimatum game? The majority of the
population play strategy S1 ˆ (p1, q1). A cluster of mutants
forms which play strategy S2 ˆ (p2, q2), where p25q25p15q1.
(a) A single player playing the mutant strategy, S2, is shown
in black, in a ring of players playing the resident strategy, S1,
in white. The pay-o¡ obtained by each player is indicated by
the arrows. The mutant is likely to propagate if p 240:39 . . ..
(b) An adjacent pair of mutant players is likely to spread if
p240:43 . . .. (c) A cluster containing at least three players is
likely to grow if p240:5.

Table 2. Fairness emerges in the spatial ultimatum game

(The table shows the average o¡er and acceptance level in
and the standard deviations for simulations with mutation
error e ˆ 0:001. As in table 1, the values given are averages
over time, sampled at 104 generation intervals between 105

generations and 106 generations. N is the number of
individuals in the population, which is arranged one-
dimensionally with periodic boundary conditions (a ring).
The neighbourhood size is the number of individuals with
whom a given individual plays the game. Each individual
competes to keep his position in the ring in the following
generation with the same individuals with whom he plays.
Initially all individuals have random o¡er and acceptance
levels.)

N neighbourhood size ·p ·q

100 2 0:453 § 0:007 0:432 § 0:008
6 0:326 § 0:004 0:306 § 0:004

10 0:243 § 0:003 0:226 § 0:003
500 2 0:468 § 0:016 0:446 § 0:019

6 0:455 § 0:009 0:438 § 0:013
10 0:394 § 0:006 0:377 § 0:008



mutant in the next generation is (2 ¡ p2)=(2 ‡ 2
¡ p2 ‡ 1 ‡ p 2) ˆ (2 ¡ p2)=5 and the probability for the
opposite switch is likewise (1 ‡ p2)=5. Thus clusters of the
mutant strategy, S2, tend to spread if (2 ¡ p2)=5
4 (1 ‡ p 2)=5, i.e. if p25 1

2.
We performed numerical simulations of the spatial

ultimatum game with two total population sizes
(N ˆ 100, 500) and various neighbourhood sizes
(n ˆ 2, 6, 10). The neighbourhood size is the number of
individuals who play the game with a given individual.
The individual at a given site competes with its n `neigh-
bours’ to give rise to the o¡spring at that site. The
resulting average o¡ers and acceptance levels together
with their standard deviations are shown in table 2. With
increasing N and decreasing n, evolution leads to players
o¡ering and demanding an almost fair split. Note that the
results of these simulations were not signi¢cantly a¡ected
by whether each pair of neighbours played the game only
once with the role of proposer assigned randomly or
whether they played twice, each taking the role of
proposer once. In the above analysis we have assumed the
latter for simplicity.

Figure 3 shows the evolutionary dynamics of the system
starting from a random initial condition. Initially, when
the o¡ers within these clusters are di¡erent from the
acceptance levels, natural selection favours the domina-
tion of a cluster with o¡er and acceptance level close
together. Of course, the o¡er always exceeds the accep-
tance level. Clustering then develops on a more micro-
scopic scale and the system is slowly driven towards
fairness.

4. THE TWO-DIMENSIONAL SPATIAL ULTIMATUM

GAME

We now consider players arranged on a two-dimensional
square lattice. Each player interacts with his neighbours
directly above, below, to the left and to the right. This is
called a von Neumann neighbourhood. Unlike the one-
dimensional case, there are are many con¢gurations of
mutant cluster that we could consider. However, it
appears that the reproductive success of a 3 £ 3 square
mutant cluster is critical to the ability of the mutant to
invade (Killingback et al. 1999). If we consider, once
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Figure 3. Temporal behaviour of the one-dimensional spatial ultimatum game. The ring contains 100 individuals who interact
with their immediate neighbours. Initially, the o¡ers and acceptance levels converge within clusters. A cluster with low o¡er and
acceptance level spreads and dominates. Subsequently, clustering is established on a smaller scale. Finally, the whole ring of
players evolves towards roughly fair strategies. The mutation error is e ˆ 0:001.



again, a resident strategy, S1, and a mutant strategy, S2,
with q14p15 q24p2, then we ¢nd that a 3 £ 3 mutant
cluster of the fairer type is likely to expand if and only if
p2 < 0:342 . . . (see Appendix A).

The results of numerical simulations of the ultimatum
game on square lattices of various sizes are shown in table
3. As the grid size becomes large, the average o¡er and
acceptance rate in the population comes close to the value
of p for which the 3 £ 3 mutant cluster spreads. Thus also
in the two-dimensional situation, evolution leads to stra-
tegies which show some degree of fairness.

5. SUMMARY

A straightforward evolutionary approach to the ulti-
matum game in which all members of the population play
each other with equal probabilities and their o¡spring are
apportioned according to their total scores, predicts that
the average o¡er and acceptance rate in the population
will tend to some values near zero, provided that the
mutation error is very small. Thus players ultimately
display behaviour which is close to the `rational’ beha-
viour predicted by game theory and unlike observed
human behaviour. Larger mutation errors lead to a
heterogeneous population with consequently larger
average o¡er and acceptance rate. For example, a large
mutation error of 0:1 leads to an average o¡er of around
0:27. The aspiration levels, q, in simulations of the non-
spatial ultimatum game are, however, considerably
smaller than those found experimentally.

If players compete for o¡spring only with certain
neighbours rather than with all of the population, then it
is their score relative to those neighbours which is impor-
tant. Thus there is more pressure not to allow an oppo-
nent to get away with an unfairly large share of the pie.
In a one-dimensional geometry with nearest neighbour
interactions, we ¢nd that the average o¡er and accep-
tance level approximate a fair split. When the players are
arranged on a two-dimensional square lattice, we obtain
o¡ers around 0:35.

Clearly, just as with the prisoner’s dilemma or the
hawk^dove game (see Nowak & May 1992; Nowak et al.
1994; Killingback & Doebeli 1998), spatial population
structure can have important e¡ects on the evolutionary
outcome of the ultimatum game. In another paper
(Nowak et al. 2000), we show that some information on
the co-player’s past actions can lead to the prevalence of
fair splits.
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APPENDIX A. A 3 £ 3 CLUSTER OF MUTANT PLAYERS

SPREAD IN THE TWO-DIMENSIONAL

SPATIAL GAME IF THE OFFER

IS LESS THAN 0:342 . . .

Experience shows that the fate of a random arrange-
ment of two strategies on a grid depends essentially on
whether a 3 £ 3 cluster of one strategy can spread or not
(Killingback et al. 1999). Thus let us assume that all
members of the population play strategy S1 ˆ (p1, q1),
except for a 3 £ 3 cluster of mutants who play the strategy
S2 ˆ (p2, q2), with p25q25p15q1 (the most interesting
case). Let us consider a von Neumann neighbourhood:
¢gure A1 shows the mutant players represented by black
squares and the resident players represented by white
squares. If the sum of the expected number of the nine
mutants’ o¡spring exceeds nine, then we expect the
mutant cluster to spread. The expected number of
o¡spring of a player is equal to the sum (over each site of
the neighbourhood) of the probabilities that the player
gives rise to o¡spring at that site. This probablity is deter-
mined by the player’s total pay-o¡ divided by the total
pay-o¡ of all players in the neighbourhood of that site.
The ¢gure shows the payo¡s attained by players within
the mutant cluster and just outside the boundary. The rest
of the resident players further away from the mutant
cluster all receive a total pay-o¡ of four.

We can deduce that mutant players at a corner of the
square have expected number of o¡spring given by
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Table 3. In the two-dimensional spatial ultimatum game, we
observe o¡ers which are somewhere between fair (1

2) and rational
(0)

(The players are arranged on a square grid and play the game
and compete for o¡spring with those players directly above,
below, to the right and to the left of them (a von Neumann
neighbourhood). The table shows the average o¡ers and
acceptance levels and standard deviations for e ˆ 0:001 on
square grids of various size (¢xed boundaries; players at the
edges have fewer neighbours). The time averages and
standard deviations are calculated as in tables 1 and 2.)

grid size ·p ·q

10 £ 10 0:228 § 0:006 0:205 § 0:006
20 £ 20 0:291 § 0:007 0:273 § 0:009
30 £ 30 0:308 § 0:008 0:287 § 0:012
50 £ 50 0:326 § 0:009 0:300 § 0:017

100 £ 100 0:340 § 0:012 0:312 § 0:022
200 £ 200 0:354 § 0:014 0:326 § 0:024
300 £ 300 0:361 § 0:016 0:334 § 0:025
500 £ 500 0:369 § 0:019 0:342 § 0:028

4

3+p2

2+2(1 - p2)
3+(1 - p2)

3+p2

Figure A1. This ¢gure shows (in black) a 3 £ 3 cluster of
players playing the mutant strategy, S2, in a large square of
players playing the host strategy, S1 , in white. The o¡ers and
acceptance rates of these strategies satisfy p25q2 > p15q1 .
The pay-o¡ obtained by each player is indicated on the
¢gure, with unlabelled squares having the same pay-o¡s as
their counterparts under 908 rotation.



E‰no. offspring of mutant at cornerŠ

ˆ (4 ¡ 2p 2)
1

4 ¡ 2p2 ‡ 2(3 ‡ p2) ‡ 2(4 ¡ p2)

‡ 2
1

4 ¡ 2p 2 ‡ 2(3 ‡ p2) ‡ 2(4)

‡ 2
1

2(4 ¡ 2p2) ‡ 4 ¡ p2 ‡ 3 ‡ p 2 ‡ 4

ˆ (4 ¡ 2p 2)
1

18 ¡ 2p2
‡

1
9

‡
2

19 ¡ 4p2
. (A1)

Mutants on the middle of the sides of the square have
expected number of o¡spring given by

E‰no. offspring of mutant on sideŠ

ˆ (4 ¡ p2)
1

2(4 ¡ 2p2) ‡ 4 ¡ p2 ‡ 3 ‡ p2 ‡ 4

‡ 2
1

4 ¡ 2p 2 ‡ 2(3 ‡ p2) ‡ 2(4 ¡ p2)

‡
1

3(3 ‡ p2) ‡ 4 ¡ p2 ‡ 4
‡

1
4 ‡ 4(4 ¡ p 2)

ˆ (4 ¡ p2)
1

19 ¡ 4p 2
‡

1
9 ¡ p2

‡
1

17 ‡ 2p2
‡

1
20 ¡ 4p 2

,

(A2)

and the mutant in the centre of the cluster has expected
number of o¡spring given by

E‰no. offspring of mutant in centreŠ

ˆ 4
1

4 ‡ 4(4 ¡ p2)
‡ 4

1
2(4 ¡ 2p2) ‡ 4 ¡ p2 ‡ 3 ‡ p 2 ‡ 4

ˆ 4
1

20 ¡ 4p2
‡

4
19 ¡ 4p2

. (A3)

Thus the expected number of mutant o¡spring is given
by

E‰no. mutant offspringŠ

ˆ
64 ¡ 20p2

19 ¡ 4p2
‡

48 ¡ 16p2

18 ¡ 2p2
‡

16 ¡ 8p 2

9
‡

16 ¡ 4p2

17 ‡ 2p2
‡ 1.

(A4)

This value is greater than nine, and hence the cluster is
likely to spread, if and only if p 2 < 0:342.
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