
The RETSINA MAS Infrastructure

KATIA SYCARA katia@cs.cmu.edu

Carnegie Mellon University, Robotics Institute, 5000 Forbes Ave, Pittsburgh, PA 15232, USA

MASSIMO PAOLUCCI paolucci@cs.cmu.edu

Carnegie Mellon University, Robotics Institute, 5000 Forbes Ave, Pittsburgh, PA 15232, USA

MARTIN VAN VELSEN vvelsen+@cs.cmu.edu

Carnegie Mellon University, Robotics Institute, 5000 Forbes Ave, Pittsburgh, PA 15232, USA

JOSEPH GIAMPAPA garof@cs.cmu.edu

Carnegie Mellon University, Robotics Institute, 5000 Forbes Ave, Pittsburgh, PA 15232, USA

Abstract. RETSINA is an implemented Multi-Agent System infrastructure that has been developed for several

years and applied in many domains ranging from financial portfolio management to logistic planning. In this paper,

we distill from our experience in developing MASs to clearly define a generic MAS infrastructure as the domain

independent and reusable substratum that supports the agents’ social interactions. In addition, we show that the

MAS infrastructure imposes requirements on an individual agent if the agent is to be a member of a MAS and take

advantage of various components of the MAS infrastructure. Although agents are expected to enter a MAS and

seamlessly and effortlessly interact with the agents in the MAS infrastructure, the current state of the art demands

agents to be programmed with the knowledge of what infrastructure they will utilize, and what are various fall-back

and recovery mechanisms that the infrastructure provides. By providing an abstract MAS infrastructure model and

a concrete implemented instance of the model, RETSINA, we contribute towards the development of principles

and practice to make the MAS infrastructure ‘‘invisible’’ and ubiquitous to the interacting agents.

Keywords: MAS, Multi-Agent System, infrastructure, agent, architecture.

1. Introduction

Multi Agent Systems are becoming increasingly important: as a scientific discipline, as a

software engineering paradigm, and as a commercially viable and innovative technology.

Despite the considerable research that has gone into the formation of theories, scientific

principles and guidelines for MAS, there is relatively little experience with the building,

fielding and routine use of MASs. It is admittedly the case that the development of a MAS

is extremely challenging, both in the laboratory but especially in the real world. However,

MAS research will not fulfill its potential until we have a critical mass of fielded systems,

components, and services. To achieve this goal, a stable, widely used, widely accessible

and extensible MAS infrastructure is crucial. Various standards bodies (e.g. FIPA) are

attempting to define standards for various aspects of MAS infrastructure, such as Agent

Communications Languages. In addition, industrial organizations (e.g. SUN) are devel-

oping and making accessible software that could constitute a part of a MAS infrastructure,

such as JINI for service discovery. Various labs and companies are developing agent

toolkits that could be reused for building agents and multiagent systems (see section 5).

Autonomous Agents and Multi-Agent Systems, 7, 29–48, 2003
2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

However, there is no coherent account of what constitutes a MAS infrastructure, what

functionality it supports, what characteristics it should have to enable various value-added

abilities, and what should be its possible relation with and requirements it may impose on

the design and structure of single agents. This is what this paper is all about.

The Intelligent Agents Group at Carnegie Mellon University1 has had a long history

in researching various issues in MAS, such as MAS stability [42], MAS learning [1],

MAS coordination [8, 43]. In addition, we have been building and experimenting with

MAS [7, 40].

In this paper, we will distill our experience of recent years into an account of what

constitutes MAS infrastructure, and specifically, what characteristics and abilities different

parameters within the infrastructure afford. Our definition and treatment of MAS infra-

structure will not be as encompassing as the one proposed in [15]. It will be concerned

mainly with technology development, applications and use, rather than involving scientific

and educational MAS activities.2 This account of the MAS infrastructure has resulted from

our vision that the computational world will soon be populated with multiagent societies

that are heterogeneous in agent structure, multiagent organization and functionality. Our

thinking on MAS infrastructure was guided by the desire to enable the flexible design,

building and operation of such societies. One important element that our account articulates

is the relation between infrastructure for a single agent and the infrastructure for the MAS

in which the agent participates. We consider MAS infrastructure to be the domain

independent and reusable substratum on which MAS systems, services, components, live,

communicate, interact and interoperate, while the single agent infrastructure is the generic

parts of an agent that enable it to be part of a multiagent society, i.e to be socially aware.

In developing our own multiagent infrastructure, RETSINA, we made various design

decisions that were motivated by our assumptions of what is the best added value that

future MAS could provide. In this paper, we will describe the RETSINA infrastructure as

an implemented instantiation of the proposed abstract infrastructure model and point out

the particular design decisions and characteristics it embodies. The RETSINA infra-

structure has evolved over the years. We have used it to implement a variety of

applications in order to test the generic features of the infrastructure to make sure of its

generality. Each subsequent application guided the refinement of the infrastructure towards

increased generality and flexibility.

Since there is no standard MAS infrastructure in existence, we will use characteristics

derived from our abstract model of infrastructure as dimensions along which to compare

various MAS systems reported in the literature (see section 5.)

The rest of the paper is organized as follows: in section 2 we clearly define what we mean

by MAS infrastructure; in section 3 we discuss the implementation of the RETSINA

infrastructure; in section 4 we briefly present some applications that have been developed

using the RETSINA infrastructure; in section 5 we present related work and finally we

conclude in section 6.

2. MAS infrastructure

Agents in a MAS are expected to coordinate by exchanging services and information, to be

able to follow complex negotiation protocols, to agree on commitments and to perform

SYCARA ET AL.30

other socially complex operations. We define the infrastructure of a MAS as the set of

services, conventions, and knowledge that facilitate such complex social interactions.

Agents need services to enable them to find each other in open environments, to

communicate, to warrant that the proper security constraints are satisfied. Conventions,

such as Agent Communication Languages (ACLs), and conversational policies are the

basis for achieving interoperability and agreement on what the agents are doing and what

they are achieving; knowledge of how to use the infrastructure, ACL and protocols as well

as a common ontology are needed by the agents so that they can be effective participants

in the community.

Crucially, the above definition does not mention what the infrastructure should know

about the internals of the agents in the system. We claim that from the point of view of the

MAS infrastructure, agents are ‘‘socially aware’’ programs3 that communicate, interact

among themselves and with the infrastructure components, and whose behavior conforms

to the rules of the MAS. An agent’s problem solving capabilities, however, are a black box

to the infrastructure.

Figure 1 shows how the different services provided by a MAS infrastructure are

organized in an abstraction hierarchy, in which the higher levels rely on the functionalities

implemented by the lower levels.4 The infrastructure diagram has two parts: the MAS

infrastructure, and the single agent infrastructure that allows an agent to be part of a MAS.

The diagram also shows how the components of the infrastructure are reflected in the

internal structure of an agent.5 In the diagram, the Problem Solving layer of an agent is

absent precisely because the infrastructure does not make any assumptions about it.

Figure 1. MAS infrastructure and individual agent infrastructure that allows an agent to be part of a MAS.

THE RETSINA MAS INFRASTRUCTURE 31

Our claim has profound consequences: first it defines MASs as inherently heteroge-

neous, in the sense that any agent can enter the system and interact with the other agents

independently of its internal architecture and model of the world. Similarly, the MAS

infrastructure is agnostic on the points of particular coordination regimes. We claim that

the MAS infrastructure should be general enough to facilitate any coordination scheme

such as team behavior [18, 30], negotiation [24], Contract Nets [8, 38] etc. This is why

there is no coordination layer in the figure. In addition, we feel that social norms [3] are

not part of the infrastructure but are particular to the design of a given MAS society.

In the following, we provide a description of the infrastructure layers.

2.1. Operating environment

At the bottom of the conceptual layering of the infrastructure, a MAS relies on an

Operating Environment, i.e: on physical computers, on their operating system, on different

types and topologies of the networks that connect different agents and different means of

information transport. Single agents also use this infrastructure without any additional

components or awareness. This is why the ‘‘operating environment’’ layer runs across both

the MAS infrastructure and the single agent infrastructure portion of the figure. This level

of abstraction should be totally transparent to the agents and the MAS, which should work

across different platforms and networks.

2.2. Communication infrastructure

A MAS is implemented on top of a Communication Infrastructure that transfers messages

between the agents as well as between the agents and the MAS infrastructure. Current

communication channels have various modalities, such as wired, wireless, infrared etc. To

ensure maximum flexibility in MAS communications, the communication channel should

support different modalities of communication between agents, such as synchronous or

asynchronous communications, as well as be abstracted from the actual transport layer and

the ACL used [34]. ACL independence does not mean that the ACL can be under-

specified within a specific MAS, rather it means that the same communication infra-

structure can be reused by different MAS that use different ACLs.

Independence from the transport layer guarantees that agents can communicate when-

ever there is an open connection between them, independent from the way in which this

connection is implemented and from contingency situations that are not under the control

of the agents. For example an agent should be able to be connected to other agents via a

socket connection, or via infrared or with some sort of wireless radio connection. No

matter what media is used, if there is an open connection between the agents, they should

succeed in communicating.

Within an individual agent, communication infrastructure is needed, i.e: an ACL-

independent communication module that formulates an agent’s messages, taking into

consideration particular communication channel characteristics (e.g. wired, wireless).

Another important infrastructure service at this layer is the discovery of infrastructure

components. For example, when an agent first comes up in an open environment, it may

want to register itself with agent name services (see the discussion on ANS in subsection

2.7). Instead of having hardwired IP addresses for such services, the MAS infrastructure

SYCARA ET AL.32

and the corresponding single agent infrastructure can facilitate the discovery of existing

ANSs. UPnP and JINI are examples of such discovery protocols. (See also section 3 for

description of such infrastructure discovery protocols implemented in the RETSINA

infrastructure).

2.3. ACL infrastructure

An essential part of creating a community of agents is the specification of a language that

is understood by all the agents in that community. For this reason, the specification of an

ACL, protocols and conversational policies used by the agents is an essential part of the

specification of the MAS and it constitutes a part of the MAS infrastructure.

An ACL should specify the syntactic form of the messages exchanged. In addition, it

should specify the semantic interpretation of the messages, so that an agent understands

what the messages that it receives are all about. The interpretation of the messages relies

on the specification of a shared ontology in which the terms used are defined. In turn, the

ontology can be used to extract the meaning of the messages themselves. Conversational

policies [20] and protocols embody the roles and social context [36] of agent communi-

cation. The social context constitutes the pragmatics against which agent communications

are interpreted and used.

Correspondingly, an individual agent’s infrastructure should support interpretation of a

message by an agent, and facilities for allowing an agent to send messages. In addition, the

agent should know what to do with the message it receives, i.e: how to parse the message,

and how to interpret it in the context of an on-going conversation. Therefore, along with

the ACL there should be a definition of a set of protocols [37] and conversational policies

[21] that specify what an agent’s role is and how a message fits in the general scheme of

the messages exchanged by the agents. For instance, a request for information should be

followed by an answer or by a ‘‘sorry message’’: an acknowledgment that the agent cannot

provide an answer. An agent’s language infrastructure should support the understanding of

some public ontology that expresses the conversational content.

2.4. Multiagent management services

MAS infrastructures should also provide additional system operation services which we

labeled Multiagent Management Services in Figure 1. Such services provide facilities that

support the work of a MAS over time: they include Logging facilities that record the

messaging activity of agents in the MAS; Management Tools that monitor and visualize

the activity of the MAS; and Installation Services and Launching Services that ease the

burden of starting and configuring the many agents that comprise a MAS.

2.5. Performance measurement

Because MASs are in general heterogeneous, the agents differ in their ability, efficiency,

reliability etc. The MAS should provide Performance Measurement to monitor the

performance of the agents. For example Performance Measurement services could be

used to optimize the distribution of tasks across agents. Such services could rank S

services in terms of performance, so that the more efficient would be more likely to receive

THE RETSINA MAS INFRASTRUCTURE 33

requests. Also, the reputation of agents might be monitored [46]. Any agent that provides

false or unreliable information would lose credibility within the MAS and it would not be

used by any agent that needs its service. In addition, failures could be monitored and the

information collected could be used for failure tracking or facilitating failure recovery.

Although the performance measurement services for MAS could operate without the

individual agents being aware of them, there could be corresponding services within an

individual agent that increase agent effectiveness as a MAS participant. For example, an

agent could be self-aware, i.e monitor its own performance and try to optimize it. Or,

an agent could monitor its own failures and try to recover from them.

2.6. Security

Agents in an Open MAS, where agents can join and leave the society dynamically and

where agents have been designed by different development groups, meet as perfect

strangers. Each agent knows very little or nothing about the agents with whom it interacts.

Therefore, security services are needed to ensure that agents do not misbehave.6

The security layer of the MAS infrastructure deals with these problems. It defines a set

of trusted services, as for example certificate authorities, that help authenticate the identity

of the agents, and a set of protocols that are guaranteed to prevent voluntary and

involuntary losses of goods, services, or other values during the interaction.

Individual agent infrastructure should make sure that agents in the system can interact

with these Security services. Such an example would be an agent interacting with the

Certificate Authority to retrieve be granted certificates necessary to perform its trans-

actions. Furthermore, agents should know and be able to handle encryption and to follow

the secure protocols.

2.7. Mapping names to agent locations

A MAS infrastructure includes facilities to find agents by some identifying feature, such as

a name. MAS can be divided in two classes: systems that abstract from the physical

location of agents and systems that do not. CGI-BIN scripts on the Web are an example of

a MAS that employ fixed locations. Each CGI-BIN script is addressed by the name of the

web server on which it is running and the exact location within such a server. When the

CGI-BIN script is moved to another location, all the references to it should also be

updated, but there is no provision in the HTTP protocol or anywhere else that does it

automatically. Furthermore, while new CGI-BIN scripts are constantly added and removed

from the web, any reference to them is hardwired either in a HTML form or in other CGI-

BIN scripts, since there is no mechanism nor provision that allows web pages to

reconfigure automatically to make use of new services provided nor to detect when

services that they used to access are no longer available.

In the general case, agents can join and leave a MAS dynamically and unpredictably.

Agents that are not bound to a particular physical location can appear anywhere on the net

and still be part of the community of agents. While this flexibility provides an essential

advantage because an agent developer does not need to care where an agent is located, it

requires services for mapping the agent name dynamically to the agent location. In

addition, such facility provides the basis for agent mobility. No agent that is bound to a

SYCARA ET AL.34

precise location can move and still be part of a MAS. To abstract from the physical

location of the agent, the MAS infrastructure should maintain a registry to map the name

of the agent to a physical location so that it can eventually be reached. Such a registry is

represented in the Figure 1 as the ANS: Agent Name Server. An ANS is like a DNS but

with increased flexibility for real time updates, discovery services (see Communication

Infrastructure Layer in Figure 1), automatically ‘‘pushing’’ agent name registration to other

ANSs etc. Systems that are based on the CORBA ORB [5], such as the Sensible Agent

Testbed [2], or on JINI [26], such as the Grid [4], or on the RETSINA ANS infrastructure

(see section 3.7) use an underlying infrastructure that automatically abstracts from the

physical location of the agents.

The ANS Component in the figure is the corresponding individual agent infrastructure

that registers and unregisters with the ANS and initiates lookup requests for a desired

agent.

2.8. Mapping capabilities to agents

A general MAS should support an open rather than closed agent world.7 Open systems

allow agents to enter, and exit, the system dynamically and unpredictably, while closed

systems employ a fixed set of agents that are known a priori. Since in an open MAS the set

of agents is not known a priori, the infrastructure should provide ways for its agents to

locate each other based not only on name but on functionality or capability. Locating

agents by capability is solved by employing a set of infrastructure agents called Middle

Agents [6]. Some examples of middle agents reported in the literature include the OAA

Facilitator [29], the RETSINA Matchmaker [41] and the Infosleuth Broker [33]. Middle

Agents maintain an up-to-date registry of agents that have made themselves known to the

MAS community, along with the services that each agent provides. This information is

called the agent’s capability advertisement and is provided by the agent to a middle agent.

When an agent needs another that has some required capability, it sends a middle agent a

request specifying the desired capability. The middle agent matches requests and

advertisements. In general, there could be a variety of middle agents that exhibit different

matching behaviors and have different performance characteristics. In prior research, we

have identified 28 middle agent types and have experimented with different performance

characteristics, such as load balancing, fault tolerance etc. [6, 45].

Whether the system allows Middle Agents or not affects the infrastructural requirements

of a single agent. An agent must have the ability to construct advertisements to make itself

known to the agent community and also construct requests to take advantage of services

provided by other agents. If an agent lacks these abilities, it would be stand alone and

isolated from the MAS activities.

2.9. Interoperation

As the number of MAS created by different groups increases, the need for MAS

interoperation will increase also. The development of sharable ontologies, conversational

policies, ACLs and translation services will go a long way towards allowing individual

agents to interoperate. However, additional infrastructure is needed to take care of MAS

architectural mismatches, for example between a centrally controlled MAS that uses a

THE RETSINA MAS INFRASTRUCTURE 35

Facilitator as middle agent and a distributedly controlled MAS that uses a Matchmaker as

middle agent. Each MAS may have its own architecture-specific features, such as: agent

registration, agent capability advertisement, agent communication language, agent dia-

logue mediation, default agent query preference, and agent content language. Since MAS

are in general open, there is the further requirement that interoperation must be done in

real-time so as to capture the dynamics of the agent world. If an agent enters one MAS

community, agents in the other MAS communities should have ways of finding and

transacting with this agent, if it matches a required capability.

Currently, only a couple of research interoperation systems exist (see section 3.9 and 5)

between architecturally different open MAS, but we believe this area will receive

increased attention, as more MAS get developed and deployed.

2.10. Agent interaction with the MAS infrastructure

The infrastructure provides a set of components that allow agents to interact with each

other. Agents in the MAS use these components as tools to discover the agent landscape to

find other agents and to interact with them. While heterogeneous MAS infrastructure

should not make any assumption on the internal structure of the agents, Figure 1 shows

that the agents do make assumptions on the infrastructure, and use these assumptions to be

part of the whole MAS. These assumptions consist of the services the MAS infrastructure

provides, of the protocols that the different services of the MAS infrastructure require and

of the communication channels that the MAS infrastructure implements.

Yet this is not enough for an efficient use of the MAS infrastructure. Agents also need

to distinguish between the different services provided by the infrastructure and to know

how to use the infrastructure for error recovery. For instance, brokers and matchmakers

are both middle agents, but they are used in very different ways. A broker indirectly

provides a way to anonymize a requester so that its requests are not disclosed to the

providers, also a broker may perform load balancing tasks that a matchmaker can not do

and it may take care of managing part of the task for the requester [6, 7]. On the other

hand the broker constitutes a single point of failure, and it may easily become a

bottleneck because it manages all the interactions between the requesters and the

providers. In order to use the MAS infrastructure efficiently, the agents in the MAS

need to understand, or have rule for, the tradeoffs that are intrinsic in different modules of

the infrastructure [27].

In conclusion, the agent does not only need modules that control the interaction with the

infrastructure components, but also it needs rules to decide how to make use of such

components and what to do with the information provided by the infrastructure. How this

information is used may lead to failure recovery, coordination, team behavior and

ultimately to the intelligent and autonomous behavior of the agents.

One of the main topics of research in MAS is coordination and how agents can interact

with each other without destroying each other’s work. Above, we claimed that the MAS

infrastructure should support any coordination regime and therefore be agnostic with

respect to the coordination methods. Indeed, coordination behavior results from the MAS

infrastructure in two ways: either it is programmed as an additional layer to the

infrastructure, as shown below in section 4.3, or it emerges as a ‘‘social behavior’’ from

the independent problem solving of the agents, as in the case of team behavior.

SYCARA ET AL.36

Team formation requires that the teammates become team members on the basis of the

role they have to play in the team plan and ultimately of their capabilities [18]. This

functionality is supported by the middle agents. Crucially, the infrastructure does not

dictate a team plan to the agents, or what the agents need to do. The execution of the team

plan is supported by the infrastructure secure communication channels; furthermore,

through the infrastructure the teammates can monitor whether the team is still intact and

what progress the teammates made toward the joint goals. Finally, the infrastructure

facilitates failure repair by facilitating the location of agents that may join the team to

replace failing teammates or to assist in recovering from failures that emerged during

execution.

3. The RETSINA MAS infrastructure

RETSINA is an open MAS infrastructure that supports communities of heterogeneous

agents. The RETSINA system has been implemented on the idea that agents in the system

should form a community of peers that engage in peer to peer relations. Any coordination

structure in the community of agents should emerge from the relation between the agents

rather than being imposed by the infrastructure. Following this premise, RETSINA does

not employ any centralized control on the MAS, rather it implements distributed infra-

structural services that facilitate the relations between the agents instead of managing

them.

The organization of the RETSINA MAS infrastructure is displayed in Figure 2. It shows

how the various components are organized on the basis of the infrastructure model in

Figure 1. In the rest of this section we will describe these components.

3.1. Operating environment

The RETSINA MAS is independent of the platform on which the infrastructure

components and the agents run, and it automatically handles different types of transport

layers.

Applications of the RETSINA MAS are routinely distributed on different platforms

ranging from different versions of Windows, different versions of Linux, and Sun OS.

Furthermore, they include agents running on PalmPilots and iPAQ. The agents used have

been implemented in different languages, such as Java, C, C++, Python, LISP, and Pearl.

Communication transport layers handled by RETSINA include TCP/IP, wireless, SSL,

infrared, and serial connection.

3.2. Communication infrastructure

RETSINA is based on two types of communication channels: one provides message

transfer for direct peer to peer communication between the agents, the other is based on

multicast used for a Discovery process that lets the agents find infrastructure components.

Direct message transfer is supported in an individual agent by the RETSINA

Communicator [34] that provides an abstraction over the physical transmission layer

abstracting over the type of network used. The Communicator supports synchronous as

THE RETSINA MAS INFRASTRUCTURE 37

well as asynchronous communication, and it manages multithreaded communication that

allows the agent to maintain conversations with multiple agents at the same time.

Discovery uses multicast to connect agents to the infrastructure components. For

example, an ANS announces its presence by multicasting. An agent can also announce

its presence by multicasting a request for an ANS. If the agent finds an ANS, it registers

with it, or performs a lookup request. To reduce the load on the multicast channel, no

negotiation happens directly on multicast; direct transactions between the agents and the

infrastructure are performed on a direct channel [28].

The use of Discovery allows flexible entrance of agents and infrastructure in the

RETSINA MAS. An agent can enter the MAS when no infrastructure is yet present, and

wait until infrastructure components enter the system. After these components multicast

their presence, the agent registers with them and from that moment on it is effectively a

reliable resource for the agent community. Discovery is also very useful for agents running

on mobile platforms. While these agents might not be mobile themselves [14, 39], they

may move around just because the platform they are running on is moved. Using

Discovery in the new place, the agent can re-orient itself and find the local components

of the infrastructure.

3.3. ACL infrastructure

The ACL used in the RETSINA MAS is KQML [10]. Messages exchanged by the agents

have two components: one is the specification of the content of the message, the other is an

Figure 2. The RETSINA MAS infrastructure and individual agent infrastructure.

SYCARA ET AL.38

envelope that specifies information such as sender, receiver, performative, thread of

conversation, ontology and language used in the content part. The RETSINA infra-

structure dictates the format of the envelope, because it is used to deliver the message, but

it does not make any assumption on the content of the message itself. Any content would

do as long as the agent that receives the message can understand it.

The specification of the language does not guarantee that the agents understand each

other. They also need to have a shared dictionary which specifies the meaning of the words

that the agents use. For this reason RETSINA provides an ontology based on domain-

specific taxonomies of concepts derived from the Wordnet8 [9].

The taxonomies are used to measure similarity between terms within messages. For

example, the ontology recognizes the similarity between ‘‘location’’ and ‘‘city’’, because

the first is a super-concept of the second. The use of taxonomic similarity adds flexibility

to the communication process since agents are not forced to use exact terms in their

messages.

Finally, the RETSINA MAS provides a protocol engine and a protocol language to

specify agents’ roles and the messages to be exchanged and expected in the context of a

protocol. The protocols employ social semantics [36]. Currently, the implementation of the

protocols is in the form of finite I/O automata [8].

3.4. MAS management services

The management of applications of a MAS proves to be a very complex task that is

becoming more and more difficult as the application size, the number of agents and

machines involved increases. Tools are needed to help monitor the activity of the agents,

to debug MAS applications and to launch these applications. The RETSINA MAS

includes three management components: the Logger, ActivityVisualizer and Launcher that

form an initial set of tools that help with monitoring, debugging and launching MAS

applications.

The Logger records the activity of the agents. Specifically, the Logger records agent

entry to and exit from the system, and the exchange of messages. In addition, the Logger

records states and transitions within the agents, as for instance whether an agent is active

or waiting for a query from other agents. Since the Logger cannot spy on the agents, the

agents need to implement a Logger Module that relays to the Logger information about

their state and their communications.

The Logger is connected to the ActivityVisualizer that displays the activity within the

system. The ActivityVisualizer uses the information provided by the Logger to display in

real time which agents are in the system, their state and indicate when they exchange

messages. Furthermore, the Logger and the ActivityVisualizer can be used in play-back

mode thus permitting the agent programmers to review and analyze activity in the MAS.

An additional component of this MAS infrastructure layer is the Launcher, which

automatically configures and starts both infrastructure components and agents on different

machines, platforms and operating systems from a single point of control, greatly

reducing the launching and operational costs of distributed applications. The launcher

is of great value especially as different agent versions get developed and as agents may

change resource requirements or as they need to be moved and restarted on different

machines [16].

THE RETSINA MAS INFRASTRUCTURE 39

3.5. Performance services

RETSINA MAS does not include MAS performance service or reputation service. We

have however built performance service monitors in simulation as well as distributed

checkpointing and roll-back upon agent failure. We have experimented with different

monitoring services in the context of contract net family of protocol [38]. Some agents

implement a self monitoring mechanism [35] that predicts when the agent is going to be

overwhelmed by the load of tasks it performs and clones itself producing a brand new

agent with the same functionalities and delivering the same service as the original agent.

The set of tasks of the original agent is split and re-distributed between the old agent and

the clone, thus allowing for increased system throughput.

3.6. Security

Since RETSINA is an open system, unknown and possibly untrustworthy agents can enter

at any time. These agents can damage the system in many ways: they can spy on other

agents, steal goods or information, and damage the content of the infrastructure

components. For instance, a malicious agent might prevent the MAS from working, by

unregistering all the agents from an ANS. The security infrastructure of the RETSINA

MAS prevents such problems from happening.

In RETSINA, we guarantee three types of security: agent authentication via a Certificate

Authority, communication security, which guarantees that the communication between

agents cannot be eavesdropped, and integrity of the components that guarantees that no

component can be inappropriately manipulated. Communication security is achieved by

giving agents unique IDs, as private keys which are verified using public keys, and by

layering SSL underneath the communication interface used by the agents. Integrity of the

MAS components, such as the ANS, is also guaranteed by relying on the unique IDs of

agents and by adding access control mechanisms.

The security components of the RETSINA infrastructure for the individual agent are the

Security Module in the agent and the Certificate Authority in the MAS infrastructure. The

Security Module generates the private and public keys of the agent and it requests

certification of the public key from the Certification Authority, which binds the requester’s

ID to its public key [44].

3.7. RETSINA ANS

An ANS provides a means of abstraction from the physical location of agents by mapping

an agent ID to its address in the system. The ANS is then queried by agents when they

need the address of other agents, for instance when they need to send messages. An ANS

does not participate in the transaction between agents, it only provides them with

addresses that they can cache, removing the need for unnecessary lookups. In addition

an ANS provides robustness of agent communication in the event of an ANS failure, since

the agents can continue their transaction even when no ANS is available in the system.

Since an ANS plays a crucial role in the system, it should not become a single point of

failure that would prevent the whole MAS from functioning. This is prevented in two

ways: first by limiting the role of the ANS in the interaction between agents, and by using

SYCARA ET AL.40

a system of multiple and redundant ANSs. Multiple ANSs can be present in the system at

the same time. ANS servers find each other through Discovery using multicast within a

LAN. Since it is not feasible to use multicast outside a LAN, therefore RETSINA uses a

discovery mechanism based on P2P protocols such as Gnutella that allows discovery of

agents and infrastructure services over WANs [28]. Through reference ANSs the lookup

search for an agent can be spread to a much wider network and possibly the whole

Internet.

Within an individual agent, the ANS component enables the agent to register and

unregister with an ANS and request lookups of desired agents.

3.8. Middle agents

Agents enter a MAS to exchange services with other agents, but since RETSINA is an

open system, no agent can be sure of what services are available in the MAS at any given

time, and who provides them. It is a task of the infrastructure to provide a registry of

services available in the system and to allow agents to search for them in this registry.

RETSINA solves the service location problem by using a set of middle agents called

Matchmakers distributed across the MAS [25]. Each Matchmaker records a mapping

between agents in the system and the services that they provide. A Matchmaker uses two

types of data: the advertisements of the services provided, and the requests from agents

that need a service, both of them expressed in the LARKS [41] language. The task of a

Matchmaker is to find which advertisements match the requests. To accomplish this task a

RETSINA Matchmaker uses the LARKS matching engine that performs both syntactic

and semantic analysis of the advertisements and requests to find exact or partial matches.

The RETSINA Matchmakers differ from other Middle Agents such as the OAA

Facilitator [29] and Infosleuth’s Broker [33] in that they do not stay in the middle of

the interaction between the providers and the requesters. A requester agent gets from a

Matchmaker the contact information of relevant providers and asks them directly to

perform a service. This crucial difference makes the RETSINA Matchmakers less of a

single point of failure, since after a requester has been given a list of providers, it can

continue its transactions directly even when no Matchmaker is present. In addition, a

requester can cache providers’ contact information and reuse them without resorting to a

Matchmaker every time.

A Matchmaker supports two types of protocols: ‘‘single shot’’ and ‘‘monitor’’. A single

shot request to a Matchmaker results in the list of providers whose advertisements match

the request. A monitor query instead, results in the list of matching agents, but also in

updates whenever one of the providers exits the system, or new relevant providers enter.

Agents select the protocol depending on whether they need a snapshot of the agent

landscape or they need to be kept up-to-date on the changes in the system.

3.9. RETSINA-OAA InterOperator

Imagine an OAA agent trying to enter the RETSINA MAS. Such an agent would be

totally lost and unable to interact with either the agents or with the infrastructure

components. It would not be able to communicate with any agent because it would

‘‘speak’’ the Prolog-based OAA ICL, while every agent in the RETSINA system

THE RETSINA MAS INFRASTRUCTURE 41

‘‘speaks’’ KQML. Furthermore, it would expect to deal with a Facilitator, but may end up

dealing with a Matchmaker instead, with the result that it would not be able to ask for

services nor to interpret what is returned by the middle agent.

While many claims have been made about openness of MAS, the current practice is that

MAS developers make such strong assumptions on the agents they develop that natural

interoperation across MAS boundaries is virtually impossible.9 To interoperate between

OAA and RETSINA, we developed the RETSINA-OAA InterOperator [17] Figure 3. The

task of the InterOperator is to allow any agent in the RETSINA system to access any

service or information provided by OAA agents, and for any agent in the OAA system to

access services or information provided by RETSINA agents.

The RETSINA-OAA InterOperator, shown in Figure 3, ‘‘bridges’’ the two worlds of

RETSINA and OAA by performing two types of tasks: first it makes the two systems

visible across MAS boundaries, second it allows agents to exchange messages across

MAS. The first task is accomplished by collecting all the advertisements of RETSINA

agents, translating and registering them with the OAA Facilitator. Similarly, the advertise-

ments of OAA agents with the Facilitator are collected and advertised with the RETSINA

Matchmaker. Therefore, through the RETSINA-OAA InterOperator, the two systems are

able to ‘‘see’’ each other’s agents. The second task is accomplished by translating the

queries of the agents of one MAS to the agents of the other MAS, and then translating the

answers back.

Figure 3. The InterOperator agent mediates between the RETSINA MAS (on the left) and the OAA MAS

(on the right).

SYCARA ET AL.42

Due to fundamental differences in the architectures and ACLs of the RETSINA and

OAA multi-agent system architectures, it is not possible for all forms of agent-to-agent

interaction of one MAS architecture to be translated to the other. Nevertheless, the

RETSINA-OAA InterOperator does adequately allow for the necessary agent interactions

to occur across MAS boundaries.

4. Applications

The RETSINA MAS infrastructure has been used to develop many applications that range

from supporting teams of human decision makers in crisis response, to financial portfolio

management, and E-commerce. In the following we show how these applications are

supported by the infrastructure and we highlight some of the infrastructure features.

4.1. Warren: Financial portfolio management

The WARREN system [7] is an application of RETSINA to financial portfolio manage-

ment. Warren is composed of three types of agents: interface agents that display the

portfolios to the users, task agents that assist the user in the management of her portfolio,

and information agents that gather information about stocks in the portfolio (for example,

stock prices, news and company financial reports.) Through the interface agent, the

investor buys and sells stocks, monitors the value of her own portfolio, and monitors

news about the stocks in the portfolio. Agents support the investor decision making by

reporting current stock quotes, and by advising on risk associated with changes in the

portfolio.

Because prompt and accurate information is essential in this domain, the loss of the

information agents may result in actual loss for the investor. The agents in Warren use the

infrastructure to discover whether any agent is temporarily unreachable and when this is

the case they automatically replace the agent with another with similar capabilities. Warren

shows how a MAS uses the infrastructure to dynamically reconfigure itself to prevent

failures totally transparently to the user.

4.2. Aiding teams of humans in crisis response

MAS reconfiguration and failure repear are essential in Crisis Response domains. In one

application of RETSINA, the agents help human decision makers to plan an hypothetical

evacuation of civilians out of Kuwait City. In this scenario, the humans are distributed in

space, but they are assisted by an interface agent, called Messenger, to communicate with

each other. Messengers eavesdrop the conversation to identify and anticipate information

needs that help in the decision process. Also, they use the MAS infrastructure to identify

the agents that monitor the information sources of interest to the decision makers and to

substitute failing agents.

The RETSINA OAA InterOperator agent (described above in 3.9) is used in this context

to lower the boundaries between the two systems:agents on the RETSINA side could

query agents on the OAA side; similarly, agents on the OAA side could query agents in the

RETSINA side. Furthermore, the InterOperator agent allows substitutability of agents

THE RETSINA MAS INFRASTRUCTURE 43

across MAS boundaries, so if one of the agents on the RETSINA side is suddenly no

longer available, the MAS would reconfigure to use an equivalent agent on the OAA side.

Crisis response also offers the opportunity to experiment with coordination and team

behaviors. Each decision maker was assisted by a ‘‘Mission Agent’’ that negotiated a shared

plan freeing the decision makers from the burden of dealing with all details of constructing

a common plan of action. The Mission Agents perform information gathering, shared

planning and monitoring the plan execution. The Mission Agents automatically construct a

shared plan and monitor its execution, negotiating changes when failures occur [18].

4.3. Coala: Buyer coalition and e-commerce auctions

Coala [43] shows how auction coordination is implemented as an additional layer using the

RETSINA infrastructure. Buyer agents use the MAS infrastructure to find auctions of items

the buyers want to buy. The system supports a variety of auction protocols such as English,

Dutch and Spanish Auction, as well as collective purchasing by bundling large groups of

buyers into coalitions through a pre-negotiation protocol and a variation of sealed-bid

reverse auction that allows suppliers to disclose their discount policies to the buyers.

4.4. MOCHA: Connecting devices and people

MOCHA implements an agent based system designed to assist humans in daily commu-

nication and information retrieval tasks. The MOCHA agents take on such tasks as

communication planning, relevant information retrieval related to ongoing communications

and communication device management. In MOCHA, agents are associated with devices

such as printers, faxes and mobile phones, as well as with tasks. Agents are also running on

a variety of platforms ranging from desktops, PalmPilots, IPaq and other PDA devices.

MOCHA creates an open dynamic and robust communications infrastructure, based on

the RETSINA infrastructure, that supports a network of devices in which not all devices

are available at the same time. The monitoring and discovery features of the RETSINA

infrastructure allow MOCHA to keep track of which agents are available and of the most

efficient way to communicate between people, thus providing ubiquitous connectivity and

computing.

5. Related work

Above we gave a functional definition of the infrastructure for MAS as a set of services,

conventions and knowledge that support the agents’ social interaction. We then described

RETSINA as an implemented and fully functional MAS infrastructure. In this section we

will discuss how these functionalities are implemented in different MAS. As previously in

the paper we refer to the layer architecture presented in Figure 1.

5.1. ACL infrastructure

The definition of a communication language is an essential part of creating a com-

munity of agents. Most implemented research MASs, for example, RETSINA, DECAF

SYCARA ET AL.44

[19], Infosleuth [31], Jade [23] among others, use KQML [11] or FIPA ACL [12] to

communicate.

OAA agents instead exchange messages in the form of PROLOG predicates. One key

difference between the ACL used by OAA and KQML or FIPA is that in the OAA ACL

there are only two performatives: ‘‘solve’’ that is used to query other agents, and ‘‘solved’’

that is used to answer the query. But there is no way to express a performative equivalent

to assertions like the ‘‘tell’’ in KQML. As a consequence, OAA agents are forced to

maintain a precise history of the message exchange and infer from it what kind of message

they received and what they should do with that message.

5.2. MAS management services

Launching many agents on multiple platforms at the same time is a very time consuming

process. In RETSINA we developed a launching and management system for our agents.

RETSINA also provides tools monitoring the activity within the MAS and management

facilities.

A similar system is used by ZEUS [32] that implements a visual editing system that

allows the programmer to construct the MAS and to specify the interactions between the

agents. The editing system can also be used for monitoring and management facilities.

OAA implements an application called ‘‘startit’’ that starts, manages and shuts down the

system.

5.3. Security

Security is a concern in MAS implementations because, as we discussed above, agents can

misbehave by cheating other agents or by affecting the integrity of the system. Yenta [13]

as well as RETSINA implements a security system to protect the integrity of its

Matchmaker. Security is a major concern in the mobile agents community [22], since

agents have access to a remote host and their misbehavior might damage the host as well

as the MAS infrastructure the agent belongs to.

5.4. Mapping between agents, capabilities and locations

RETSINA and DECAF implement Matchmakers and ANSs as lookup services: the

Matchmaker maps capabilities to agents, the ANS maps agents to locations. OAA and

Infosleuth [31] implement brokers that map capabilities to agents and their locations. The

first difference between the two approaches is that the Matchmaker does not manage the

interaction between the agents, while both the OAA Facilitator and the Infosleuth Broker

do. The distribution of services implemented by RETSINA and DECAF increases the

reliability of the system. Furthermore, advertisements in RETSINA [41] and DECAF

represent the functionalities of an agent by specifying the types of inputs that it requires

and the types of outputs it generates. In contrast, the advertisement of an OAA agent is just

a predicate representing a sample query; it does not specify what information the agent

requires to compute an answer or what information it returns. Finally, the advertisement

in Infosleuth is the DB schema of the data provided by the agent, instead of the agent

capabilities.

THE RETSINA MAS INFRASTRUCTURE 45

6. Conclusions

MASs are more than just a set of agents gathered in the same system, and more than an

extension of single agents in some distributed fashion. To work together, agents need a

way to find each other, a common communication language, a shared ontology to

understand each other’s messages. The role of the MAS infrastructure is to provide

location services, ontologies, and language that allow agents to interoperate. The result is

that MASs emerge by the aggregation of agents around an infrastructure which is the

‘‘glue’’ that keeps the agents together, rather than being a by product of the collaboration

between agents.

The contributions of this paper are two fold. First, we provide a model of what

constitutes a MAS infrastructure as a set of services and conventions that allow agents to

interoperate. Our proposed model of infrastructure also shows how the MAS infrastructure

should be reflected within a single agent so that it can become part of the MAS. Second,

we present RETSINA as a fully implemented MAS infrastructure that adheres to the

proposed model.

Acknowledgments

The authors would like to acknowledge the contribution of the many past and present

members of the Intelligent Agents Research Group at CMU. Without their ideas, the

devotion and their enthusiasm this research could not have been possible. We are

especially grateful to Hao Chi Wong for her help on the discussion of security issues. This

research has been sponsored in part by the Office of Naval Research Grant N-00014-96-

16-1-1222 and by DARPA grant F-30602-98-2-0138.

Notes

1. More information on the activity of the Intelligent Agents Group can be found at http://www.cs.cmu.edu/

fsoftagents.

2. Of course having a technological infrastructure does positively impact those two activities also.

3. We are NOT defining agents as socially aware programs, we say that they are such from the point of view of

the MAS infrastructure. Each agent taken individually may have an architecture that satisfies different

principles (for instance, it could be based on the BDI model), but in order to be part of the MAS, it should

(explicitly or implicitly) implement the modules that we describe here.

4. We do not claim that our list of components is complete; rather it emerges from our experience in developing

MAS applications.

5. We do not impose any implementation requirements on the modules of the individual agent infrastructure, we

only claim that explicitly, or implicitly in its behaviors, the agent need those modules to interact with the MAS

infrastructure.

6. Most common security issues include communication security and infrastructure integrity. Communication

security guarantees that a message cannot be eavesdropped, authentication, so that the agents cannot spoof

each other, and non-repudiation i.e: disallow agents to deny having taken part in a transaction. Infrastructure

integrity guarantees that no agent can manipulate the information stored in the infrastructure components such

as the ANS and the Matchmaker. In addition, Communication Integrity guarantees that the contents of a

message cannot be changed by an unauthorized agent.

7. In closed MAS each agent knows the name, location and capability of the others. Thus agent interactions can

SYCARA ET AL.46

be statically predefined. This makes agent design and construction simple, but makes the MAS brittle and not

extensible.

8. The Wordnet taxonomy could not be used as a direct taxonomic structure for a number of reasons: it is too big;

it does not allow the user to browse the concepts in the ontology; furthermore, it is differentially sparse, which

creates enormous problems for similarity assessment of concepts, so we encoded multiple smaller taxonomies

to allow more efficient concept retrieval and a more precise similarity measurement.

9. Attempts at standardizations such as FIPA [12] are likely to reduce the problem, but not solve it. Differences

will remain in the Ontologies used, the interaction protocols and the MAS architecture.

References

1. S. Arai, K. Sycara, and T. R. Payne, ‘‘Multi-agent reinforcement learning for scheduling multiple-goals,’’ in

ICMAS2000, 2000.

2. K. S. Barber, D. N. Lam, C. E. Martin, and R. M. McKay, ‘‘Sensible agent testbed infrastructure for

experimentation,’’ in Agents 2000: Workshop on Infrastructure for scalable MAS, Barcelona, Spain, 2000.

3. C. Castelfranchi, ‘‘Modelling social action for AI agents,’’ Applied Artificial Intelligence, vol. 103,

pp. 157–182, 1998.

4. Coabs, ‘‘Grid Web Site,’’ http://coabs.globalinfotek.com/, 2000.

5. Corba, ‘‘Corba Web Site,’’ http://www.corba.org/, 2000.

6. K. Decker, K. Sycara, and M. Williamson, ‘‘Middle-agents for the internet,’’ in Proceedings of IJCAI97,

1997.

7. K. Decker, K. Sycara, and D. Zeng, ‘‘Designing a multi-agent portfolio management system,’’ in Proceedings

of the AAAI-96 Workshop on Internet-Based Information Systems, Portland, OR, 1996.

8. G. Economou, M. Paolucci, M. Tsvetovat, and K. Sycara, ‘‘Interaction without commitments: An initial

approach,’’ in Agents 2001, 2001.

9. C. Fellbaum, WordNet: An Electronic Lexical Database, MIT Press, 1998.

10. T. Finin, Y. Labrou, and J. Mayfield, ‘‘KQML as an agent communication language,’’ in J. Bradshaw, (ed.),

Software Agents, MIT Press, 1995.

11. T. Finin, Y. Labrou, and J. Mayfield, ‘‘KQML as an agent communication language,’’ in J. Bradshaw, (ed.),

Software Agents, MIT Press, 1997.

12. FIPA, ‘‘Foundation For Physical Agents,’’ http://www.fipa.org/, 2000.

13. L. N. Foner, ‘‘A security architecture for multi-agent matchmaking,’’ in ICMAS-96, 1996.

14. S. Funfrokcen, ‘‘Transparent migration of Java-based mobile agents: Capturing and reestablishing state of

Java programs,’’ in MA98, Berlin, Germany, 1998.

15. L. Gasser, ‘‘MAS infrastructure: Definitions, needs, and prospects,’’ in T. A. Wagner and O. Rana, (eds.),

Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems, LNCS. Springer-Verlag,

2001.

16. J. A. Giampapa, O. Juarez-Espinosa, and K. Sycara, ‘‘Configuration management for multi-agent systems,’’

in Agents 2001, 2001.

17. J. A. Giampapa, M. Paolucci, and K. Sycara, ‘‘Agent interoperation across multagent system boundaries,’’

in Agents 2000, 2000.

18. J. A. Giampapa and K. Sycara, ‘‘Conversational case-based planning for agent team coordination,’’

in ICCBR-2001, 2001.

19. J. R. Graham and K. S. Decker, ‘‘Towards a distributed, environment-centered agent framework,’’

in N. Jennings and Y. Lespérance, (eds.), Intelligent Agents VI, Lecture Notes in Artificial Intelligence,

Springer-Verlag: Berlin, 2000.

20. M. Greaves, H. Holback, and J. Bradshaw, ‘‘What is a conversation policy?,’’ in Agents 99: Workshop on

Specifying and Implementing Conversation Policies, 1999a.

21. M. Greaves, H. Holmback, and J. M. Bradshaw, ‘‘What is a conversation policy?,’’ in In Agents99 Workshop

on Specifying and Implementing Conversation Policies, 1999b.

22. M. S. Greenberg, J. C. Byington, and D. G. Harper, ‘‘Mobile agents and security,’’ IEEE Communications,

1998.

23. JADE, ‘‘Programmer’s Guide,’’ http://sharon.cselt.it/projects/jade/, 2000.

THE RETSINA MAS INFRASTRUCTURE 47

24. N. Jennings, K. Sycara, and M. Wooldridge, ‘‘A roadmap of agent research and development,’’ Journal of

Autonomous Agents and Multi-Agent Systems, vol. 1, no. 1, pp. 275–306, 1998.

25. S. Jha, P. Chalasani, O. Shehory, and K. Sycara, ‘‘A formal treatment of distributed matchmaking,’’ in Agents

1998, 1998.

26. S. Jini, ‘‘Jini Web Site,’’ http://www.sun.com/jini, 2000.

27. M. Klusch and K. Sycara, ‘‘Brokering and matchmaking for coordination of agent societies: A survey,’’

in A. Omicini et al., (eds.), Coordination of Internet Agents, Springer, 2001.

28. B. Langley, M. Paolucci, and K. Sycara, ‘‘Discovery of infrastructure in multi-agent systems,’’ in Agents

2001 Workshop on Infrastructure for Agents, MAS, and Scalable MAS, 2001.

29. D. Martin, A. Cheyer, and D. Moran, ‘‘The open agent architecture: A framework for building distributed

software systems,’’ Applied Artificial Intelligence, vol. 13, nos. 1–2, pp. 92–128, 1999.

30. T. Milind, ‘‘Towards flexible teamwork,’’ Journal of Artifical Intelligence Research, vol. 7, pp. 83–124,

1997.

31. M. Nodine, W. B. Amd, and A. Ngu, ‘‘Semantic brokering over dynamic heterogeneous data sources in

InfoSleuth(tm),’’ in Proceedings of the 15th International Conference on Data Engineering, 1999.

32. H. Nwana, D. Ndumu, L. Lee, and J. Collis, ‘‘ZEUS: A tool-kit for building distributed multi-agent

systems,’’ Applied Artifical Intelligence Journal, vol. 13, no. 1, pp. 129–186, 1999.

33. B. Perry, M. Taylor, and A. Unruh, ‘‘Information aggregation and agent interaction patterns in InfoSleuth,’’

in cia99, ACM Press, 1999.

34. O. Shehory and K. Sycara, ‘‘The retsina communicator,’’ in Agents 2000, 2000.

35. O. Shehory, K. Sycara, P. Chalasani, and S. Jha, ‘‘Increasing resource utilization and task performance by

agent cloning,’’ in M. S. V. A. Rao and M. Wooldridge, (eds.), In Lecture Notes in AI: Intelligent Agents,

Springer Verlag, 1998.

36. M. P. Singh, ‘‘Agent communication languages: Rethinking the principles,’’ IEEE-Computer, vol. 11, 1998.

37. I. Smith, P. Cohen, J. Bradshaw, M. Greaves, and H. Holmback, ‘‘Designing conversation policies using joint

intention theory,’’ in ICMAS98, IEEE Press, 1998.

38. R. G. Smith, ‘‘The contract net protocol: High-level communication and control in a distributed problem

solver,’’ IEEE Transactions on Computers, vol. 29, no. 12, pp. 1104–1113, 1980.

39. N. Suri, J. M. Bradshaw, P. T. G. Maggie R. Breedy, G. A. Hill, T. S. M. Renia Jeffers, B. R. Pouliot, and

D. S. Smith, ‘‘NOMADS: Toward a strong and safe mobile agent system,’’ in Agents 2000, ACM Press,

2000.

40. K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng, ‘‘Distributed intelligent agents,’’ IEEE-Expert,

Intelligent Systems and their Applications, vol. 11, no. 6, pp. 36–45, 1996.

41. K. Sycara, M. Klusch, S. Widoff, and J. Lu, ‘‘Dynamic service matchmaking among agents in open

information environments,’’ Journal ACM SIGMOD Record, vol. 28, no. 1, pp. 47–53, 1999.

42. J. D. Thomas, K. Sycara, and T. R. Payne, ‘‘Heterogeneity, stability and efficiency in distributed systems,’’

in ICMAS1998, 1998.

43. M. Tsvetovat, K. Sycara, Y. Chen, and J. Ying, ‘‘Customer coalitions in the electronic marketplace,’’

in Proceedings of Workshop on Agent-Mediated Electronic Commerce, Fourth International Conference

on Autonomous Agents, 2000.

44. H. C. Wong and K. Sycara, ‘‘Adding security and trust to multi-agent systems,’’ in Agents ’99 Workshop on

Deception, Fraud and Trust in Agent Societies, Portland, OR, 1999.

45. H.-C. Wong and K. Sycara, ‘‘A taxonomy of middle-agents for the internet,’’ in ICMAS’2000, 2000.

46. G. Zacharia, A. Moukas, and P. Maes, ‘‘Collaborative reputation mechanisms in online marketplaces,’’

in HICSS-32, 1999.

SYCARA ET AL.48

