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Summary. Many chronic diseases have a natural interpretation in terms of staged progression.
Multistate models based on Markov processes are a well-established method of estimating
rates of transition between stages of disease. However, diagnoses of disease stages are some-
times subject to error. The paper presents a general hidden Markov model for simultaneously
estimating transition rates and probabilities of stage misclassification. Covariates can be fitted
to both the transition rates and the misclassification probabilities. For example, in the study of
abdominal aortic aneurysms by ultrasonography, the disease is staged by severity, according
to successive ranges of aortic diameter. The model is illustrated on data from a trial of aortic
aneurysm screening, in which the screening measurements are subject to error. General pur-
pose software for model implementation has been developed in the form of an R package and
is made freely available.

Keywords: Abdominal aortic aneurysm; Disease progression; Hidden Markov models;
Multistate models

1. Introduction

When a disease is detected at an early stage, it may be more amenable to treatment. Systematic
screening of a population can therefore be an effective way of reducing mortality from a disease.
Establishing an adequate screening policy for the disease requires knowledge of its natural his-
tory. The type of individuals to screen, and the time of the screen, should be chosen according
to the risk of onset of the disease, whereas the intervals between successive screens should be
chosen according to the risk of progression. Both risks may vary with characteristics of the
patients and the risk of progression may vary with the current stage of the disease.
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1.1. Multistate models
Multistate Markov models in continuous time are often used to model the course of diseases.
A commonly used model is illustrated in Fig. 1. This represents a series of successively more
severe stages of disease and an ‘absorbing’ state, often death. The patient may advance into
or recover from adjacent stages of disease or die at any stage of disease. Observations of the
stage Si.t/ are made on a number of individuals i at arbitrary times t, which may vary between
individuals. The stages of disease may be modelled as a homogeneous continuous time Markov
process. Then the model of Fig. 1 is described by a transition intensity matrix Q

Q =




q11 q12 0 0 . . . q1n

q21 q22 q23 0 . . . q2n

0 q32 q33 q34
: : : q3n

0 0 q43 q44
: : : q4n

:::
:::

: : :
: : :

: : :
:::

0 0 0 0 . . . 0




whose rows sum to 0, so that the diagonal entries are

qrr = − ∑
s �=r

qrs:

Maximum likelihood estimates for this class of models can be computed from the transition
probability matrix P.t/, with .r, s/ entry

prs.t/ = Pr{Si.t + u/ = s|Si.u/ = r}:

This depends on the unknown parameters in Q through the Kolmogorov relationship P.t/ =
exp.tQ/ (Cox and Miller, 1965).

This model, with varying numbers of transient states, has been used in applications such as
hepatic cancer (Kay, 1986), diabetic nephropathy (Andersen, 1988), human immunodeficiency
virus infection (Longini et al., 1989; Gentleman et al., 1994), chronic post-transplant problems
(Klotz and Sharples, 1994), screening for breast cancer (Duffy and Chen, 1995) and diabetic
retinopathy (Marshall and Jones, 1995). The disease under study is sometimes assumed to be
irreversible, in which case the transition intensities corresponding to recovery are taken as 0.

More general models of this type can be constructed to allow for additional states, represent-
ing, for example, periods of treatment, hospital stays or competing causes of death. Computing

STAGE 1 STAGE 2 STAGE n–2 STAGE n–1

 DISEASE  DISEASE DISEASE DISEASE...

ABSORBING
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Fig. 1. General model for disease progression
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likelihoods is made simpler if the observation times are equally spaced, allowing a discrete time
Markov process to be used. See, for example, Aalen et al. (1997). The Markov assumption,
essentially, that the future of the process depends on the current state, and not on the history
of the process, would also be more easy to assess if the exact times of transition between the
states are known. However, the assumption of homogeneity of transition rates through time
and across individuals can be assessed, for discrete time and continuous time Markov models,
by modelling transition rates on observed covariates, as described in Section 2.

1.2. Screening and classification error
The screening process can sometimes be subject to error. Then the Markov disease process Si.t/ is
not observed directly, but through realizations Oi.t/. The quality of a diagnostic test is often mea-
sured by the probabilities that the true and observed states are equal, Pr{Oi.t/ = r|Si.t/ = r}.
Where r represents a ‘positive’ disease stage, this is the sensitivity, or the probability that a true
positive result is detected by the test. Where r represents a ‘negative’ or disease-free stage, this
represents the specificity, or the probability that, given that the condition of interest is absent,
the test produces a negative result.

Chen et al. (1996) described a hidden Markov model for breast cancer screening, which simul-
taneously estimated progression rates between grades of cancer and the sensitivity, specificity
and positive predictive value of the screening test. A generalized estimating equation method
was used for estimation. Kirby and Spiegelhalter (1994) described a similar model, with false
positive and negative rates and progression parameters estimated simultaneously, in the context
of cervical smear tests. Bayesian posterior estimates were produced by using the Gibbs sampler.
Kirby and Spiegelhalter (1994) presented three-state Markov models, representing the absence
of disease, preclinical detectable disease and clinical disease. Misclassification was only mod-
elled between the disease-free and preclinical stages. Stages of disease are often related to levels
of a continuous biomarker. For example, Satten and Longini (1996) and Guihenneuc-Jouyaux
et al. (2000) used hidden Markov models for the progression between stages of HIV infection,
monitored by serial measurements of CD4 cell counts. The observation Oi.t/ was taken to be
the continuous biomarker, rather than a discrete stage of disease, with some distribution de-
pendent on Si.t/. Jackson and Sharples (2002) applied three- and four-state hidden Markov
models to functional decline after lung transplantation, using both discrete and continuous
responses.

This paper builds on these methods by presenting a general framework for staged Markov
models with misclassification, introduced in Section 2. Any form of transition matrix is permit-
ted, with misclassifications between any pair of states. Explanatory variables for both the rates of
transition between underlying stages and the probabilities of misclassification can be modelled
by using generalized regressions. Section 3 introduces an application to screening for abnormal
growth of abdominal aortic aneurysms. The specific models that are used in the application are
described in Section 4, followed by a presentation and discussion of the results.

2. General hidden Markov model

A general model for disease progression and diagnosis error can be defined as follows. Let i

index I individuals, let j index the mi observation times for each individual i and let n be the
number of states. Suppose that Sij = Si.tij/ represents the true underlying state of individual i

at time tij, and Oij represents the corresponding observed state.
The Sij for individual i are assumed to be realizations from a multistate process Si.t/ with

intensity matrix Q. The .r, s/ entry of Q represents the instantaneous hazard of progression to



196 C. H. Jackson, L. D. Sharples, S. G. Thompson, S. W. Duffy and E. Couto

stage s, conditionally on occupying stage r:

qrs = qrs.t,Ft/ = lim
δt→0

[Pr{Si.t + δt/ = s|Si.t/ = r,Ft}=δt],

where Ft is the observation history of the process up to the time preceding t. If the process Si.t/

is assumed to be time homogeneous and Markov, then qrs.t,Ft/ is independent of t and Ft . Often
the mean sojourn time in a transient state r is also of interest—in a unidirectional progression
model this is estimated as 1=qii, the mean time until leaving the state. The Oij are generated
conditionally on Sij according to a misclassification matrix E. This is an n × n matrix, whose
.r, s/ entry is

ers = Pr{O.tij/ = s|S.tij/ = r},

which we first assume to be independent of time t. Analogously to the entries of Q, some of the
ers may be fixed to reflect knowledge of the diagnosis process. For example, the probability of
misclassification may be negligibly small for non-adjacent states of disease.

This is an example of a hidden Markov model. The progression through underlying states and
the observation process of the underlying states are governed by separate models. This class
of model is commonly used in areas such as speech and signal processing (Juang and Rabiner,
1991) and the analysis of biological sequence data (Durbin et al., 1998). In engineering and
biological sequencing applications, the Markov process usually evolves over an equally spaced
discrete ‘time’ space. Therefore most of the theory of hidden Markov model estimation was
developed for discrete time models. Hidden Markov models have less frequently been used in
medicine, where continuous time processes are often more suitable. A disease process evolves
in continuous time, and patients are often monitored at irregular and differing intervals.

2.1. Covariates
Explanatory variables can be included at each level of the model through generalized regres-
sions. A proportional hazards model can be used to relate the transition intensities qrs.t/ at time
t to covariates z.t/ at that time,

qrs{t, z.t/} = qrs exp{βT
rs z.t/}:

The new Q is then used to calculate likelihoods. If the covariates z.t/ are time dependent, the
Markov chain transition probability prs.t2 − t1/ between states r and s from time t1 to time t2
is replaced by

prs{t2 − t1, z.t1/}
although this requires that the value of the covariate is known at every observation time t1.
Sometimes covariates are observed at different times to the main response, e.g. recurrent dis-
ease events or other biological markers. In some of these cases it could be assumed that the
covariate is a step function which remains constant between its observation times. Even if the
value of the covariate is known at all times, e.g. the age of a patient, then the transition intensities
between times t1 and t2 are still assumed to depend only on the covariate at time t1.

Similarly, to investigate explanatory variables w.t/ for the probability of misclassification ers

for each pair of stages r and s, a logistic model can be used:

log
{

ers.t/

1 − ers.t/

}
= γT

rsw.t/: .1/
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2.2. Maximum likelihood estimation
A type of EM algorithm known as the Baum–Welch or forward–backward algorithm (Baum
and Petrie, 1966; Baum et al., 1970) is commonly used for hidden Markov model estimation in
discrete time applications. See, for example, Durbin et al. (1998) and Albert (1999). A general-
ization of this algorithm to continuous time was described by Bureau et al. (2000).

Macdonald and Zucchini (1997), pages 77–79, described a direct method of calculating likeli-
hoods in discrete or continuous time based on matrix products. Similar methods were presented
by Lindsey (1999), page 73, and Guttorp (1995). Satten and Longini (1996) used this method
to calculate likelihoods for a hidden Markov model in continuous time with observations of a
continuous marker generated conditionally on underlying discrete states. The matrix product
method is now illustrated for the misclassification model. However, it can be generalized to any
form of data generated conditionally on states of a hidden Markov process.

Patient i’s contribution to the likelihood is

Li = Pr.Oi1,. . . , Oimi/ .2/

= ∑
Pr.Oi1,. . . , Oimi |Si1,. . . , Simi/ Pr.Si1,. . . , Simi/

where the sum is taken over all possible paths of underlying states Si1,. . . , Simi . Assume that the
observed states are conditionally independent given the values of the underlying states. Also
assume the Markov property

Pr.Sij|Si,j−1,. . . , Si1/ = Pr.Sij|Si,j−1/:

Then the contribution Li can be written as a product of matrices, as follows. To derive this
matrix product, decompose the overall sum in equation (2) into sums over each underlying
stage. The sum is accumulated over the unknown first state, the unknown second state and so
on until the unknown final state:

Li = ∑
Si1

Pr.Oi1|Si1/Pr.Si1/
∑
Si2

Pr.Oi2|Si2/Pr.Si2|Si1/
∑
Si3

Pr.Oi3|Si3/Pr.Si3|Si2/

. . .
∑
Simi

Pr.Oimi |Simi/Pr.Simi |Sini−1/ .3/

where Pr.Oij|Sij/ is the misclassification probability eSijOij . Pr.Si,j+1|Sij/ is the .Sij, Si,j+1/ en-
try of the Markov chain transition matrix P.t/ evaluated at t = ti,j+1 − tij. Let f be the vector
of initial stage occupation probabilities Pr.Si1/, and let 1 be a column vector consisting of 1s.
For j = 2,. . . , mi let Tij be the n × n matrix with .r, s/ entry

esOij prs.tij − ti,j−1/:

Then subject i’s likelihood contribution is

Li = fTi2Ti3,. . ., Timi1: .4/

If S.tj/ = D is an absorbing state such as death, measured without error, whose entry time is
known to within 1 time unit, then the contribution to the likelihood is summed over the unknown
state on the day before entry. Assuming a time unit of days, the .r, s/ entry of Tij is then

prs.tj − 1 − tj−1/ ps,D.1/:

Numerical methods must be used to maximize the likelihood, e.g. a quasi-Newton algorithm
as described by Dennis and Schnabel (1983), which does not require the specification of the deriv-
atives of the function to be maximized. Approximate standard errors of the parameter estimates
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can be obtained from the inverse of the matrix of second derivatives (Hessian) of the maximized
log-likelihood, which can be estimated by using finite differences. Standard errors for functions
of parameters, such as mean sojourn times derived from transition rates, can be estimated by
using the delta method. The delta method expands a differentiable function of a random variable
about its mean, usually with a first-order Taylor approximation, and then takes the variance.
For example, for a random vector X and differentiable function g, an approximation to the
covariance matrix of g.X/ is given by

cov{g.X/} ≈ g′.µ/Σg′.µ/T

where µ is an estimate of the expectation of X and Σ is an estimate of the covariance matrix of X.
Oehlert (1992) discussed regularity conditions under which such approximations are accurate.
Alternatively, to verify the accuracy of the approximations, standard errors may be estimated
by bootstrap resampling methods.

A package of functions for the free statistical software R (http://www.r-project.org)
was written to fit multistate Markov models in continuous time with or without classification
error, using these methods. These are capable of estimating any form of Markov transition
intensity matrix and misclassification matrix, with any number of covariates on either of these
matrices. Brief details of how this program is run are given in Appendix A.

High dimensional optimization will produce flat likelihood surfaces if there is insufficient in-
formation in the data, leading to failure of convergence. In such cases, simplified models might
be constructed with some unstable parameters fixed at values obtained from prior informa-
tion. In applications to disease progression, adjacent states can often be combined to simplify
the model. Some adjustments to the numerical methods may also aid convergence for weakly
identifiable models; these are described briefly in Appendix A.

3. Application to screening for abdominal aortic aneurysms

Abdominal aortic aneurysms are common in elderly men. Ruptured aneurysms are responsible
for 2.1% of all deaths in men and 0.75% of deaths in women over the age of 65 years in England
and Wales (Office for National Statistics, 1995). The main biological marker for the risk of
aneurysm rupture is the aortic diameter (Darling, 1970; Szilagyi et al., 1972; Vardulaki et al.,
1998) measured by using ultrasonography. The only known remedial action is surgical repair.
After rupture, death is very rapid if emergency surgery is not carried out quickly. Even if the
patient reaches hospital alive and receives surgery, emergency repair often has a poor outcome.
This has led to the hypothesis that elective repair of asymptomatic aneurysms detected by screen-
ing may be effective. A randomized controlled trial, the Multi-centre Aneurysm Screening Study
(MASS), has recently been conducted in the UK to assess the benefits of screening for aortic
aneurysms by ultrasonography (Multicentre Aneurysm Screening Group, 2002).

Establishing an adequate screening policy requires studying the rates of progression of aortic
diameter. The intervals between screens should be chosen according to the risk of progression.
This risk may vary with the current stage of the disease or with characteristics of the patients.
Multistate modelling allows an estimation of the rates of progression. Disease stages in this case
can be defined by successive intervals of aortic diameter. The stages used in this application are
as follows: stage 1, less than 30 mm; stage 2, 30–44 mm; stage 3, 45–54 mm; stage 4, 55 mm and
above. These are the stages that are often used to determine the time to the next screen, e.g. 1
year and 3 months for states 2 and 3 in the MASS trial. Patients are considered for surgery when
in stage 4 or following an increase of 10 mm or more per year.
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We study data from 156 men from a smaller preclinical trial based in Chichester, UK (Scott
et al., 1995). These men all had more than one screen, on account of becoming aneurysmal
(entering stage 2). The remaining trial population appeared normal (stage 1) at the initial screen
and were not offered additional screens; thus they are not included in our study. Therefore, to
estimate progression rates from stage 1, we included data from an additional set of 683 men who
were aneurysm free on entry and were rescreened every 2 years. These were studied alongside
the Chichester trial cohort, to determine prospectively the rate of incidence of aneurysm in a
normal population. Thus we have screening data from a total of 839 individuals.

Otherwise the screening policy was the same as in the MASS trial, except that surgery was
offered for a diameter of 60 mm or above or following an increase of 10 mm or more per year.
This is a ‘doctor’s care’ screening policy, under the definitions of Grüger et al. (1991). Under
such a scheme the sampling times are not informative and the bias is minimal. The number of
screens ranged between 2 and 20 with a median of 4, and the ages at screen ranged between 65
and 85 years with a median of 69 years.

Exact aortic diameters are not available from the 683 men who remained aneurysm free and
were screened every 2 years. Also for the remaining 156 men the diameter was frequently round-
ed to the nearest 5 mm. Therefore it would be difficult to estimate the distribution of aortic
diameters. A model based on observed stages might be a reasonable approximation. Table 1
shows the frequencies of the transitions between observed stages at consecutive pairs of times.
Examples of observed state sequences for five patients from the 156 who progressed above stage
1 are given in Table 2. Note that, although the screening intervals are nominally 3 or 12 months,
the actual observation times are considerably less regular, owing to the constraints of clinical
practice.

4. Models

It is supposed that the growth of an aneurysm is an irreversible process in the absence of surgical
intervention. Therefore a plausible Markov transition intensity matrix is

Q =




−q12 q12 0 0
0 −q23 q23 0
0 0 −q34 q34
0 0 0 0


 ,

indicating progression through each pair of consecutive states and no escape from stage 4. How-
ever, the measurement of aortic diameter is subject to error. Apparent transitions from higher

Table 1. Frequencies of transitions between stages of aortic
diameter

Initial stage Aortic diameter Frequencies for transitions to
(mm) the following stages:

1 2 3 4

1 0–29 1877 66 2 0
2 30–44 48 309 48 1
3 45–54 2 18 159 32
4 55 1 0 18 82
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Table 2. Examples of progression through aneurysm states for five patients

Results for patient 1 Results for patient 2 Results for patient 3 Results for patient 4 Results for patient 5

Age (years) State Age (years) State Age (years) State Age (years) State Age (years) State

74.8 2 71.2 2 70.8 2 74.6 2 73.2 2
75.8 2 72.3 1 71.8 2 75.6 1 74.2 2
77.1 2 73.4 1 72.9 2 76.6 1 75.3 3
78.1 2 74.5 1 73.9 3 77.6 1 75.5 1
79.1 2 75.5 1 74.2 3 78.6 1 75.6 1
79.5 2 76.5 1 74.4 3 80.6 1 76.4 2
80.5 2 77.4 2 74.6 3
81.0 2 74.9 3
81.5 2 74.9 3

75.0 3

to lower states are often seen. Fitting a progression-only multistate model with transition matrix
Q and no misclassification would require that these reverse transitions be removed or smoothed
out in some way. This can be done by recoding all reverse transitions as remaining in the lower
of the two states, as reported previously (Couto et al., 2002). The resulting no-misclassification
model was compared with a hidden Markov model, which estimates state misclassification rates.
For the hidden model, assume that the unobserved true states follow a Markov process with
transition matrix Q, and that the observed states are generated from the latent states through a
misclassification probability matrix:

E =




1 − e12 e12 0 0
e21 1 − e21 − e23 e23 0
0 e32 1 − e32 − e34 e34
0 0 e43 1 − e43


 :

4.1. Initial state assumptions
Recall that the likelihood for the hidden Markov model (Section 2) requires that at some time
origin the true state occupancy is either known or can be modelled. One way of doing this would
be to assume that everyone is aneurysm free at some common age. Simple models without mis-
classification were fitted to the data, assuming in turn that everyone was aneurysm free at ages
40, 50 and 60 years, and finally with no aneurysm-free assumption.

To fit the misclassification model, an estimate was taken from the literature. Grimshaw and
Thompson (1995) studied aortic screening data from 10 061 men aged 60–75 years from general
practices. The aortic diameters were summarized for the population and for specific ages. From
their results, it was assumed that the probabilities of occupying stages 1, 2, 3 and 4 at age 60 years
are 98.4%, 1.3%, 0.25% and 0.05% respectively.

4.2. Effect of age at screening
The transition intensities were modelled as a function of the age of the patient at screening, us-
ing a proportional hazards model as described in Section 2. Let z.t/ be the patient’s age at time
t minus 60 years, and let qrs{z.t/} be the corresponding .r, s/ entry of the transition intensity
matrix. We compare three models: one assuming different age effects β12,β23 and β34 for each
of the three rates q12, q23 and q34 respectively (equation (5)), one assuming a common age effect
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β on the rates (equation (6)) and a model with no age effects:

qrs{z.t/} = qrs exp{βrs z.t/}, .5/

qrs{z.t/} = qrs exp{β z.t/}: .6/

We also considered, separately, models which expressed the misclassification probabilities ers

as a function of age at screening, as in equation (1).

5. Results from aneurysm screening study

The three unknown transition rates, the six unknown misclassification probabilities and any
age effects are estimated by maximum likelihood, using the matrix product (equation (4)) and
the general R software described in Appendix A.

Table 3 presents the estimated transition rates and mean sojourn times from the models
assuming no misclassification. The estimates are compared between models assuming a com-
mon aneurysm-free age of 40, 50 and 60 years, and for a model with no common aneurysm-free
assumption. These results show that, in general, the estimated time spent in each stage decreases
as the assumed aneurysm-free age increases. Therefore the model is sensitive to this assumption.
It was similarly found that the equivalent hidden Markov model was sensitive to this assump-
tion. Adding an initial stage 1 at a fixed age adds new transitions from stage 1 to the stage at first
screen: specifically 651, 25, 3 and 4 from stage 1 to stages 1, 2, 3 and 4 respectively. The influence
of the new transitions seems to depend on the assumed durations of these new transitions.

The likelihoods for the three misclassification models are compared in Table 4. There is a
significant reduction in the −2 log-likelihood values when an age effect is included, and when
the effects are extended to be different for each transition rate. The estimates and standard
errors in Table 4 suggest that the only stage where age has a significant effect on the outgoing
transition is stage 1. The model suggests that older men have a greater risk of initial onset of
abnormal aortic diameter, but similar rates of subsequent growth of aneurysms to those of
younger men.

Table 3. Aneurysm growth models without misclassification, assuming different common
aneurysm-free ages†

Aneurysm-free age (years) Transition rates (per year) Mean sojourn times (years)

40 q̂12 0.00997 (0.00065/0.00069) T̂1 100 (6.5/6.9)
q̂23 0.0380 (0.0044/0.0052) T̂2 26.3 (3.1/3.5)
q̂34 0.327 (0.063/0.082) T̂3 3.05 (0.59/0.89)

50 q̂12 0.0147 (0.000956/0.000973) T̂1 68.2 (4.4/4.5)
q̂23 0.0521 (0.0060/0.0071) T̂2 19.2 (2.2/2.6)
q̂34 0.360 (0.064/0.080) T̂3 2.78 (0.50/0.61)

60 q̂12 0.0277 (0.0018/0.0017) T̂1 36.1 (2.4/2.1)
q̂23 0.0831 (0.0093/0.0105) T̂2 12.0 (1.35/1.47)
q̂34 0.440 (0.070/0.077) T̂3 2.27 (0.36/0.42)

No assumption q̂12 0.0177 (0.0021/0.0021) T̂1 56.6 (6.9/6.9)
q̂23 0.156 (0.022/0.0022) T̂2 6.42 (0.99/0.99)
q̂34 0.493 (0.087/0.087) T̂3 2.030 (0.41/0.41)

†Estimates, followed by standard errors (Hessian standard error/bootstrap standard error) given
in parentheses.
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Table 4. Parameter estimates, followed by standard errors (Hessian standard error/bootstrap standard
error) in parentheses, from the hidden Markov models for aneurysm growth

Parameter Results for the following models:

No age effect Common age effect Different age effects

−2 log-likelihood 2542 2484 2446
Number of parameters 9 10 12

Transition rates per year (at age 60 years)
q̂12 0.0218 (0.0018/0.0019) 0.00784 (0.0017/0.0021) 0.0036 (0.0017/0.0020)
q̂23 0.0630 (0.0085/0.0081) 0.00117 (0.0052/0.0093) 0.088 (0.014/0.015)
q̂34 0.257 (0.054/0.049) 0.0475 (0.029/0.067) 0.260 (0.084/0.099)

Covariate effects for age
β̂12 0.176 (0.019/0.018)

β̂ 0.107 (0.014/0.015) β̂23 −0.0292 (0.029/0.032)
β̂34 0.022 (0.042/0.049)

Misclassification probabilities
ê12 0.0094 (0.0028/0.0034) 0.0082 (0.0024/0.0035) 0.0099 (0.0027/0.0032)
ê21 0.0863 (0.022/0.032) 0.0976 (0.020/0.035) 0.0937 (0.019/0.029)
ê23 0.0332 (0.0101/0.0139) 0.0357 (0.0097/0.013) 0.0326 (0.010/0.014)
ê32 0.0396 (0.021/0.028) 0.0337 (0.018/0.031) 0.0416 (0.023/0.028)
ê34 0.0560 (0.021/0.027) 0.0637 (0.022/0.028) 0.0552 (0.021/0.029)
ê43 0.0879 (0.038/0.054) 0.0856 (0.037/0.057) 0.0902 (0.038/0.057)

The misclassification rates shown in Table 4 are not sensitive to the three different models for
the transition rates. These suggest that the highest aortic diameter stage 4 is misdiagnosed as
stage 3 about 9% of the time, and a diameter over 30 mm (stage 2) is misdiagnosed as normal
(stage 1) about 9% of the time. These ‘false negative’ results seem to be more common than the
corresponding ‘false positive’ results.

The misclassification model assumed a 98.4% probability of stage 1 at age 60 years. Although
for this reason it is not directly comparable with the models without misclassification, it might
be expected to be most similar to the model with the assumption of no aneurysms at age 60 years.
Compare the transition rates from the misclassification model with no age effects with the rates
from Table 3. The rates of 0.02 per year (mean sojourn time in stage 1 of 46 years) and 0.06 per
year (mean sojourn time in stage 2 of 16 years) are similar to the rates from the ‘age 60 years’
model, but the transition rate of 0.26 per year (mean sojourn time in stage 3 of 4 years) from
stage 3 is a slower rate than given by any of the models without misclassification. This might
reflect the substantial measurement error in distinguishing between stages 3 and 4.

The estimated age effects in Table 4 are substantial. The assumed common age effect corre-
sponds to an estimated hazard ratio of 2.9 per 10-year increase in age beyond 60 years. However,
it appears that the age effect largely operates on the disease onset transition rate q12, whereas
the estimated age effects for the other transitions are close to 0.

Patients in the MASS trial are considered for elective repair surgery to prevent aneurysmal
rupture when they enter stage 4, with an aortic diameter of 55 mm or more. Therefore an impor-
tant quantity in determining the screening intervals for different men is the probability of truly
being in stage 4 at some fixed time in the future, given truly being in an earlier stage at a certain
age. Using the estimated transition rates and age effects, a selection of these probabilities (which
are conditional on survival of the patient) are illustrated in Fig. 2. The risk of progression from a
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Fig. 2. Estimated transition probabilities into the final stage 4 ( , from stage 1; - - - - - - - , from stage
2; . . . . . . ., from stage 3): (a) from age 50 years; (b) from age 60 years; (c) from age 70 years; (d) from age
80 years
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normal aortic diameter (stage 1) is low for all ages but becomes non-negligible after age 80 years.
Given an aortic diameter of 30–44 mm (stage 2), the 5-year risk of moving to a diameter greater
than 55 mm is around 11%, and the 10-year risk is around 28% for all ages. The progression rate
from stage 3 to stage 4 is high for all ages, with 10-year transition probabilities between 82%
and 91%.

The models illustrated also assumed that the misclassification probabilities were constant.
Variables which might influence the probabilities of misclassification include age at screen, as was
discovered in a comparable application to breast cancer screening (Chen et al., 1996). Thus the
misclassification model was also fitted with the age at screening as a covariate on the misclassifi-
cation probabilities, using the logistic model (Section 2). No notable effect of age was detected.

5.1. Standard error estimation
Standard errors were also estimated for all the models by using the bootstrap. For the non-
misclassification models, bootstrap samples were drawn from the set of transitions between pairs
of states at consecutive times. For the misclassification models, consecutive state pairs within
patients are not independent, so we sampled I patients with replacement from the entire set of
I patient series. The models were fitted repeatedly to 1000 samples and the empirical standard
deviations of the parameter estimates were calculated. These are presented in Tables 3 and 4
alongside the standard errors estimated from the inverse Hessian at the maximized log-likeli-
hood. In most cases, the bootstrap standard errors are larger than the Hessian standard errors,
often by 20–30% or greater. The bootstrap estimates are expected to be more accurate in this
case. The estimate of covariance from the Hessian is a lower bound for the covariance matrix
of the asymptotic normal distribution of the maximum likelihood estimator. Using this bound
as an asymptotic approximation may be inaccurate for complex models, such as these, with
irregular likelihood surfaces. See, for example, Cox and Hinkley (1974), for further discussion
of these approximations and the necessary regularity conditions.

6. Discussion

The main advance of this paper is the presentation of a general model, with associated soft-
ware, for misclassified Markov processes in continuous time. It builds on previous work in
cancer screening by Chen et al. (1996) and Kirby and Spiegelhalter (1994) by generalizing the
model to any number of states and any form of transition matrix, with covariates on both tran-
sition and misclassification rates. The model was used to estimate the sensitivity and specificity
of ultrasonography screening for three successive grades of aortic aneurysm, while progression
rates between latent stages were estimated simultaneously.

A frequently encountered issue in screening for chronic disorders is whether a single screen
is sufficient, and when this screen should take place. The Chichester trial investigators (Scott
et al., 2001; Couto et al., 2002), concluded that screening once for abdominal aortic aneurysm
at age 65 years can identify a large population at low risk of rupture who can be ruled out of
further surveillance. In this paper, progression rates were estimated for the same cohort. These
rates support the view that it is not necessary to screen men with normal aortic diameters repeat-
edly. In addition, men with greater aortic diameters should have successively shorter follow-up
intervals, as they have a higher probability of reaching stage 4, when surgery is performed to
prevent rupture of the aneurysm. The results of the larger MASS trial (Multicentre Aneurysm
Screening Group, 2002) also supported the idea of a national screening policy based on a single
screen in men at age 65 years.
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The states in the application were related to levels of a continuous marker. If the available
marker information had been sufficiently detailed, then the model could be extended to make
use of it. A distribution for the continuous marker, conditionally on the underlying stages,
could be specified (Satten and Longini, 1996). Misclassification will be more likely if the true
marker level is closer to a stage boundary, and therefore a continuous model should give a more
accurate indication of progression rates. The more detailed data from the MASS trial might be
used to apply such a model to aortic aneurysm screening.

This application has shown the importance of specifying the initial conditions of a Markov
process. For models without misclassification, all individuals were assumed to be disease free at
a common age. The transition rates, even the rates between stages 2–3 and 3–4, were sensitive to
the assumed disease-free age. For the misclassification model, the underlying stage occupancy
probabilities must be either specified or estimated at the initial time.

The assumption of time homogeneity of the Markov process was assessed by modelling age
at screen as an explanatory variable for transition rates. Age was found to influence the disease
onset rate, but not further rates of progression. However, the method used has the disadvantage
of assuming that the transition intensities are constant between observation times. In the aneu-
rysm application, this might affect the modelling of the transition rate from age 60 years to first
screen, which would have greatest impact on the stage 1 to stage 2 intensity. However, screen
times are reasonably close together after age 65 years. The models also assume homogeneity
with respect to patient covariates other than age, which we did not model. Omitted covariates
will presumably have the effect of increasing estimated misclassification probabilities.

We assumed that the sampling times were not informative, since the time of a screen is nom-
inally chosen according to the previous stage. In fact, the times of observation varied around
the proposed 3- and 12-month intervals, which may raise concerns about their informativeness.
However, we expect that these variations are caused by the constraints of clinical practice, rather
than patient ‘self-selection’.

The Markov assumption is strong. Failure of the Markov assumption will probably appear
in these models as an inflation of the misclassification probabilities. Different people typically
have different aneurysm growth rates, so transition probabilities may depend on their history
as well as the most recent stage. This might be assessed by fitting ad hoc elaborated models.
For example, Weibull instead of exponential distributions might be assumed for the time spent
in each state. The transition rates may also be conditioned on characteristics of the history of
the process, such as the time spent in the current state, or the number of visits to each state.
However, such increases in complexity would need detailed data to ensure identifiability. The
process would need to be observed at frequent intervals, with little misclassification, to be able
to estimate these characteristics of the true history.

Other assumptions included the parametric form of the effect of age on log-transition-rates.
It is possible that linear terms in age may misrepresent the data. Assessing the goodness of
fit of this class of models, in addition to simple model comparison using likelihoods, is worth
further research. For example, Satten and Longini (1996) assessed the short-term predictive
power of a hidden Markov model by forecasting stage occupancy probabilities at individuals’
next observations. This class of models is complex and contains assumptions on many different
levels which should be checked. It is difficult to distinguish between the appropriateness of the
Markov model for the latent stage progression, the model for misclassification and the models
for covariates at both levels.

The multistate and hidden Markov models discussed in this paper are widely applicable in
many medical screening and monitoring situations. Work is in progress to apply this class of
models, using the associated R software, to assessing the accuracy of angiographic screening
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and risk factors for progression of coronary artery vasculopathy after heart transplantation,
studying cognitive and functional decline in the elderly and assessing time-varying predictors
for progression of psoriatic arthritis.

In developing our understanding of disease screening programmes, modelling the progress of
the disease through time is important. A commonly encountered problem, however, in applying
Markov progression models is the size of the programming task. It is hoped that the provision
of the software written for this project will be of assistance to other researchers in the future. The
framework presented here allows a model to encompass arbitrarily complex transition matrices,
misclassification matrices and covariate effects. However, the warning should be given that very
complex models may become close to non-identifiable. If there is insufficient information in the
data, then latent transitions and misclassifications will be difficult to distinguish.
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Appendix A: R software—the ‘msm’ package

A package of functions for the statistical software R was written to fit general multistate Markov models
in continuous time with and without misclassification, and covariates on transition and misclassification
rates. The package is available under a free licence from the Comprehensive R Archive Network repository
of contributed R code, http://cran.r-project.org. An example of the way in which this program
is run is given briefly here. Full documentation is available with the package. Information about R itself is
available from its Web page http://www.r-project.org.

Consider, firstly, a model without misclassification. Here we use ‘ >’ to indicate the R command prompt.
The user specifies a matrix of 0–1 indicators for the allowed transitions whose intensities will be estimated,
e.g. 1–2, 2–3 and 3–4, as follows:

> qmat <- rbind(c(0, 1, 0, 0),
c(0, 0, 1, 0),
c(0, 0, 0, 1),
c(0, 0, 0, 0))

The diagonal of this matrix is ignored. Initial values for the unknown parameters should also be given,
e.g.

> inits <- c(0.001, 0.03, 0.3)

The msm function is called to fit the model. Additional arguments data, fromstate, tostate and
timelag specify the rectangular data frame with rows corresponding to observed transitions. Columns
indicate the starting state, end state and time difference. Data can also be given with rows corresponding
to observations, in the form ‘subject identification, observation time, observed state’.

> age40.msm <- msm(data=age40.df, fromto=TRUE, fromstate=from,

tostate=to, timelag=dt, qmatrix=qmat, inits=inits)

For maximum likelihood estimation, a choice of optimization algorithms is available (e.g. Nelder–Mead
or quasi-Newton) each of which can be fine tuned through options to the R optim function. For example,
a scaling factor may be necessary to normalize the likelihood or individual parameters, to avoid numer-
ical overflow or underflow. The maximum number of iterations, or the tolerance criteria for reporting
convergence, may also need to be altered under some circumstances with flat likelihood surfaces. In these
applications, the quasi-Newton method was found to give the greatest speed of convergence. The algo-
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rithms do not require derivatives of the object function—these are computed by finite differences and used
to estimate the Hessian at the maximum. To aid exploratory analysis, any number of parameters can also
be fixed at their initial values during the optimization. If the algorithm converges successfully, printed
output from the fitted model is as shown in Table 5.

Other summaries that are available include plots of expected survival from each state and tables of
observed and expected prevalences of states at each time. To fit multistate models with misclassification,
specify misc=TRUE in the call to msm. The data supplied should then include vectors of subject
indicators, observation times and observed states. An additional required argument ematrix is a matrix
indicating the allowed misclassifications between states. For example, in the aneurysm application we used

> ematrix <- rbind(c(0, 1, 0, 0),
c(1, 0, 1, 0),
c(0, 1, 0, 1),
c(0, 0, 1, 0))

> and.msm <- msm(state ~ age, misc=TRUE, subject=ptnum, data=an.df,

qmatrix=qmat, ematrix=ematrix, covariates = ~ age60,

inits = c(0.02, 0.06, 0.2, 0, 0, 0, 0.02, 0.06,

0.03, 0.03, 0.06, 0.08),

initprobs = c(0.984375, 0.012625, 0.0025, 0.0005))

The matrix ematrix indicates that an individual occupying underlying stage 1 may be misclassified as
stage 2, stage 2 may be misclassified as stages 1 or 3, stage 3 may be misclassified as stage 2 or 4 and stage
4 may be misclassified as stage 3. The diagonal of this matrix is ignored, since we assume that correct
classifications are always possible. The argument initprobs is a vector specifying the probabilities of
occupying each of the four states at the beginning of the process.

Table 5. Output from a fitted model

> age40.msm

Multi-state Markov models in continuous time
− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

Maximum likelihood estimates:

* Matrix of transition intensities

Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 −0.009966 0.009966 0.00000 0.0000
Stage 2 0.000000 −0.038009 0.03801 0.0000
Stage 3 0.000000 0.000000 −0.32747 0.3275
Stage 4 0.000000 0.000000 0.00000 0.0000

Corresponding standard errors

Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 . 0.0006495 0.000000 0.00000
Stage 2 0 . 0.004397 0.00000
Stage 3 0 0.0000000 . 0.06287
Stage 4 0 0.0000000 0.000000 .

* No covariates on transition intensities

* Mean sojourn times in transient states

mean SE
Stage 1 100.341 6.5393
Stage 2 26.309 3.0432
Stage 3 3.054 0.5863
−2 Å log-likelihood: 2401
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Any number of covariate effects on the transition rates or the misclassification probabilities can be spec-
ified by using the covariates or misccovariates arguments to msm. The model and.msm above
is the misclassification model for aneurysm growth assuming different effects on each transition rate of
years since 60th birthday (Table 4). Fitting this model took less than 3 min on a personal computer with
a 1.3 GHz processor and 11 min on a 500 MHz SunBlade 100 computer.

For reassurance that the true maximum likelihood estimates have been found, models should be run
repeatedly starting from different initial values. However, a sensible choice of initial values can be impor-
tant for unstable models with flat or multimodal likelihoods. For example, the transition rates for a model
with misclassification could be initialized at the corresponding estimates for an approximating model with-
out misclassification. Initial values for a model without misclassification could be set by supposing that
transitions between stages take place only at the observation times. If we observe nrs transitions from state
r to state s, and a total of nr transitions from state r, then qrs=qrr can be estimated by nrs=nr. Then, given
a total of Tr years spent in state r, the mean sojourn time 1=qrr can be estimated as Tr=nr. Thus, nrs=Tr is a
crude estimate of qrs.

Feed-back and suggestions for improvement are welcome from anyone wishing to use the package.
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