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Abstract:
In this paper, we further extend the recently proposed Poisson-Tweedie regression models to include a linear
predictor for the dispersion as well as for the expectation of the count response variable. The family of the con-
sidered models is specified using only second-moments assumptions, where the variance of the count response
has the form 𝜇 + 𝜙𝜇𝑝, where µ is the expectation, φ and p are the dispersion and power parameters, respec-
tively. Parameter estimations are carried out using an estimating function approach obtained by combining the
quasi-score and Pearson estimating functions. The performance of the fitting algorithm is investigated through
simulation studies. The results showed that our estimating function approach provides consistent estimators
for both mean and dispersion parameters. The class of models is motivated by a data set concerning CD4 count-
ing in HIV-positive pregnant women assisted in a public hospital in Curitiba, Paraná, Brazil. Specifically, we
investigate the effects of a set of covariates in both expectation and dispersion structures. Our results showed
that women living out of the capital Curitiba, with viral load equal or larger than 1000 copies and with pre-
vious diagnostic of HIV infection, present lower levels of CD4 cell count. Furthermore, we detected that the
time to initiate the antiretroviral therapy decreases the data dispersion. The data set and R code are available
as supplementary materials.
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1 Introduction

Acquired immunodeficiency syndrome (AIDS) is one of the main public health problems at worldwide levels
[1]. Nowadays, around 36.7 million of people are (human immunodeficiency virus) HIV-positive around the
world and among them 17.8 million are women [2]. In spite of the recent developments in the treatment of
HIV-positive patients, keeping HIV controlled is a challenging task. This could be even more challenging for
pregnant women, since to avoid mother-to-child transmission it is necessary to achieve undetectable levels of
viral load [3]. Thus, early access to prenatal care and early initiation of antiretroviral therapy (ART) is required.
Keeping the pregnant in care since early prenatal favors the ART adaptation, ensuring tolerance, the success
of treatment and thus preventing the vertical transmission [4]. The CD4 cell count is an important marker to
evaluate the immunologic system and the progression of human immunodeficiency infections of HIV-positive
patients. Laboratorial AIDS diagnosis is confirmed when CD4 cell count is under 200 cell/mm3 [5]. Conse-
quently, these patients have an increased risk of death due to opportunistic infections [6].

Recently, some authors have turned their attention to study factors associated with CD4 cell count in HIV-
positive patients. Grover et al. [5] compared the fit of Poisson, negative binomial and generalized Poisson regres-
sion models to investigate the effect of various socio-demographic covariates such as age, gender, geographical
location and drug usage in CD4 count of AIDS patients in India. Similarly, Seyoum and Zewotir [7] compared
the fit of the quasi-Poisson and negative binomial regression models to identify factors associated with CD4
count in adults at the beginning of antiretroviral treatment in North-West Ethiopia. Helleberg et al. [8] analyzed
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data from the Danish nationwide, population-based cohort study in the period 1995–2000 with quarterly CD4
measurements and detected that the risk of cardiovascular disease, cancer and death increased markedly after
CD4 count declines. In this article, we aim to investigate factors associated with the improvement in CD4 cell
count of HIV-positive pregnant women assisted by a public hospital in Curitiba, Paraná, Brazil. Thus, suitable
regression models for count data are demanded for such an investigation.

In the context of count regression models, the Poisson model is the most popular one. However, it is well-
known that such a regression model is limited, since it assumes equidispersion, i.e. mean equals the variance [9].
In practical data analysis, we can have both under/overdispersed counts being the former more often found.
One possible cause of under/overdispersion is departure from the Poisson process. The Poisson counts can
be interpreted as the number of events in a given time interval where the arrivals times are exponential dis-
tributed. In the cases where this assumption is violated the resulting counts can be under or overdispersed
[10]. Another possibility and probably more frequent cause of overdispersion is unobserved heterogeneity of
experimental units. It can be due, for example, to correlation between individual responses, cluster sampling,
omitted covariates and others. These departures from the Poisson distribution are manifested in the raw data
as a zero-inflated or heavy-tailed count distribution. The consequences of failing to take into account the under
or overdispersion in the analysis of count data are distinct. In the case of overdispersion the standard errors
associated with the regression coefficients computed under the equidispersion assumption are too optimistic
and associated hypothesis tests will tend to give false positive results by incorrectly rejecting null hypotheses.
The opposite situation will happen in the case of underdispersion. In both cases, the Poisson model provides
unreliable standard errors for the regression coefficients and hence potentially misleading inferences.

The statistical literature for dealing with overdispersed count data has grown quickly in the last years, see
for example [11–17] and references therein. Over all these approaches, probably the class of extended Poisson-
Tweedie regression models is the most flexible, since it has as special cases the Hermite, Neyman Type A,
Pólya Aeppli, negative binomial and Poisson inverse Gaussian regression models. Furthermore, the extended
Poisson-Tweedie model can mimic the behavior of other count regression models as the Gamma-Count [10]
and COM-Poisson [18]. In spite of their flexibility the Poisson-Tweedie regression models allow modeling only
the expectation of the count response variable as a function of the covariates. Smyth [19] argued that it is quite
common for data sets to show evidence of systematic variation in the dispersion structure. Furthermore, the
author showed that the correct modeling of the dispersion heterogeneity always reduces the standard error of
the mean regression coefficients, which in turn provides a genuine increase in precision. Thus, we claim that it
is very useful and attractive to have the possibility to detect and model dispersion heterogeneity in the context
of Poisson-Tweedie regression models.

The main goal of this article is to further extend the Poisson-Tweedie regression models recently proposed
by [11]. We use the principles of the double generalized linear models [19, 20], where we model the mean and
dispersion structures by means of a link function and a linear predictor. The corresponding class of double
Poisson-Tweedie regression models is specified using only second-moments assumptions and can easily be
fitted using the estimating function approach proposed in [21]. It is interesting to note that the approach used
for estimation and inference resembles Wedderburn’s quasi-likelihood [22] and consequently one could name
our model double quasi Poisson-Tweedie regression models. However, since the term quasi would here only
refer to an aspect of the estimation routine rather than to a model property, we opted to omit it from the title.
The proposed model is exemplified by a data set concerning CD4 counting in HIV-positive pregnant women
assisted in a public hospital in Curitiba, Paraná, Brazil.

Section 2 describes the data set. In the Section 3 we motivate and present the double Poisson-Tweedie re-
gression models. Estimation and inference for the proposed models are presented in Section 4. The main re-
sults from two comprehensive simulation studies are described in the Section 5. In the Section 6 we apply the
double Poisson-Tweedie regression models to investigate factors associated with CD4 count in HIV-positive
pregnant women. The results are discussed in Section 7, including some directions for future investigations.
Finally, the R code, data set and some additional Figures are presented in the supplementary material web page
http://www.leg.ufpr.br/doku.php/publications:papercompanions:dptw.

2 Data set

The data set used here was obtained from the Hospital de Clínicas de Curitiba of the University Federal of
Paraná (HC-UFPR). The data were collected from hospital’s database and comprise of a cohort of 379 HIV-
positive pregnant women who had at least one prenatal appointment which gave birth at the hospital from
February 2011 to December 2015. Demographic, clinical and laboratory data were obtained from review of
medical files.
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The main goal of this study is to investigate the effect of a set of covariates in the CD4 counts. The covariates
are: GA - gestational age in weeks, factor having two levels (0: ≤ 27; 1: ≥ 28); HIVD - HIV diagnostic during
pregnancy, factor having two levels (0: No; 1: Yes); CR - city of residence, factor having two levels (0: Curitiba;
1: Other city); VL - viral load, factor having three levels (0: Undetectable; 1: ≤ 999; 2: ≥ 1000); CO - co-infection,
factor having two levels (0: No; 1: Yes); NBC - newborn condition, factor having three levels (0: HIV-negative; 1:
HIV-positive; 2: Unknown);HIVRF - known HIV risk factors, factor having three levels (0: Unknown; 1: Drugs; 2:
Vertical); DEL - delivery, factor having two levels (0: Vaginal; 1: Caesarian); URG - use of raltegravir, factor having
two levels (0: No; 1: Yes); TART - how long the patient has been on antiretroviral therapy (ART) in weeks; GAART
- gestational age at which the patient started ART and AGE - patient age.

Figure 1 presents dispersion diagrams and boxplots to investigate the association of the CD4 count with
the set of covariates. The plots suggest that the covariates HIV diagnostic during pregnancy (Figure 1E), viral
load(Figure 1G), known HIV risk factors (Figure 1J) and delivery (Figure 1K) are associated with the CD4
counts.

Figure 1: Dispersion diagrams (A to C) for the continuous covariates and boxplots (D to L) for the categorical covariates.

3 Double Poisson-Tweedie regression models

In this section, we motivate and propose the double Poisson-Tweedie regression models. The Poisson-Tweedie
distributions for 𝑝 ≥ 1 are Poisson-Tweedie mixtures and consequently there is no closed-form expression for
the probability mass function (pmf), for details see [12, 23, 24]. Bonat et al. [11] discussed the use of numerical
methods to approximate the pmf of the Poisson-Tweedie distributions. The authors showed that the Monte
Carlo method provides a reasonable approximation. Figure 2 presents the pmf for some Poisson-Tweedie dis-
tributions based on the Monte Carlo approximation. In all scenarios, the expectation µ was fixed at 10, however,
we vary the values of the dispersion and power parameters to illustrate the flexibility of the distribution to deal
with count data. The limiting case p = 0 corresponds to the Hermite distribution for which we have a closed-
form expression available. Such a pmf is implemented in R through the hermite package [25].
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Figure 2: Probability mass function of Poisson-Tweedie distributions for different values of the dispersion (φ) and power
(p) parameters.

Figure 2 shows that the shape of the Poisson-Tweedie distribution changes slightly for p = 0 when the dispersion
parameter is increased. However, for larger values of the power parameter 𝑝 ≥ 1 the shape of the distribution
is strongly determined by the dispersion parameter values. Thus, for small dispersion, we have shapes similar
to the Poisson distribution (equidispersion). On the other hand, for large values of the dispersion parameter,
we have zero-inflated and/or heavy-tailed count distributions. Thus, the pmf presented in Figure 2 highlight
the importance to model the dispersion parameter, when dealing with overdispersed count data.

Despite of the pmf of the Poisson-Tweedie distribution is not available in closed-form, its first two moments
(mean and variance) can easily be obtained. Jørgensen and Kokonendji [26] showed by using factorial cumu-
lant generating functions that for 𝑌 ∼ 𝑃𝑇𝑤𝑝(𝜇, 𝜙), E(𝑌) = 𝜇 and Var(𝑌) = 𝜇 + 𝜙𝜇𝑝. This fact motivated [11] to
specify a set of regression models based only on second-moments assumptions. In this article, we extend the
approach proposed in [11] by regression of both the µ and φ on the values of potential covariates. It is impor-
tant to highlight that based only on second-moments assumptions the pmf of the Poisson-Tweedie distribution
is not required for estimation and inference on double Poisson-Tweedie regression models. Furthermore, the
restrictions of the power parameter space are no longer required.

Thus, consider a cross-section data set, (𝑦𝑖, x𝑖), i = 1,…,n, where 𝑦𝑖’s are independent and identically dis-
tributed (iid) realizations of 𝑌𝑖 according to an unspecified count distribution, whose expectation and variance
are given by

𝐸(𝑌𝑖) = 𝜇𝑖
𝑉𝑎𝑟(𝑌𝑖) = 𝜇𝑖 + 𝜙𝑖𝜇𝑖

𝑝,

where 𝜇𝑖 = 𝑔−1(x⊤
𝑖 𝛽𝛽𝛽) and 𝜙𝑖 = ℎ−1(z⊤

𝑖 𝛾𝛾𝛾). In this notation, x𝑖 and 𝛽𝛽𝛽 are (S × 1) vectors of known covariates
and unknown regression coefficients associated to the expectation of the count response variable. Similarly, z𝑖
and 𝛾𝛾𝛾 are (Q × 1) vectors of known covariates and unknown dispersion coefficients associated to the dispersion
structure. Finally, both g(·) and h(·) are suitable link functions. In this article, we adopted the logarithm link
function for both g(·) and h(·), since µ,φ > 0.

We highlight that the power parameter brings more flexibility to the model being an index that distin-
guishes between some important distributions, such as the Hermite (p = 0), Neyman type A (p = 1), Pólya Aep-
pli (p = 1.5), negative binomial (p = 2) and Poisson inverse-Gaussian (p = 3). Furthermore, since our model is
specified using only second-moments assumptions, the estimating function approach presented in Section 4
allows us to estimate the power parameter, which in turn works as an automatically model selector.
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4 Estimation and inference

In this section, we shall present the estimating function approach adopted for parameter estimation and infer-
ence. Estimating functions could be explained as functions whose goal is to mimic the behavior and properties
of the score function, i.e the first derivative of the log-likelihood function. In the context of maximum likelihood
estimation the properties of the score function are key to define the asymptotic properties of the maximum
likelihood estimators. Let 𝑈(𝜃|𝑌𝑌𝑌) denotes a score function, we can show that under regularity conditions [27]
𝐸(𝑈(𝜃|𝑌𝑌𝑌)) = 0 and 𝑉𝑎𝑟(𝑈(𝜃|𝑌𝑌𝑌)) = 𝐸(𝑈2(𝜃|𝑌𝑌𝑌)) = 𝐸(−𝑈′(𝜃|𝑌𝑌𝑌)). These two results are combined using the delta
method in order to obtain the asymptotic properties of the maximum likelihood estimators.

The score function is a special case of an estimating function. Note that the expectation of the score function is
zero, it means that we have an unbiased estimating function. Furthermore, the computation of the variance and
first derivative of the score function are key to apply the delta method. In the context of estimating functions
the variance of an estimating function is called variability and the expectation of its first derivative is called
sensitivity. Thus, it is clear that when using estimating functions their variability and sensitivity matrices are
important to define the asymptotic properties of the estimating functions estimators.

It is important to highlight that in the context of maximum likelihood estimation the sensitivity and vari-
ability matrices coincide up to a sign resulting in the well-known Fisher information matrix. On the other hand,
in the context of estimating functions the sensitivity and variability matrices do not always coincide, however,
when they coincide we have an optimal estimating function. Thus, the choice of the estimating function and the
computation of its sensitivity and variability matrices are the main interest when using an estimating function
approach for parameter estimation and inference.

In order to present the estimating function approach adopted in this paper, we use the terminologies and
results from [28], [21] and [11]. Our estimating function approach consists of combining the quasi-score and
Pearson estimating functions for the estimation of the regression and dispersion parameters, respectively. The
methodology is similar to the quasi-likelihood approach of [22].

The double Poisson-Tweedie regression models proposed in the Section 3 are described by two set of param-
eters, thus 𝜃𝜃𝜃 = (𝛽𝛽𝛽⊤,𝜆𝜆𝜆 = (𝛾𝛾𝛾, 𝑝)⊤)⊤. Note that, 𝜆𝜆𝜆 is the 𝑄 + 1 vector containing all parameters of the covariance
structure.

For the estimation of the regression coefficients we adopted the quasi-score function given by

𝜓𝛽𝛽𝛽(𝛽𝛽𝛽,𝜆𝜆𝜆) = ⎛⎜
⎝

𝑛
∑
𝑖=1

𝜕𝜇𝑖
𝜕𝛽1

𝜎−1
𝑖 (𝑦𝑖 − 𝜇𝑖), … ,

𝑛
∑
𝑖=1

𝜕𝜇𝑖
𝜕𝛽𝑆

𝜎−1
𝑖 (𝑦𝑖 − 𝜇𝑖)⎞⎟

⎠

⊤
, (1)

where 𝜎𝑖 = 𝜇𝑖 + 𝜙𝑖𝜇
𝑝
𝑖 and 𝜕𝜇𝑖/𝜕𝛽𝑠 = 𝜇𝑖𝑥𝑖𝑠 for s = 1,…,S.

The entry (𝑠, 𝑠′) of the S × S sensitivity matrix of 𝜓𝛽𝛽𝛽 is given by

S𝛽𝛽𝛽𝑠𝑠′ = E ( 𝜕
𝜕𝛽𝑠′

𝜓𝛽𝑠
(𝛽𝛽𝛽,𝜆𝜆𝜆)) = −

𝑛
∑
𝑖=1

𝜇𝑖𝑥𝑖𝑠𝜎−1
𝑖 𝑥𝑖𝑠′𝜇𝑖. (2)

Similarly, the entry (𝑠, 𝑠′) of the S × S variability matrix of 𝜓𝛽𝛽𝛽 has the form

V𝛽𝛽𝛽𝑠𝑠′ = Cov(𝜓𝛽𝛽𝛽𝑠
(𝛽𝛽𝛽,𝜆𝜆𝜆), 𝜓𝛽𝛽𝛽𝑠′ (𝛽𝛽𝛽,𝜆𝜆𝜆)) =

𝑛
∑
𝑖=1

𝜇𝑖𝑥𝑖𝑠𝜎−1
𝑖 𝑥𝑖𝑠′𝜇𝑖. (3)

We note in passing that the sensitivity and variability matrices in this case coincide up to a sign. Consequently,
the quasi-score function is optimum for the estimation of the regression coefficients.

The dispersion parameters are estimated based on the following Pearson estimating function,

𝜓𝜆𝜆𝜆(𝜆𝜆𝜆,𝛽𝛽𝛽) = ( �
𝑛

∑
𝑖=1

𝜔𝑖𝜆1
[(𝑦𝑖 − 𝜇𝑖)2 − 𝜎𝑖] , … ,

𝑛
∑
𝑖=1

𝜔𝑖𝜆𝑄+1
[(𝑦𝑖 − 𝜇𝑖)2 − 𝜎𝑖] ) �

⊤
(4)

where 𝜔𝑖𝜆𝑞
= −𝜕𝜎−1

𝑖 /𝜕𝜆𝑞 for 𝑞 = 1, … , 𝑄 + 1.
The entry (𝑞, 𝑞′) of the (𝑄 + 1) × (𝑄 + 1) sensitivity matrix for the dispersion parameters is given by

S𝜆𝜆𝜆𝑞𝑞′ = E ⎛⎜
⎝

𝜕
𝜕𝜆𝑞′

𝜓𝜆𝜆𝜆𝑞
(𝜆𝜆𝜆,𝛽𝛽𝛽)⎞⎟

⎠
= −

𝑛
∑
𝑖=1

𝜔𝑖𝜆𝑞
𝜎𝑖𝜔𝑖𝜆𝑞′ 𝜎𝑖, (5)

where 𝜆𝑞 and 𝜆𝑞′ denote both 𝛾𝑞 and p. In a similar way, the cross entries of the sensitivity matrix are given by

S𝛽𝛽𝛽𝑠𝜆𝜆𝜆𝑞
= E ⎛⎜

⎝
𝜕

𝜕𝜆𝑞
𝜓𝛽𝛽𝛽𝑠

(𝛽𝛽𝛽,𝜆𝜆𝜆)⎞⎟
⎠

= 0 (6)
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and

S𝜆𝜆𝜆𝑞𝛽𝛽𝛽𝑠
= E ( 𝜕

𝜕𝛽𝑠
𝜓𝜆𝜆𝜆𝑞

(𝜆𝜆𝜆,𝛽𝛽𝛽)) = −
𝑛

∑
𝑖=1

𝜔𝑖𝜆𝑞
𝜎𝑖𝜔𝑖𝛽𝑠

𝜎𝑖, (7)

where 𝜔𝑖𝛽𝑠
= −𝜕𝜎−1

𝑖 /𝜕𝛽𝑠.
Finally, the joint sensitivity matrix for 𝜃𝜃𝜃 is given by

S𝜃𝜃𝜃 = ( S𝛽𝛽𝛽 000
S𝜆𝜆𝜆𝛽𝛽𝛽 S𝜆𝜆𝜆

) , (8)

whose entries are defined in eqs. (2), (5), (6) and (7).
The asymptotic variance of the estimating function estimators denoted by ̂𝜃 ̂𝜃 ̂𝜃 are obtained by the inverse of

the Godambe information matrix. The Godambe information matrix is given by J𝜃𝜃𝜃 = S𝜃𝜃𝜃V−1
𝜃𝜃𝜃 S⊤

𝜃𝜃𝜃 , where ⊤ denotes
transpose.

The variability matrix for 𝜃𝜃𝜃 has the form

V𝜃𝜃𝜃 = ( V𝛽𝛽𝛽 V𝛽𝛽𝛽𝜆𝜆𝜆
V𝜆𝜆𝜆𝛽𝛽𝛽 V𝜆𝜆𝜆

) , (9)

where V𝜆𝜆𝜆𝛽𝛽𝛽 = V⊤
𝛽𝛽𝛽𝜆𝜆𝜆 and V𝜆𝜆𝜆 depend on the third and fourth moments of 𝑌𝑖, respectively. In order to avoid

such a dependence on high order moments, we adopted the empirical version of the variability matrix obtained
by

Ṽ𝜆𝑞𝑞′ =
𝑛

∑
𝑖=1

𝜓𝜆𝑞
(𝜆𝜆𝜆,𝛽𝛽𝛽)𝑖𝜓𝜆𝑞′ (𝜆𝜆𝜆,𝛽𝛽𝛽)𝑖 and Ṽ𝜆𝑞𝛽𝑠

=
𝑛

∑
𝑖=1

𝜓𝜆𝑞
(𝜆𝜆𝜆,𝛽𝛽𝛽)𝑖𝜓𝛽𝑠

(𝜆𝜆𝜆,𝛽𝛽𝛽)𝑖. (10)

Thus, the asymptotic distribution of ̂𝜃 ̂𝜃 ̂𝜃 is

̂𝜃 ̂𝜃 ̂𝜃 ∼ 𝒩 (𝜃𝜃𝜃, J−1
𝜃𝜃𝜃 ), (11)

where J−1
𝜃𝜃𝜃 is the inverse of the Godambe information matrix.

To solve the system of equations, we adopted the chaser algorithm

𝛽𝛽𝛽(𝑖+1) = 𝛽𝛽𝛽(𝑖) − S−1
𝛽𝛽𝛽 𝜓𝛽𝛽𝛽(𝛽𝛽𝛽(𝑖),𝜆𝜆𝜆(𝑖))

𝜆𝜆𝜆(𝑖+1) = 𝜆𝜆𝜆(𝑖) − 𝛼S−1
𝜆𝜆𝜆 𝜓𝜆𝜆𝜆(𝛽𝛽𝛽(𝑖+1),𝜆𝜆𝜆(𝑖)),

(12)

in that case α is a tuning constant used to control the step-length. The chaser algorithm uses the insensitivity
property, see eq. (6), which allows us to use two separate equations to update 𝛽𝛽𝛽 and 𝜆𝜆𝜆. For further details,
we refer the interested reader to Bonat and Jørgensen [21], Bonat [29] and Jørgensen and Knudsen [28]. The
algorithm presented in this section is easily implemented in R through the mcglm package [29], whose code is
available as a supplementary material.

5 Simulation studies

In this section we shall present two simulation studies that are conducted to verify the properties of the esti-
mating function estimators and highlight the importance of the correct modeling of the dispersion structure.

5.1 Properties of the estimating function estimators

We carry out a simulation study to check the properties of the proposed estimating function estimators in a finite
sample scenario. The regression model for the mean structure was defined as 𝜇𝑖 = exp{𝛽0+𝛽1𝑥1𝑖+𝛽2𝑥2𝑖}, where
𝛽𝛽𝛽 = (log(10), 1.0, 0.5)⊤. The covariates 𝑥1𝑖 and 𝑥2𝑖 were generated from standard Gaussian and Bernoulli(p = 0.5)
distributions, respectively. The parameter values were picked in order to have counts from 0 to approximately
350.

The focus of this paper is on the dispersion structure, consequently, we designed three simulation scenarios
by considering different levels of overdispersion (low, medium and large) and combined them with different

6
Authenticated | wbonat@ufpr.br author's copy

Download Date | 4/19/19 1:23 PM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Petterle et al.

values of the power parameter, see Table 1. For each scenario, we generated 1000 data sets considering four sam-
ple sizes (100, 250, 500 and 1000). The dispersion regression model consists of two covariates and the intercept.
We decided to use the same set of covariates to model both the mean and dispersion structures.

Table 1: Power parameter and linear predictor for the dispersion regression model by simulation scenario.

Power parameter Scenario Dispersion regression model

p = 0 Low 𝜙𝑖 = exp{log(2.0) + 0.2𝑥1𝑖 + 0.3𝑥2𝑖}
Medium 𝜙𝑖 = exp{log(2.5) + 0.5𝑥1𝑖 + 0.5𝑥2𝑖}
Large 𝜙𝑖 = exp{log(4.5) + 0.8𝑥1𝑖 + 0.8𝑥2𝑖}

p = 1.01 Low 𝜙𝑖 = exp{log(0.5) + 0.1𝑥1𝑖 − 0.8𝑥2𝑖}
Medium 𝜙𝑖 = exp{log(2.0) + 0.8𝑥1𝑖 + 0.5𝑥2𝑖}
Large 𝜙𝑖 = exp{log(3.5) + 1.5𝑥1𝑖 + 1.2𝑥2𝑖}

p = 1.5 Low 𝜙𝑖 = exp{log(0.3) + 0.1𝑥1𝑖 + 0.3𝑥2𝑖}
Medium 𝜙𝑖 = exp{log(1.5) + 0.5𝑥1𝑖 + 0.5𝑥2𝑖}
Large 𝜙𝑖 = exp{log(2.0) + 1.2𝑥1𝑖 + 1.3𝑥2𝑖}

p = 2 Low 𝜙𝑖 = exp{log(0.2) + 0.1𝑥1𝑖 + 0.3𝑥2𝑖}
Medium 𝜙𝑖 = exp{log(1.2) + 0.5𝑥1𝑖 + 0.3𝑥2𝑖}
Large 𝜙𝑖 = exp{log(1.7) + 0.8𝑥1𝑖 + 1.0𝑥2𝑖}

p = 3 Low 𝜙𝑖 = exp{log(0.003) + 0.001𝑥1𝑖 + 0.005𝑥2𝑖}
Medium 𝜙𝑖 = exp{log(0.01) + 0.005𝑥1𝑖 + 0.01𝑥2𝑖}
Large 𝜙𝑖 = exp{log(0.08) + 0.01𝑥1𝑖 + 0.2𝑥2𝑖}

Figure 3 and Figure 4 present the average bias plus and minus the average standard errors (SE) for the regression
and dispersion parameters under each scenario. The scales are standardized for each parameter by dividing the
average bias and the limits of the confidence intervals by the SE obtained for the sample of size 100.

The results in Figure 3 and Figure 4 show that for all simulation scenarios both the average bias and standard
errors tend to 0 as the sample size is increased. These results illustrate the consistency and unbiasedness (for
large sample) of the estimating function estimators of the regression and dispersion coefficients. As expected,
the scenarios with larger overdispersion and higher power parameter values are the most challenging for the
fitting algorithm, consequently, in these scenarios larger samples are required for the correct estimation. It is
also clear that the estimation of the dispersion coefficients is harder than the regression coefficients and larger
samples are required to reach unbiased estimates. Concerning the estimation of the power parameter, we note
that only in the large overdispersion case and p = 3 scenario our fitting algorithm did not provide unbiased
estimates for large samples.
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Figure 3: Average bias and confidence intervals on a standardized scale by sample size and simulation scenario - Regres-
sion coefficients.

8
Authenticated | wbonat@ufpr.br author's copy

Download Date | 4/19/19 1:23 PM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Petterle et al.

Figure 4: Average bias and confidence intervals on a standardized scale by sample size and simulation scenario - Disper-
sion and power coefficients.

In order to further investigate the properties of our estimating functions estimators Figure 5 presents the em-
pirical coverage rate for all model parameters, sample sizes and simulation scenarios.
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Figure 5: Coverage rate for each parameter by sample sizes and simulation scenarios.

The empirical coverage rates for the regression coefficients are close to the nominal level of 95% for all sample
sizes and simulation scenarios. Regarding the power and dispersion parameters the empirical coverage rates
present values close to the nominal levels for large samples; however, for small samples the empirical coverage
rate tends to be slightly lower than the nominal level of 95%. The worst results appear for the power parameter
at low overdispersion levels.

In Figure 3 and Figure 4, we opted to present the average bias and standard error in standardized scale.
Although, this approach is convenient to show the properties of the estimators, it can be misleading because the
size of the estimator’s variance is standardized to be 1. Thus, in the supplementary material we present Figure 3
and Figure 4, however the horizontal lines (confidence intervals) were replaced by the minimum and maximum
estimated values. These results agree that our estimators are consistent. Furthermore, they highlighted that for
small samples the uncertainty around the dispersion coefficients are quite large, mainly for power parameter
values close to 0.

5.2 Impact of misspecification of the dispersion structure

The goal of this simulation study is to highlight the importance of correctly modeling the dispersion structure.
We simulated 1000 data sets from the double Poisson-Tweedie regression model and fitted both the double
Poisson-Tweedie (correct model) and the Poisson-Tweedie regression model ignoring the covariates in the dis-
persion structure (incorrect model). Then, we evaluated the relative efficiency which was defined as the ratio
of the standard errors obtained from the incorrect (numerator) and correct (denominator) models.

We fixed the power parameter at the values p = 1.01, 1.5, 2 and 3. The mean structure was specified as

𝜇𝑖 = exp{𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽32𝑥32𝑖 + 𝛽33𝑥33𝑖 + 𝛽34𝑥34𝑖 + 𝛽35𝑥35𝑖}, (13)

where 𝛽𝛽𝛽 = (log(10), 1, −2, 0.8, 1.5, 0.5, −1)⊤. Similar to the first simulation study, the regression coefficients were
fixed in order to have counts approximately from 0 to 350. The covariates 𝑥1𝑖 and 𝑥2𝑖 were generated from a
Gaussian (mean zero and variance 0.32) and Bernoulli (p = 0.7) distributions, respectively. The covariates 𝑥3𝑗𝑖
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for 𝑗 = 2, … 5 are dummies representing a factor with five levels of equal sample sizes. Finally, the dispersion
structure was specified as

𝜙𝑖 = exp{𝛾0 + 𝛾1𝑧1𝑖 + 𝛾2𝑧2𝑖 + 𝛾32𝑥32𝑖 + 𝛾33𝑥33𝑖 + 𝛾34𝑥34𝑖 + 𝛾35𝑥35𝑖}, (14)

where 𝛾𝛾𝛾 = (2.5, 2, −1.3, −0.8, −1.5, −0.5, 1)⊤. The covariates 𝑧1𝑖 and 𝑧2𝑖 were simulated from Gaussian (mean
zero and variance 0.52) and Bernoulli (p = 0.5) distributions, respectively. It is important to highlight that the
covariates 𝑥3𝑗𝑖 appear in both mean and dispersion structures.

In order to evaluate the impact of the misspecification of the dispersion structure on the regression coeffi-
cients, we fitted the correct model, i.e the double Poisson-Tweedie regression model and the naive one i.e the
orthodox Poisson-Tweedie regression model.

We defined the relative efficiency as the ratio of the standard errors obtained from the incorrect and correct
models. Thus, values larger than one indicate that the correct model is more efficient (smaller standard errors)
than the incorrect one. Figure 6 shows the relative efficiency for each regression parameter and simulation
scenario.

Figure 6: Relative efficiency for each parameter by power parameter and sample size.

Results in Figure 6 show that the correct model is more efficient than the incorrect model for all simulation
scenarios and regression parameters with exception of the coefficient 𝛽35 in the case of p = 3. Thus, it is clear
that the correct specification of the dispersion structure has a strong impact on the standard errors associated to
the regression coefficients. This result highlights the importance of correctly modeling the dispersion structure.
In Figure 6, we used the average of the estimated standard errors obtained based on the Godambe information
matrix. In the supplementary material we provide the same Figure, but with standard errors computed based
on the Monte Carlo (empirical) variance. Overall the results are quite similar.

6 Analyzing CD4 counts in HIV-positive pregnant women

In this section, we apply the class of double Poisson-Tweedie regression models for count data to analyze the
data set presented in Section 2. The second-moments assumptions of the double Poisson-Tweedie regression
models require the specification of linear predictors for modeling the mean and dispersion structures. In this
application, for composing the linear predictors we have three continuous covariates, namely TART - how long
the patient has been on antiretroviral therapy (ART) in weeks; GAART - gestational age at which the patient
started ART and AGE - patient age. Additionally, we have nine categorical covariates, namely GA - gestational
age in weeks; HIVD - HIV diagnostic during pregnancy; CR - city of residence; VL - viral load; CO - co-infection;
NBC - newborn condition; HIVRF - known HIV risk factors; DEL - delivery and URG - use of raltegravir (see
Section 2).

We adopted a stepwise type procedure for selecting the components of the linear predictors. The Wald test
was used in the forward and backward steps. Our strategy to select the final model consists of: (i) selecting the
components of the mean linear predictor, (ii) selecting the components of the dispersion linear predictor and
(iii) removing non-significant effects (if any) in both mean and dispersion linear predictors. We highlight that
first, we selected the covariates to compose the mean model, i.e. in this step we consider the dispersion constant.
Then, we fixed the selected covariates of the mean model in order to select the covariates for composing the
dispersion model. Finally, we evaluated the final model and drop (if any) non-significant covariates in both
mean and dispersion structures. The final mean and dispersion linear predictors are given, respectively, by

log(𝜇𝑖) = 𝛽0 + 𝛽1VL(≤ 999)𝑖 + 𝛽2VL(≥ 1000)𝑖 + 𝛽3HIVD𝑖 + 𝛽4CR𝑖

and

log(𝜙𝑖) = 𝛾0 + 𝛾1TART𝑖.

11
Authenticated | wbonat@ufpr.br author's copy

Download Date | 4/19/19 1:23 PM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Petterle et al. DE GRUYTER

On the adopted parametrization, 𝛽0 is associated with undetectable viral load and 𝛽1 and 𝛽2 are differences for
viral load ≤ 999 and ≥ 1000, respectively. Similarly, 𝛽3 is the effect of HIV diagnostics during pregnancy and 𝛽4
measures the effect of living out of the capital Curitiba, i.e. the reference level is Curitiba. The linear predictor
for the dispersion structure is composed by an intercept and the effect of the continuous covariate TART.

In order to further investigate the effect of the estimation of the power parameter, we opted to fit the double
Poisson-Tweedie regression model as well as some of its main special cases. Note that, the covariates selection
was done based on the more general model, i.e. the double Poisson-Tweedie with power parameter estimated
based on data. Then, we fit the special cases obtained by fixing the power parameter at the values 0 (Hermite), 1
(Neyman Type A), 1.5 (Pólya Aeppli), 2 (negative binomial) and 3 (Poisson inverse-Gaussian) keeping the mean
and dispersion structures as obtained based on the double Poisson-Tweedie regression model. Table 2 presents
the pseudo version of the Akaike (pAIC) and Bayesian (pBIC) information criterion along with the maximized
value of the Gaussian pseudo log-likelihood (plogLik) and the number of parameters (np) involved in the fit
[29].

Table 2: Pseudo Akaike (pAIC) and Bayesian (pBIC) information criterion along with maximized Gaussian pseudo log-
likelihood (plogLik) and number of parameters (np) for alternative models.

Models pAIC pBIC plogLik np

Double Poisson-Tweedie 3878.44 3907.54 −1931.22 8
Hermite (p = 0) 3876.58 3902.04 −1931.29 7
Neyman Type A (p = 1) 3880.40 3905.87 −1933.20 7
Pólya Aeppli (p = 1.5) 3887.26 3912.72 −1936.63 7
Negative binomial (p = 2) 3898.26 3923.76 −1942.15 7
Poisson inverse-Gaussian (p = 3) 3936.58 3962.04 −1961.29 7

Results in Table 2 show that the fit of the double Poisson-Tweedie regression model ̂𝑝 = 0.18(0.47) is quite similar
to the Hermite and Neyman Type A models in terms of plogLik. However, since the double Poisson-Tweedie
has the extra power parameter, the pAIC and pBIC criterion indicate the Hermite as the best fit. Furthermore,
if we consider the pBIC criterion the Hermite and Neyman Type A models provide better fit than the proposed
double Poisson-Tweedie regression. However, the presented measures of goodness-of-fit are quite limited, be-
cause they do not offer a measure of uncertainty. For example, it is challenging to decide which model Hermite
or Neyman Type A fits better to the data, because the difference in terms of pseudo log-likelihood values is quite
small. To better explore these results, Table 3 presents the corresponding estimates and standard errors obtained
by the fit of the Hermite, Neyman Type A, Pólya Aeppli, negative binomial and Poisson inverse-Gaussian mod-
els.

Table 3: Parameter estimates and standard errors for the double Poisson Tweedie (DPT), Hermite (HMT), Neyman type A
(NTA), Pólya Aeppli (PA), negative binomial (NB) and Poisson inverse-Gaussian (PIG) models.

Parameter DPT HMT NTA PA NB PIG

𝛽0 6.40(0.05)∗ 6.39(0.05)∗ 6.39(0.05)∗ 6.39(0.05)∗ 6.40(0.05)∗ 6.40(0, .05)∗

𝛽1 −0.23(0.06)∗ −0.23(0.06)∗ −0.23(0.06)∗ −0.24(0.06)∗ −0.24(0.06)∗ −0.25(0.07)∗

𝛽2 −0.40(0.08)∗ −0.40(0.08)∗ −0.42(0.08)∗ −0.43(0.07)∗ −0.44(0.07)∗ −0.46(0.07)∗

𝛽3 0.15(0.05)∗ 0.15(0.05)∗ 0.16(0.05)∗ 0.17(0.05)∗ 0.17(0.05)∗ 0.18(0.06)∗

𝛽4 −0.14(0.05)∗ −0.14(0.05)∗ −0.15(0.06)∗ −0.16(0.06)∗ −0.17(0.06)∗ −0.19(0.06)∗

𝛾0 10.10(2.98)∗ 11.27(0.15)∗ 4.82(0.15)∗ 1.60(0.15)∗ −1.60(0.15)∗ −7.99(0.18)∗

𝛾1 −0.02(0.01)∗ −0.02(0.01)∗ −0.01(0.01)∗ −0.01(0.01) −0.00(0.01) 0.01(0.01)

p 0.18(0.47) 0 1 1.5 2 3

Table 3 shows that in general all models agree in terms of the significance of the regression coefficients, however,
only the double Poisson-Tweedie, Hermite and Neyman Type A detected the significance of the covariate TART
on the dispersion regression model. This result agrees with the goodness-of-fit measures presented in Table 2
where we noted that the fits of these three models are really similar and better than the Pólya Aeppli, negative
binomial and Poisson inverse-Gaussian fits.

It is easy to explain such a similarity by analyzing the power parameter estimate. Recall, that the power pa-
rameter is an index that distinguishes between the special cases of the Poisson-Tweedie family of distributions.
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In this data analysis, the estimated value was ̂𝑝 = 0.18, which is close to 0 explaining the similarity of the double
Poisson-Tweedie and Hermite models. However, the standard error associated with this estimate was 0.48, thus
the associated 95% confidence interval is given by (−0.74|1.10), which shows that both Hermite and Neyman
Type A models provide a reasonable fit to the data. These results show that the double Poisson-Tweedie model
provides the best fit as well as automatically adapted to the underlying count distribution, without the need of
goodness-of-fit measures as presented in Table 2. Consequently, the double Poisson-Tweedie model is robust
against model misspecification.

To further investigate the effect of model misspecification, Figure 7 presents the estimates (A) and the relative
standard errors (B) obtained by fitting the double Poisson-Tweedie regression model with different fixed power
parameter values. We highlight that the double Poisson-Tweedie regression model with the power parameter
estimated based on the data is used as the reference for the computation of the relative standard errors.

Figure 7: Illustration of the change in the regression and dispersion parameter estimates for different values of p (A). Il-
lustration of the change in the relative standard errors of the regression and dispersion parameter estimates for different
values of p (B).

Figure 7 shows that in general the regression and dispersion parameter estimates are only barely affected by
the power parameter. On the other hand, the associated standard errors are strongly affected by the power
parameter, with changes reaching up to 20%. Figure 7 should be interpreted such that if p = 3 were used, the
estimated standard error of 𝛾1 would be approximately 20% larger than the value obtained from the best fit. It
highlights the importance of a joint estimation of the regression, dispersion and power parameters when fitting
double Poisson-Tweedie regression models.

7 Discussion

In this paper, we have first presented the double Poisson-Tweedie regression models for analyzing count data.
The models are based only on second-moments assumptions and allow to model the mean and dispersion
structures in a regression model fashion. Estimation and inference is easily done using an estimating function
approach in the style of Wedderburn’s quasi-likelihood [22]. Simulation studies showed that the proposed
estimating function approach provides consistent estimators for both mean and dispersion coefficients and
highlighted the importance of correctly modeling the dispersion structure. Furthermore, we showed through a
data analysis that our model is quite flexible and can easily adapt to the underlying count distribution without
the need of additional goodness-of-fit measures. It is important to highlight that the methodology presented
in this article can be used as a test for the assumption of dispersion homogeneity.

An advantage of the estimating function approach as used in this paper combining the quasi-score and
Pearson estimating functions is the insensitivity property which is an analogue to the orthogonality property
in the context of maximum likelihood estimation. The insensitivity property allows us to apply the chaser
algorithm using two separate equations to update the regression and dispersion parameters. Consequently, it
simplifies the fitting process.

We have then analyzed a data set concerning CD4 counts in HIV-positive pregnant women assisted in a
public hospital in Curitiba, PR, Brazil. The main goal of the data analysis was to detect factors influencing the
CD4 counts. We considered a set of three continuous and nine categorical covariates. The results showed that
those pregnant non-resident in the capital Curitiba, with viral load ≥ 1000 and with previous diagnostic of HIV
are the ones with lower CD4 count levels.
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The city of residence is a proxy for social and economic living conditions as well as for health service access.
In general, people living out of the capital have limited access to the health service network, which could explain
the negative effect in the CD4 counts. Concerning the negative association between CD4 and viral load, such
an association was already reported in [30]. Patients on ART keeping suppressed viral loads tend to recover
their CD4 levels better than those off medication. In Brazil, all pregnant women are routinely tested for HIV
during first trimester of pregnancy. This strategy provides earlier diagnosis, in the asymptomatic stage of HIV
infection, usually before decreasing their CD4 cell count. It could explain that pregnant women with previous
diagnostic of HIV infection present lower levels of CD4 cell count.

Finally, we have detected that the covariate TART which measures how long the patient has been on ART in
weeks affects the dispersion structure being that longer in ART implies less dispersion. Such results agree with
the fact that ART is effective on controlling the CD4 counts in HIV-positive pregnant. However, we face such
result with caution, since our simulations studies showed that the standard errors for the dispersion compo-
nents could be underestimated for small sample sizes as in our data analysis. Thus, further investigations are
required for a definitive conclusion.

Some possible topics for future research include the extension of the double Poisson-Tweedie regression
models to deal with non-independent data in the Liang and Zeger style [31] as well as to further study the
model properties to deal with multiple count response variable as proposed in [21, 32]. There is also a need to
develop methods for model checking such as residual analysis, leverage and outliers detection.
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