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Correlation and simple linear regression

Correlation and regression are techniques used to examine associations and rela-

tionships between continuous variables collected on the same set of sampling or

experimental units. Specifically, correlation is used to investigate the degree to which

variables change or vary together (covary). In correlation, there is no distinction

between dependent (response) and independent (predictor) variables and there is no

attempt to prescribe or interpret the causality of the association. For example, there

may be an association between arm and leg length in humans, whereby individu-

als with longer arms generally have longer legs. Neither variable directly causes the

change in the other. Rather, they are both influenced by other variables to which

they both have similar responses. Hence correlations apply mainly to survey designs

where each variable is measured rather than specifically set or manipulated by the

investigator.

Regression is used to investigate the nature of a relationship between variables

in which the magnitude and changes in one variable (known as the independent or

predictor variable) are assumed tobedirectly responsible for themagnitude andchanges

in the other variable (dependent or response variable). Regression analyses apply to

both survey and experimental designs. Whilst for experimental designs, the direction

of causality is established and dictated by the experiment, for surveys the direction of

causality is somewhat discretionary and based on prior knowledge. For example,

although it is possible that ambient temperature effects the growth rate of a species of

plant, the reverse is not logical. As an example of regression, we could experimentally

investigate the relationship between algal cover on rocks and molluscan grazer density

by directly manipulating the density of snails in different specifically control plots and

measuring the cover of algae therein. Any established relationship must be driven by

snail density, as this was the controlled variable. Alternatively the relationship could be

investigated via a field survey in which the density of snails and cover of algae could

be measured from random locations across a rock platform. In this case, the direction

of causality (or indeed the assumption of causality) may be more difficult to defend.

In addition to examining the strength and significance of a relationship (for

which correlation and regression are equivalent), regression analysis also explores the

functional nature of the relationship. In particular, it estimates the rate at which a

change in an independent variable is reflected in a change in a dependent variable as
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well as the expected value of the dependent variable when the independent variable is

equal to zero. These estimates can be used to construct a predictive model (equation)

that relates the magnitude of a dependent variable to the magnitude of an independent

variable, and thus permit new responses to be predicted from new values of the

independent variable.

8.1 Correlation

The simplest measure of association between two variables is the sum product of the

deviations of each point from the mean center [e.g.
�

(x − x)(y − y)], see Figure. 8.1f.

Thismethod essentially partitions the cloudof points up into four quadrants andweighs

up the amount in the positive and negative quadrants. The greater the degree to which

points are unevenly distributed across the positive and negative quadrants, the greater

the magnitude (either negative or positive) of the measure of association. Clearly how-

ever, the greater thenumber of points, thehigher themeasure of association.Covariance

standardizes for sample size by dividing this measure by the degrees of freedom (num-

ber of observation pairs minus 1) and thus represents the average deviations from the

mean center. Note that covariance is really the bivariate variance of two variablesa.
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Fig 8.1 Fictitious data illustrating covariance, correlation, strength and polarity.

a Covariance of a single variable and itself is the variance of that variable.
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8.1.1 Product moment correlation coefficient

Unfortunately, there are no limits on the range of covariance as its magnitude

depends on the scale of the units of the variables (see Figure 8.1a-b). The Pearson’s

(product moment) correlation coefficient further standardizes covariance by dividing

it by the standard deviations of x and y, thereby resulting in a standard coefficient

(ranging from −1 to +1) that represents the strength and polarity of a linear

association.

8.1.2 Null hypothesis

Correlation tests the H0 that the population correlation coefficient (ρ, estimated by

the sample correlation coefficient, r) equals zero:

H0 : ρ = 0 (the population correlation coefficient equals zero)

This null hypothesis is tested using a t statistic (t = r
sr
), where sr is the standard error

of r. This t statistic is compared to a t distribution with n− 2 degrees of freedom.

8.1.3 Assumptions

In order that the calculated t-statistic should reliably represent the population trends,

the following assumptions must be met:

(i) linearity - as the Pearson correlation coefficient measures the strength of a linear (straight-

line) association, it is important to establish whether or not some other curved relationship

represents the trends better. Scatterplots are useful for exploring linearity.

(ii) normality - the calculated t statistic will only reliably follow the theoretical t distribution

when the joint XY population distribution is bivariate normal. This situation is only

satisfied when both individual populations (X and Y) are themselves normally distributed.

Boxplots should be used to explore normality of each variable.

Scale transformations are often useful to improve linearity and non-normality.

8.1.4 Robust correlation

For situations when one or both of the above assumptions are not met and transfor-

mations are either unsuccessful or not appropriate (particularly, proportions, indices

and counts), monotonic associations (general positive or negative - not polynomial)

can be investigated using non-parametric (rank-based) tests. The Spearman’s rank

correlation coefficient (rs) calculates the product moment correlation coefficient on

the ranks of the x and y variables and is suitable for samples with between 7 and 30

observations. For greater sample sizes, an alternative rank based coefficient Kendall’s

(τ ) is more suitable. Note that non-parametric tests are more conservative (have less

power) than parametric tests.
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8.1.5 Confidence ellipses

Confidence ellipses are used to represent the region on a plot within which we have

a certain degree of confidence (e.g 95%) the true population mean center is likely to

occur. Such ellipses are centered at the sample mean center and oriented according to

the covariance matrixb of x and y.

8.2 Simple linear regression

Simple linear regression is concernedwith generating amathematical equation (model)

that relates the magnitude of dependent (response) variable to the magnitude of the

independent (predictor) variable. The general equation for a straight line is y = bx + a,

where a is the y-intercept (value of y when x = 0) and b is the gradient or slope (rate

at which y changes per unit change in x).

Figure 8.2 illustrates sets of possible representatives of population trends between

two variables. It should be apparent that if the population slope (β1) is equal to

zero there is no relationship between dependent (Y) and independent variables (X).

Changes in the independent variable are not reflected by the dependent variable.

Conversely, when the population slope is not equal to zero there is a relationship. Note

that the population intercept (β0) has less biological meaning.

The population parameters (β0 and β1) are estimated from a line of best fit through

the cloud of sample data. There are a number of ways to determine the line of best fit,

each of which represent different approach to regression analysis (see Figure 8.4, and

section 8.2.5).
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Fig 8.2 Fictitious data contrasting differences in interpretation between slope (β1) and

y-intercept (β0) parameters.

b The covariance matrix of two variables has two rows and two columns. The upper left and lower

right entries represent the variances of x and y respectively and the upper right and lower left entries

represent the covariance of x and y.
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8.2.1 Linear model

The linear model reflects the equation of the line of best fit:

yi = β0 + β1xi + εi

where β0 is the population y-intercept, β1 is the population slope and εi is the random

unexplained error or residual component.

8.2.2 Null hypotheses

A separate H0 is tested for each of the estimated model parameters:

H0 : β1 = 0 (the population slope equals zero)

This test examines whether or not there is likely to be a relationship between the

dependent and independent variables in the population. In simple linear regression, this

test is identical to the test that thepopulation correlation coefficient equals zero (ρ = 0).

H0 : β0 = 0 (the population y-intercept equals zero)

This test is rarely of interest as it only tests the likelihood that the background level

of the response variable is equal to zero (rarely a biologically meaningful comparison)

and does not test whether or not there is a relationship (see Figure 8.4b-c).

These H0’s are tested using a t statistic (e.g. t = b
sb

), where sb is the standard error

of b. This t statistic is compared to a t distribution with n− 2 degrees of freedom.

Along with testing the individual parameters that make up the linear model via

t-tests, linear regression typically also tests the H0 : β1 = 0 by partitioning the total

variability in the response variable into a component that is explained by the β1 term in

the full linear model (yi = β0 + β1xi + εi) and a component of the variance that cannot

be explained (residual), see Figure 8.3. As it is only possible to directly determine

unexplained variation, the amount of variability explained by the full model (and

therefore β1) is calculated as the difference between the amount left unexplained by a

reduced model (yi = β0 + εi, which represents the situation when H0 : β1 = 0 is true)

and the amount left unexplained by the full model (yi = β0 + β1xi + εi).

When the null hypothesis is true (no relationship and therefore β1 = 0) and the test

assumptions are met, the ratio (F-ratio) of explained to unexplained variability follows

a F-distribution. Likewise, full and reduced models respectively with and without the

y-intercept could be used to test H0: β1 = 0. For simple linear regression, the t-tests

and ANOVA’s test equivalent null hypothesesc, however this is not the case for more

complex linear models.

c For simple linear regression the F-statistic is equal to the t-value squared (F = t2).
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Fig 8.3 Fictitious data illustrating the partitioning of (a) total variation into components

(b) explained (MSregression) and (c) unexplained (MSresidual) by the linear trend. The probability of

collecting our sample, and thus generating the sample ratio of explained to unexplained variation

(or one more extreme), when the null hypothesis is true (and there is no relationship between

X and Y) is the area under the F-distribution (d) beyond the sample F-ratio.

8.2.3 Assumptions

To maximize the reliability of null hypotheses tests, the following assumptions

apply:

(i) linearity - simple linear regression models a linear (straight-line) relationship and thus it

is important to establish whether or not some other curved relationship represents the

trends better. Scatterplots are useful for exploring linearity.

(ii) normality - the populations from which the single responses were collected per level of

the predictor variable are assumed to be normally distributed. Boxplots of the response

variable (and predictor if it was measured rather than set) should be used to explore

normality.
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(iii) homogeneity of variance - the populations from which the single responses were

collected per level of the predictor variable are assumed to be equally varied. With only

a single representative of each population per level of the predictor variable, this can

only be explored by examining the spread of responses around the fitted regression line.

In particular, increasing spread along the regression line would suggest a relationship

between population mean and variance (which must be independent to ensure unbiased

parameter estimates). This can also be diagnosed with a residual plot.

8.2.4 Multiple responses for each level of the predictor

Simple linear regression assumes linearity and investigates whether there is a relation-

ship between a response and predictor variable. In so doing, it is relying on single

response values at each level of the predictor being good representatives of their

respective populations. Having multiple independent replicates of each population

from which a mean can be calculated thereby provides better data from which to

investigate a relationship. Furthermore, the presence of replicates of the populations at

each level of the predictor variable enables us to establish whether or not the observed

responses differ significantly from their predicted values along a linear regression line

and thus to investigate whether the population relationship is linear versus some other

curvilinear relationship. Analysis of such data is equivalent to ANOVAwith polynomial

contrasts (see section 10.6).

8.2.5 Model I and II regression

The ordinary least squares (OLS, or model I regression) fits a line that minimizes

the vertical spread of values around the line and is the standard regression procedure.

Regression was originally devised to explore the nature of relationship between a

measured dependent variable and an independent variable of which the levels where

specifically set (and thus controlled) by the researcher to represent a uniform range of

possibilities. As the independent variable is set (fixed) rather than measured, there is no

uncertainty or error in the y values. The coordinates predicted (by the linear model) for

any given observation must therefore lie in a vertical plane around the observed coordi-

nates (see Figure 8.4a). The difference between anobserved value and its predicted value

is called a residual. Hence, OLS regression minimizes the sum of the squaredd residuals.

Model II regression refers to a family of line fitting procedures that acknowledge

and incorporate uncertainty in both response and predictor variables and primarily

describe the first major axis through a bivariate normal distribution (see Table 8.1 and

Figure 8.4). These techniques generate better parameter estimates (such as population

slope) than model I regression when the levels of the predictor variable are measured,

however, they are only necessary for situations in which the parameter estimates are

the main interest of the analysis. For example, when performing regression analysis

d Residuals are squared to remove negatives. Since the regression line is fitted exactly through the

middle of the cloud of points, some points will be above this line (+ve residuals) and some points

will be below (-ve residuals) and therefore the sum of the residuals will equal exactly zero.
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Fig 8.4 Fictitious data illustrating the differences between (a) ordinary least squares, (b) major

axis and (c) reduced major axis regression. Each are also contrasted in (d) along with a depiction

of ordinary least squares regression for X against Y. Note that the fitted line for all techniques

passes through the center mean of the data cloud. When the X and Y are measured on the same

scale, MA and RMA are the same.

to estimate the slope in allometric scaling relationships or to compare slopes between

models.

Major axis (MA) minimizes the sum square of the perpendicular spread from the

regression line (Figure 8.4c) and thus the predicted values line in a perpendicular

planes from the regression line. Although this technique incorporates uncertainty in

both response and predictor variable, it assumes that the degree of uncertainty is the

same on both axes (1:1 ratio) and is therefore only appropriate when both variables

are measured on the same scale and with the same units. Ranged major axis (Ranged

MA) is a modification of major axis regression in which MA regression is performed

on variables that are pre-standardized by their ranges (Figure 8.4d) and the resulting

parameters are then returned to their original scales. Alternatively,Reducedmajor axis

(RMA)minimizes the sum squared triangular areas bounded by the observations and

the regression line (Figure 8.4e) thereby incorporating all possible ratios of uncertainty

between the response and predictor variables. For this technique, the estimated slope

is the average of the slope from a regression of y against x and the inverse of the slope

of x against y.
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Table 8.1 Comparison of the situations in which the different regression methods are suitable.

Method

Ordinary least squares (OLS)

• When there is no uncertainty in IV (levels set not measured) or uncertainty in IV �

uncertainty in DV

• When testing H0 : β1 = 0 (no linear relationship between DV and IV)

• When generating predictive models from which new values of DV are predicted from given

values of IV . Since we rarely have estimates of uncertainty in our new predictor values (and

thus must assume there is no uncertainty), predictions likewise must be based on predictive

models developed with the assumption of no uncertainty. Note, if there is uncertainty in IV ,

standard errors and confidence intervals inappropriate.

• When distribution is not bivariate normal

> summary(lm(DV~IV, data))

Major axis (MA)

• When a good estimate of the population parameters (slope) is required AND

• When distribution is bivariate normal (IV levels not set) AND

• When error variance (uncertainty) in IV and DV equal (typically because variables in same

units or dimensionless)

> library(biology)

> summary(lm.II(DV~IV, data, method=’MA’))

Ranged Major axis (Ranged MA)

• When a good estimate of the population parameters (slope) is required AND

• When distribution is bivariate normal (IV levels not set) AND

• When error variances are proportional to variable variances AND

• There are no outliers

> library(biology)

> #For variables whose theoretical minimum is arbitrary

> summary(lm.II(DV~IV, data, method=’rMA’))

> #OR for variables whose theoretical minimum must be zero

> #such as ratios, scaled variables & abundances

> summary(lm.II(DV~IV, data, method=’rMA’, zero=T))

Reduced major axis (RMA) or Standard major axis (SMA)

• When a good estimate of the population parameters (slope) is required AND

• When distribution is bivariate normal (IV levels not set) AND

• When error variances are proportional to variable variances AND

• When there is a significant correlation r between IV and DV

> library(biology)

> summary(lm.II(DV~IV, data, method=’RMA’))

Modified from Legendre (2001).
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8.2.6 Regression diagnostics

As part of linear model fitting, a suite of diagnostic measures can be calculated each of

which provide an indication of the appropriateness of the model for the data and the

indication of each points influence (and outlyingness) of each point on resulting the

model.

Leverage

Leverage is a measure of how much of an outlier each point is in x-space (on x-axis)

and thus only applies to the predictor variable. Values greater than 2 ∗ p/n (where

p=number of model parameters (p = 2 for simple linear regression), and n is the

number of observations) should be investigated as potential outliers.

Residuals

As the residuals are the differences between the observed and predicted values along a

vertical plane, they provide ameasure of howmuch of an outlier each point is in y-space

(on y-axis). Outliers are identified by relatively large residual values. Residuals can also

standardized and studentized, the latter of which can be compared across different

models and follow a t distribution enabling the probability of obtaining a given residual

can be determined. The patterns of residuals against predicted y values (residual plot)

are also useful diagnostic tools for investigating linearity and homogeneity of variance

assumptions (see Figure 8.5).

Cook’s D

Cook’s D statistic is a measure of the influence of each point on the fitted model

(estimated slope) and incorporates both leverage and residuals. Values ≥ 1 (or even

approaching 1) correspond to highly influential observations.

8.2.7 Robust regression

There are a range of model fitting procedures that are less sensitive to outliers and

underlying error distributions. Huber M-estimators fit linear models by minimizing

the sum of differentially weighted residuals. Small residuals (weakly influential) are

squared and summed as for OLS, whereas residuals over a preselected critical size

(more influential) are incorporated as the sum of the absolute residual values. A useful

non-parametric test is the Theil-Sen single median (Kendall’s robust) method which

estimates the population slope (β1) as the median of the n(n− 1)/2 possible slopes

(b1) between each pair of observations and the population intercept (β0) is estimated

as the median of the n intercepts calculated by solving y − b1x for each observation.

A more robust, yet complex procedure (Siegel repeated medians) estimates β1 and

β0 as the median of the n median of the n− 1 slopes and intercepts respectively

between each point and all others. Randomization tests compare the statistic (b1) to
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Fig 8.5 Stylised residual plots depicting characteristic patterns of residuals (a) random scatter

of points - homogeneity of variance and linearity met (b) ‘‘wedge-shaped’’ - homogeneity of

variance not met (c) linear pattern remaining - erroneously calculated residuals or additional

variable(s) required and (d) curved pattern remaining - linear function applied to a curvilinear

relationship. Modified from Zar (1999).

a unique probability distribution that is generated by repeatedly reshuffling one of

the variables and recalculating the test statistic. As a result, they do not impose any

distributional requirements on the data. Randomization tests are particularly useful

for analysing data that could not be collected randomly or haphazardly as they test

whether the patterns in the data could occur by chance rather than specifically testing

hypotheses about populations. As a result, technically any conclusions pertain only

to the collected observations and not to the populations from which the observations

were collected.

8.2.8 Power and sample size determination

Although interpreted differently, the tests H0 : ρ = 0 and H0 : β1 = 0 (population

correlation and slope respectively equal zero) are statistically equivalent. Therefore

power analyses to determine sample size required for null hypothesis rejection for both

correlation and regression are identical and based on r (correlation coefficient), which
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from regression analyses, can be obtained from the coefficient of determination (r2) or

as r = b
�

�

x2/
�

y2.

8.3 Smoothers and local regression

Smoothers fit simple models (such as linear regression) through successive localized

subsets of the data to describe the nature of relationships between a response variable

and one or more predictor variables for each point in a data cloud. Importantly, these

techniques do not require the data to conform to a particular global model structure

(e.g. linear, exponential, etc). Essentially, smoothers generate a line (or surface) through

the data cloud by replacing each observation with a new value that is predicted from

the subset of observations immediately surrounding the original observation. The

subset of neighbouring observations surrounding an observation is known as a band

or window and the larger the bandwidth, the greater the degree of smoothing.

Smoothers can be used as graphical representations as well as to model (local

regression) the nature of relationships between response and predictor variables in a

manner analogous to linear regression. Different smoothers differ in the manner by

which the predicted values are created.

• running medians (or less robust running means) generate predicted values that are the

medians of the responses in the bands surrounding each observation.

• loess and lowesse (locally weighted scatterplot smoothing) - fit least squares regression

lines to successive subsets of the observations weighted according to their distance from

the target observation and thus depict changes in the trends throughout the data cloud.

• kernel smoothers - new smoothed y-values are computed as the weighted averages of

points within a defined window (bandwidth) or neighbourhood of the original x-values.

Hence the bandwidth depends on the scale of the x-axis. Weightings are determined by the

type of kernel smoother specified, and for. Nevertheless, the larger the window, the greater

the degree of smoothing.

• splines - join together a series of polynomial fits that have been generated after the entire

data cloud is split up into a number of smaller windows, the widths of which determine

the smoothness of the resulting piecewise polynomial.

Whilst the above smoothers provide valuable exploratory tools, they also form the

basis of the formal model fitting procedures supported via generalized additive models

(GAMs, see chapter 17).

8.4 Correlation and regression in R

Simple correlation and regression in R are performed using the cor.test() and lm()

functions. The mblm() and rlm() functions offer a range of non-parametric regression

e Lowess and loess functions are similar in that they both fit linear models through localizations of

the data. They differ in in that loess uses weighted quadratic least squares and lowess uses weighted

linear least squares. They also differ in how they determine the data spanning (neighborhood of

points regression model fitted to), and in that loess smoothers can fit surfaces and thus accomodate

multivariate data.
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Table 8.2 Smoothing function within R. For each of the following, DV is the response variable

within the data dataset. Smoothers are plotted on scatterplots by using the smoother function

as the response variable in the points() function (e.g. points(runmed(DV)~IV, data,

type=’l’)).

Smoothera Syntax

Running median > runmed(data$DV,k)

where k is an odd number that defines the bandwidth of the window

and if k omitted, defaults to either Turlach or Struetzle breaking

algorithms depending on data size (Turlack for larger)

Loess > loess(DV~IV1+IV2+..., data, span=0.75)

where IV1, IV2 represent one or more predictor variables and span

controls the degree of smoothing

Lowess > lowess(data$IV, data$DV, f=2/3)

where IV represents the predictor variable and f controls the degree of

smoothing

Kernel > ksmooth(data$IV, data$DV, kernel="normal",

bandwidth=0.5)

where IV represents the predictor variable, kernel represents the

smoothing kernel (box or normal) and bandwidth is the

smoothing bandwidth

> density(data$DV, bw="nrd0", adjust=1)

where IV represents the predictor variable and bw and adjust

‘‘nrd0’’ the smoothing bandwidth and course bandwidth multiplier

respectively. Information on the alternative smoothing bandwidth

selectors for gaussian (normal) windows is obtained by typing

?bw.nrd

Splines > data.spl<-smooth.spline(data$IV, data$DV, spar)

> points(y~x, data.spl, type=’l’)

where IV represents the predictor variable and spar is the smoothing

coeficient, typically between 0 and 1.

aNote, there are many other functions and packages that facilitate alternatives to the smoothing functions listed here.

alternatives. Model II regressions are facilitated via the lm.II() function and the

common smoothing functions available in R are described in Table 8.2.

8.5 Further reading

• Theory

Fowler, J., L. Cohen, and P. Jarvis. (1998). Practical statistics for field biology. John

Wiley & Sons, England.

Hollander, M., and D. A. Wolfe. (1999). Nonparametric statistical methods, 2nd

edition. John Wiley & Sons, New York.

Manly, B. F. J. (1991).Randomization andMonte Carlo methods in biology. Chapman

& Hall, London.
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Quinn, G. P., and K. J. Keough. (2002). Experimental design and data analysis for

biologists. Cambridge University Press, London.

Sokal, R., andF. J. Rohlf. (1997).Biometry, 3rd edition.W.H. Freeman, SanFrancisco.

Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.

• Practical - R

Crawley, M. J. (2007). The R Book. John Wiley, New York.

Dalgaard, P. (2002). Introductory Statistics with R. Springer-Verlag, New York.

Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Sage Books.

Maindonald, J. H., and J. Braun. (2003). Data Analysis and Graphics Using R - An

Example-based Approach. Cambridge University Press, London.

8.6 Key for correlation and regression

1 a. Neither variable has been set (they are both measured) AND there is no implied

causality between the variables (Correlation) . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 2

b. Either one of the variables has been specifically set (not measured) OR there is an

implied causality between the variables whereby one variable could influence the

other but the reverse is unlikely (Regression) . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 4

2 a. Check parametric assumptions for correlation analysis

• Bivariate normality of the response/predictor variables - marginal scatterplot

boxplots

> library(car)

> scatterplot(V1 ~ V2, dataset)

where V1 and V2 are the continuous variables in the dataset data frame

• Linearity of data points on a scatterplot, trendline and lowess smoother

useful

> library(car)

> scatterplot(V1 ~ V2, dataset, reg.line = F)

where V1 and V2 are the continuous variables in the dataset data frame and

reg.line=F excludes the misleading regression line from the plot

Parametric assumptionsmet (Pearson correlation) . . . . . . . . . . . . . See Example 8A

> corr.test(~V1 + V2, data = dataset)

where V1 and V2 are the continuous variables in the dataset data frame

For a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

b. Parametric assumptions NOT met or scale transformations (see Table 3.2) not

successful or inappropriate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 3

3 a. Sample size between 7 and 30 (Spearman rank correlation) . . . . . . See Example 8B

> cor.test(~V1 + V2, data = dataset, method = "spearman")

where V1 and V2 are the continuous variables in the dataset data frame

For a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

b. Sample size> 30 (Kendall’s tao correlation)

> cor.test(~V1 + V2, data = dataset, method = "kendall")
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where V1 and V2 are the continuous variables in the dataset data frame

For a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

4 a. Check parametric assumptions for regression analysis

• Normality of the response variable (and predictor variable if measured) -

marginal scatterplot boxplots

• Homogeneity of variance - spread of data around scatterplot trendline

• Linearity of data points on a scatterplot, trendline and lowess smoother useful

> library(car)

> scatterplot(DV ~ IV, dataset)

where DV and IV are response and predictor variables respectively in the dataset

data frame
Parametric assumptionsmet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 5

b. Parametric assumptions NOT met or scale transformations (see Table 3.2) not

successful or inappropriate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 7

5 a. Levels of predictor variable set (not measured) - no uncertainty in predictor

variable OR the primary aim of the analysis is:

• hypothesis testing (H0 : β1 = 0)

• generating a predictive model (y = β0 + β1x)

(Ordinary least squares (OLS) regression) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6

b. Levels of predictor variable NOT set (they are measured) AND the main aim

of the analysis is to estimate the population slope of the relationship (Model II

regression) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 8F

> library(biology)

> data.lm <- lm.II(DV ~ IV, christ, type = "RMA")

> summary(data.lm)

where DV and IV are response and predictor variables respectively in the dataset data

frame. type can be one of "MA", "RMA", "rMA" or "OLS". For type="rMA", it is also

possible to force a minimum response of zero (zero=T).

To produce a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

6 a. Single response value for each level of the predictor variable . . . . . . . . . . . . . . . . See

Examples 8C&8D

> dataset.lm <- lm(IV ~ DV, dataset)

> plot(dataset.lm)

> influence.measures(dataset.lm)

> summary(dataset.lm)

where DV and IV are response and predictor variables respectively in the dataset data

frame.

To get parameter confidence intervals f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 10

To predict new values of the response variable . . . . . . . . . . . . . . . . . . . . . . . . . Go to 11

To produce a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

b. Multiple response values for each level of the predictor variable . . . . . . . . . . . . . See

Examples 8E

> anova(lm(DV ~ IV + as.factor(IV), dataset))

f If there is uncertainty in the predictor variable, parameter confidence intervals might be inappro-

priate.



182 CHAPTER 8

• Pooled residual term

> dataset.lm <- lm(DV ~ IV, dataset)

> summary(dataset.lm)

• Non-pooled residual term

> dataset.lm <- aov(DV ~ IV + Error(as.factor(IV)), dataset)

> summary(dataset.lm)

> lm(DV ~ IV, dataset)

where DV and IV are response and predictor variables respectively in the dataset data

frame.

7 a. Observations collected randomly/haphazardly, no reason to suspect

non-independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 8

b. Random/haphazard sampling not possible, observations not necessarily indepen-

dent (Randomization test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 8H

> stat <- function(data, index) {

+ summary(lm(DV ~ IV, data))$coef[2, 3]

+ }

> rand.gen <- function(data, mle) {

+ out <- data

+ out$IV <- sample(out$IV, replace = F)

+ out

+ }

> library(boot)

> dataset.boot <- boot(dataset, stat, R = 5000,

+ sim = "parametric", ran.gen = rand.gen)

> plot(dataset.boot)

> dataset.boot

where DV and IV are response and predictor variables respectively in the dataset data

frame.

To get parameter confidence intervalsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 10

To predict new values of the response variable . . . . . . . . . . . . . . . . . . . . . . . . . Go to 11

To produce a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

8 a. Mild non-normality duemainly to outliers (influential obseravations), data linear

(M-regression)

> library(MASS)

> data.rlm <- rlm(DV ~ IV, dataset)

where DV and IV are response and predictor variables respectively in the dataset data

frame.

To get parameter confidence intervalsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

To predict new values of the response variable . . . . . . . . . . . . . . . . . . . . . . . . . Go to 11

To produce a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 10

g If there is uncertainty in the predictor variable, parameter confidence intervals might be inappro-

priate.
h If there is uncertainty in the predictor variable, parameter confidence intervals might be inappro-

priate.
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b. Data non-normal and/or non-linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 9

9 a. Binary response (e.g. dead/alive, present/absent) . . . . . . Logistic Regression

chapter 17

b. Underlying distribution of response variable and residuals is known . . . . . . GLM

chapter 17

c. Data curvilinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non-linear regression chapter 9

d. Data monotonic non-linear (nonparametric regression) . . . . . . . . See Example 8G

• Theil-Sen single median (Kendall’s) robust regression

> library(mblm)

> data.mblm <- mblm(DV ~ IV, dataset, repeated = F)

> summary(data.mblm)

• Siegel repeated medians regression

> library(mblm)

> data.mblm <- mblm(DV ~ IV, dataset, repeated = T)

> summary(data.mblm)

where DV and IV are response and predictor variables respectively in the dataset data

frame.

To get parameter confidence intervalsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

To predict new values of the response variable . . . . . . . . . . . . . . . . . . . . . . . . . Go to 11

To produce a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 10

10 Generating parameter confidence intervals . . . . . . . . . . . . . . . . . . See Example 8C&8G

> confint(model, level = 0.95)

where model is a fitted model

To get randomization parameter estimates and their confidence intervals . . . . . . . . See

Example 8H

> par.boot <- function(dataset, index) {

+ x <- dataset$ALT[index]

+ y <- dataset$HK[index]

+ model <- lm(y ~ x)

+ coef(model)

+ }

> dataset.boot <- boot(dataset, par.boot, R = 5000)

> boot.ci(dataset.boot, index = 2)

where dataset is the data.frame. The optional argument (R=5000) indicates 5000

randomizations and the optional argument (index=2) indicates which parameter to

generate confidence intervals for (y-intercept=1, slope=2). Note the use of the lm()

function for the parameter estimations and could be replaced by robust alternatives such as

rlm() or mblm().

11 Generating new response values (and corresponding prediction intervals) . . . . . See

Example 8C&8D

> predict(model, data.frame(IV = c()), interval = "p")

i If there is uncertainty in the predictor variable, parameter confidence intervals might be inappro-

priate.
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where model is a fitted model and IV is the predictor variable and c() is a vector of new

predictor values (e.g. c(10,13.4))

To get randomization prediction intervals . . . . . . . . . . . . . . . . . . . . . . . . See Example 8H

> pred.boot <- function(dataset, index) {

+ dataset.rs <- dataset[index, ]

+ dataset.lm <- lm(HK ~ ALT, dataset.rs)

+ predict(dataset.lm, data.frame(ALT = 1))

+ }

> dataset.boot <- boot(dataset, pred.boot, R = 5000)

> boot.ci(dataset.boot)

where dataset is the name of the data frame. Note the use of the lm() function for the

parameter estimations. This could be replaced by robust alternatives such as rlm() or

mblm().

12 Base summary plot for correlation or regression . . . . . . See Example 8B&8C&8D&8F

> plot(V1 ~ V2, data, pch = 16, axes = F, xlab = "", ylab = "")

> axis(1, cex.axis = 0.8)

> mtext(text = "x-axis title", side = 1, line = 3)

> axis(2, las = 1)

> mtext(text = "y-axis title", side = 2, line = 3)

> box(bty = "l")

where V1 and V2 are the continuous variables in the dataset data frame. For regression,

V1 represents the response variable and V2 represents the predictor variable.

Adding confidence ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 8B

> data.ellipse(V2, V1, levels = 0.95, add = T)

Adding regression line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 8C

> abline(model)

where model represents a fitted regression model

Adding regression confidence intervals . . . . . . . . . . . . . . . . . . . . . . See Example 8C&8D

> x <- seq(min(IV), max(IV), l = 1000)

> y <- predict(object, data.frame(IV = x), interval = "c")

> matlines(x, y, lty = 1, col = 1)

where IV is the name of the predictor variable (including the dataframe) model represents

a fitted regression model

8.7 Worked examples of real biological data sets

Example 8A: Pearson’s product moment correlation

Sokal and Rohlf (1997) present an unpublished data set (L. Miller) in which the correlation

between gill weight and body weight of the crab (Pachygrapsus crassipes) is investigated.
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Step 1 - Import (section 2.3) the crabs data set

> crabs <- read.table("crabs.csv", header = T, sep = ",")

Step 2 (Key 8.2) - Assess linearity and bivariate normality using a scatterplot with marginal

boxplots

> library(car)

> scatterplot(GILLWT ~ BODYWT, data = crabs, reg.line = F)
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Conclusions - data not obviously

nonlinear and no evidence of non-

normality (boxplots not asymmetrical)

Step 3 (Key 8.2a) - Calculate the Pearson’s correlation coefficient and test H0 : ρ = 0 (that the

population correlation coefficient equals zero).

> cor.test(~GILLWT + BODYWT, data = crabs)

Pearson's product-moment correlation

data: GILLWT and BODYWT

t = 5.4544, df = 10, p-value = 0.0002791

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.5783780 0.9615951

sample estimates:

cor

0.8651189

Conclusions - reject H0 that population correlation coefficient equals zero, there was

a strong positive correlation between crab weight and gill weight (r = 0.865, t10 = 5.45,

P < 0.001).
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Example 8B: Spearman rank correlation

Green (1997) investigated the correlation between total biomass of red land crabs (Gecar-

coidea natalis and the density of their burrows at a number of forested sites (Lower site: LS

and Drumsite: DS) on Christmas Island.

Step 1 - Import (section 2.3) the Green (1997) data set

> green <- read.table("green.csv", header = T, sep = ",")

Step 2 (Key 8.2) - Assess linearity and bivariate normality for the two sites separately using a

scatterplots with marginal boxplots

> library(car)

> scatterplot(BURROWS ~ TOTMASS,

+ data = green, subset =

+ SITE == "LS",

+ reg.line = F)
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> library(car)

> scatterplot(BURROWS ~ TOTMASS,

+ data = green, subset =

+ SITE == "DS",

+ reg.line = F)
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Conclusions - some evidence of non-normality (boxplots not asymmetrical)

Step 3 (Key 8.3a) - Calculate the Spearman’s rank correlation coefficient and test H0 : ρ = 0

(that the population correlation coefficient equals zero).

> cor.test(~BURROWS + TOTMASS, data = green, subset = SITE ==

+ "LS", method = "spearman")

Spearman's rank correlation rho

data: BURROWS and TOTMASS

S = 24.5738, p-value = 0.001791

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.8510678
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Conclusions - reject H0 that population correlation coefficient equals zero, there was a strong

positive correlation between crab biomass and burrow density at Low site (ρ = 0.851, S10 =

24.57, P = 0.0018).

> cor.test(~BURROWS + TOTMASS, data = green, subset = SITE ==

+ "DS", method = "spearman")

Spearman's rank correlation rho

data: BURROWS and TOTMASS

S = 69.9159, p-value = 0.6915

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.1676677

Conclusions - do not reject H0 that population correlation coefficient equals zero, there was

no detectable correlation between crab weight and gill weight at Drumsite (ρ = 0.168, S10 =

69.92, P = 0.692).

Step 4 (Key 8.12) - Summarize findings with scatterplots (section 5.8.1), including 95%

confidence ellipses for the population bivariate mean center. The following also indicate two

alternative ways to specify a subset of a dataframe.

> plot(BURROWS ~ TOTMASS,

+ data = green, subset =

+ SITE == "LS",

+ xlim = c(0,

+ 8), ylim = c(0,

+ 80))

> with(subset(green, SITE ==

+ "LS"), data.ellipse

+ (TOTMASS,

+ BURROWS, levels = 0.95,

+ add = T))
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> plot(BURROWS ~ TOTMASS,

+ data = green, subset =

+ SITE == "DS",

+ xlim = c(0,

+ 8), ylim = c(0,

+ 150))

> with(subset(green, SITE ==

+ "DS"), data.ellipse

+ (TOTMASS,

+ BURROWS, levels = 0.95,

+ add = T))
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Example 8C: Simple linear regression - fixed X

As part of a Ph.D into the effects of starvation and humidity on water loss in the confused flour

beetle (Tribolium confusum), Nelson (1964) investigated the linear relationship between

humidity and water loss by measuring the amount of water loss (mg) by nine batches of

beetles kept at different relative humidities (ranging from 0 to 93%) for a period of six days

(Table 14.1 Sokal and Rohlf (1997)).

Step 1 - Import (section 2.3) the Nelson (1964) data set

> nelson <- read.table("nelson.csv", header = T, sep = ",")

Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot

with marginal boxplots and a lowess smoother.

> library(car)

> scatterplot(WEIGHTLOSS ~ HUMIDITY, data = nelson)
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Conclusions - no evidence of non-

normality (boxplots not overly asym-

metrical), non homogeneity of variance

(points do not become progressively

more or less spread out along the

regression line) or non-linearity.

Step 3 (Key 8.5a) - the ordinary least squares method is considered appropriate as the there is

effectively no uncertainty (error) in the predictor variable (relative humidity).

Step 4 (Key 8.6a) - fit the simple linear regression model (yi = β0 + β1xi) and examine the

diagnostics.

> nelson.lm <- lm(WEIGHTLOSS ~ HUMIDITY, nelson)

> plot(nelson.lm)
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Conclusions - There is

no obvious ‘‘wedge’’ pat-

tern evident in the residual

plot (confirming that the

assumption of homogene-

ity of variance is likely to

be met). Although there is

some deviation in the Q-

Q normal plot (suggesting

that the response variable

does deviate from normal),

the sample size is rather

small and the test is reason-

ably robust to such devia-

tions. Finally, none of the

points approach the high

Cook’s D contours suggest-

ing that none of the obser-

vations are overly influential

on the final fitted model.

> influence.measures(nelson.lm)

Influence measures of

lm(formula = WEIGHTLOSS ~ HUMIDITY, data = nelson) :

dfb.1_ dfb.HUMI dffit cov.r cook.d hat inf

1 1.07457 -0.92033 1.07457 1.449 5.31e-01 0.417 *

2 0.17562 -0.13885 0.17705 1.865 1.81e-02 0.289 *

3 -0.83600 0.52023 -0.91800 0.552 2.86e-01 0.164

4 -0.32184 0.10806 -0.45713 0.970 9.67e-02 0.118

5 0.00868 0.00169 0.01969 1.531 2.26e-04 0.112

6 0.11994 0.27382 0.73924 0.598 1.97e-01 0.129

7 0.00141 -0.00609 -0.00956 1.674 5.33e-05 0.187

8 -0.01276 0.03163 0.04208 1.825 1.03e-03 0.255

9 0.03662 -0.07495 -0.09204 2.019 4.93e-03 0.330 *

Conclusions - None of the leverage (hat) values are greater than 2 ∗ p/n = 0.444 and therefore

(none are considered to be outliers in x-space). Furthermore, none of the Cook’s D values are

≥ 1 (no point is overly influential). Hence there is no evidence that hypothesis tests will be

unreliable.
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Step 5 (Key 8.6a) - examine the parameter estimates and hypothesis tests (Boxes 14.1 & 14.3

of Sokal and Rohlf (1997)).

> summary(nelson.lm)

Call:

lm(formula = WEIGHTLOSS ~ HUMIDITY, data = nelson)

Residuals:

Min 1Q Median 3Q Max

-0.46397 -0.03437 0.01675 0.07464 0.45236

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.704027 0.191565 45.44 6.54e-10 ***

HUMIDITY -0.053222 0.003256 -16.35 7.82e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2967 on 7 degrees of freedom

Multiple R-squared: 0.9745, Adjusted R-squared: 0.9708

F-statistic: 267.2 on 1 and 7 DF, p-value: 7.816e-07

Conclusions - Reject H0 that the population slope equals zero. An increase in relative humidity

was found to be associated with a strong (r2 = 0.975), significant decrease in weight loss

(b = −0.053, t7 = −16.35, P < 0.001) in confused flour beetles.

Step 6 (Key 8.10) - calculate the 95% confidence limits for the regression coefficients (Box

14.3 of Sokal and Rohlf (1997)).

> confint(nelson.lm)

2.5 % 97.5 %

(Intercept) 8.25104923 9.15700538

HUMIDITY -0.06092143 -0.04552287

Step 7 (Key 8.11) - use the fitted linear model to predict the mean weight loss of flour beetles

expected at 50 and 100% relative humidity (Box 14.3 of Sokal and Rohlf (1997)).

> predict(nelson.lm, data.frame(HUMIDITY = c(50, 100)),

+ interval = "prediction", se = T)

$fit

fit lwr upr

1 6.042920 5.303471 6.782368

2 3.381812 2.549540 4.214084

$se.fit

1 2

0.0988958 0.1894001
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$df

[1] 7

$residual.scale

[1] 0.2966631

Step 8 (Key 8.12) - summarize the findings of the linear regression analysis with a scatterplot

including the regression line, regression equation and r2.

> #create a plot with solid dots (pch=16) and no axis or labels

> plot(WEIGHTLOSS~HUMIDITY, data=nelson, pch=16, axes=F, xlab="",

ylab="")

> #put the x-axis (axis 1) with smaller label font size

> axis(1, cex.axis=.8)

> #put the x-axis label 3 lines down from the axis

> mtext(text="% Relative humidity", side=1, line=3)

> #put the y-axis (axis 2) with horizontal tick labels

> axis(2, las=1)

> #put the y-axis label 3 lines to the left of the axis

> mtext(text="Weight loss (mg)", side=2, line=3)

> #add the regression line from the fitted model

> abline(nelson.lm)

> #add the regression formula

> text(99,9,"WEIGHTLOSS = -0.053HUMIDITY + 8.704", pos=2)

> #add the r squared value

> text(99,8.6,expression(paste(r^2==0.975)), pos=2)

> #create a sequence of 1000 numbers spanning the range of

humidities

> x <- seq(min(nelson$HUMIDITY), max(nelson$HUMIDITY),l=1000)

> #for each value of x, calculate the upper and lower 95%

confidence

> y<-predict(nelson.lm, data.frame(HUMIDITY=x), interval="c")

> #plot the upper and lower 95% confidence limits

> matlines(x,y, lty=1, col=1)

> #put an L-shaped box to complete the axis

> box(bty="l")
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Example 8D: Simple linear regression - random X

To investigated the nature of abundance-area relationships for invertebrates in intertidal

mussel clumps, Peake and Quinn (1993) measured area (mm2) (dependent variable: AREA)

and number of non-mussel individuals supported (response variable: INDIV) from a total of

25 intertidal mussel clumps(from Box 5.4 of Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Peake and Quinn (1993) data set

> peake <- read.table("peake.csv", header = T, sep = ",")

Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot

with marginal boxplots and a lowess smoother.

> library(car)

> scatterplot(INDIV ~ AREA,

+ data = peake)
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> library(car)

> scatterplot(log10(INDIV) ~

+ log10(AREA), data = peake)
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Conclusions - scatterplot of raw data (left figure) indicates evidence of non-normality (boxplots

not symmetrical) and evidence that homogeneity of variance my also be violated (points become

more spread along the line of the regression line). Data transformed to logarithms (base 10)

appear to meet the assumptions of normality and homogeneity of variance better (right figure).

Linearity of the log-log relationship also appears reasonable.

Step 3 (Key 8.5a) - the ordinary least squares method is considered appropriate as the main

focus will be on hypothesis testing and generating a predictive model.

Step 4 (Key 8.6) - fit the simple linear regression model (yi = β0 + β1xi) and examine the

diagnostics.

> peake.lm <- lm(INDIV ~ AREA, data = peake)

> plot(peake.lm)
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Conclusions - There is a defi-

nite ‘‘wedge’’ pattern evident in

the residual plot which is indicative

of a problem with homogeneity of

variance. The Q-Q normal plot con-

firms that the response variable does

deviate from normal. One of the

points (observation 25, obscured

by the legend) is close to the higher

Cook’s D contours suggesting that

this observation may be overly influ-

ential on the final fitted model.

> peake.lm <- lm(log10(INDIV) ~ log10(AREA), data = peake)

> plot(peake.lm)
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Conclusions - The residual plot

resulting from a model based on log

transformed data does not depict an

obvious ‘‘wedge’’, the Q-Q normal

plot indicates a greater degree of

normality and non of the points

are close to the higher Cook’s D

contours. This confirms that it is

more appropriate to fit the linear

model using the log transformed

data.

> influence.measures(peake.lm)

Influence measures of

lm(formula = log10(INDIV) ~ log10(AREA), data = peake) :

dfb.1_ dfb.l10. dffit cov.r cook.d hat inf

1 -1.202012 1.12137 -1.2929 0.670 0.626553 0.1615 *

2 0.310855 -0.29097 0.3319 1.260 0.056245 0.1727

3 0.269684 -0.25255 0.2877 1.278 0.042502 0.1745 *

4 0.153477 -0.13896 0.1781 1.187 0.016366 0.1023

5 -0.484207 0.42414 -0.6182 0.804 0.164749 0.0756
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6 -0.062392 0.05251 -0.0897 1.151 0.004183 0.0608

7 0.052830 -0.04487 0.0739 1.158 0.002846 0.0633

8 0.187514 -0.15760 0.2707 1.052 0.036423 0.0605

9 0.006384 -0.00416 0.0164 1.141 0.000140 0.0428

10 0.004787 -0.00131 0.0244 1.137 0.000311 0.0401

11 0.013583 0.00419 0.1238 1.101 0.007882 0.0400

12 -0.003011 -0.00112 -0.0287 1.137 0.000432 0.0401

13 0.000247 0.00259 0.0198 1.138 0.000204 0.0407

14 -0.003734 -0.00138 -0.0356 1.135 0.000662 0.0401

15 -0.015811 0.05024 0.2419 1.013 0.028826 0.0418

16 -0.017200 0.02518 0.0595 1.142 0.001842 0.0487

17 -0.061445 0.09368 0.2375 1.038 0.028033 0.0474

18 -0.025317 0.03314 0.0619 1.151 0.001995 0.0561

19 -0.146377 0.18521 0.3173 1.015 0.049144 0.0607

20 0.100361 -0.13065 -0.2406 1.064 0.028981 0.0567

21 -0.263549 0.31302 0.4496 0.963 0.095261 0.0776

22 0.263206 -0.29948 -0.3786 1.101 0.071044 0.1069

23 0.043182 -0.04845 -0.0588 1.246 0.001804 0.1248

24 0.167829 -0.18726 -0.2236 1.226 0.025747 0.1341

25 0.545842 -0.61039 -0.7334 0.929 0.241660 0.1302

Conclusions - Whilst three leverage (hat) values are greater than 2 ∗ p/n = 0.16 (obser-

vations 1, 2 and 3) and therefore potentially outliers in x-space, none of the Cook’s D

values are ≥ 1 (no point is overly influential). No evidence that hypothesis tests will be

unreliable.

Step 5 (Key 8.6a) - examine the parameter estimates and hypothesis tests.

> summary(peake.lm)

Call:

lm(formula = log10(INDIV) ~ log10(AREA), data = peake)

Residuals:

Min 1Q Median 3Q Max

-0.43355 -0.06464 0.02219 0.11178 0.26818

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.57601 0.25904 -2.224 0.0363 *

log10(AREA) 0.83492 0.07066 11.816 3.01e-11 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1856 on 23 degrees of freedom

Multiple R-squared: 0.8586, Adjusted R-squared: 0.8524

F-statistic: 139.6 on 1 and 23 DF, p-value: 3.007e-11
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Conclusions - Reject H0 that the population slope equals zero. An increase in (log) mussel

clump area was found to be associated with a strong (r2 = 0.859), significant increase in the

(log) number of supported invertebrate individuals (b = 0.835, t23 = 11.816, P < 0.001).

Step 6 (Key 8.12) - summarize the findings of the linear regression analysis with a scatterplot

including the regression line, regression equation and r2.

> #create a plot with solid dots (pch=16) and no axis or labels}

> plot(INDIV~AREA, data=peake, pch=16, axes=F, xlab="", ylab="",

log="xy")

> #put the x-axis (axis 1) with smaller label font size

> axis(1, cex.axis=.8)

> #put the x-axis label 3 lines down from the axis

> mtext(text=expression(paste("Mussel clump area", (mm^2))),

side=1, line=3)

> #put the y-axis (axis 2) with horizontal tick labels

> axis(2, las=1)

> #put the y-axis label 3 lines to the left of the axis

> mtext(text="Number of individuals", side=2, line=3)

> #add the regression line from the fitted model

> abline(peake.lm)

> #add the regression formula

> text(30000, 30, expression(paste(log[10], "INDIV = 0.835",

+ log[10], "AREA - 0.576")), pos=2)

> #add the r squared value

> text(30000, 22, expression(paste(r^2==0.835)), pos=2)

> #put an L-shaped box to complete the axis

> box(bty="l")
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Step 7 (Key 8.11) - use the fitted linear model to predict the number of individuals that would

be supported on two new mussel clumps with areas of 8000 and 10000 mm2.

> 10^predict(peake.lm, data.frame(AREA = c(8000, 10000)))

1 2

481.6561 580.2949
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Since OLS was used to generate the predictive model, and yet there was likely to have been

uncertainty in the original mussel clump area measurements, confidence intervals about these

predictions are not valid. Nevertheless, the following illustrates how they would be obtained.

> 10^predict(peake.lm, data.frame(AREA = c(8000, 10000)),

interval = "prediction")

fit lwr upr

1 481.6561 194.5975 1192.167

2 580.2949 233.5345 1441.938

Similarly, confidence bands could be incorporated onto the plot to indicate confidence in the

population regression line if there was no uncertainty in the predictor variable.

> plot(log10(INDIV) ~ log10(AREA), data = peake, pch = 16,

+ axes = F, xlab = "", ylab = "")

> axis(1, cex.axis = 0.8)

> mtext(text = "Log Mussel clump area", side = 1, line = 3)

> axis(2, las = 1)

> mtext(text = "Log number of individuals", side = 2, line = 3)

> abline(peake.lm)

> text(4.5, 1.4, expression(paste(log[10], "INDIV = 0.835",

+ log[10], "AREA - 0.576")), pos = 2)

> text(4.5, 1.3, expression(paste(r^2 == 0.835)), pos = 2)

> x <- seq(min(peake$AREA), max(peake$AREA), l = 1000)

> y <- predict(peake.lm, data.frame(AREA = x), interval = "c")

> matlines(log10(x), y, lty = 1, col = 1)

> box(bty = "l")

3.0 3.5 4.0 4.5

Log Mussel clump area

1.5

2.0

2.5

3.0

L
o

g
 n

u
m

b
e

r 
o

f 
in

d
iv

id
u

a
ls

log10INDIV = 0.835log10AREA – 0.576 
r2 =  0.835

Example 8E: Linear regression - with multiple values of Y per value of X

Sokal and Rohlf (1997) presented data on the (arcsine transformed) percentage survival to

adulthood of Tibolium castaneum beetles housed at four densities (5, 20, 50 & 100 eggs per

gram of flour medium). Each level of the density treatment was replicated (albeit to varying

degrees) in a manner similar to single factor classification (ANOVA, see chapter 10).
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Step 1 - Import (section 2.3) the beetles data set

> beetles <- read.table("beetles.csv", header = T, sep = ",")

Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot

with marginal boxplots and a lowess smoother. As there are replicates for each level of the

predictor, normality and homogeneity of variance can also be assessed with boxplots of each

population.

> library(car)

> scatterplot(SURVIVAL ~ DENSITY,

+ data = beetles)
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> boxplot(SURVIVAL ~ DENSITY,

+ data = beetles)
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Conclusions - the scatterplot indicates that the assumption of linearity is likely to be ok. Note

that the boxplot on the x-margin of the scatterplot only reflects an imbalance in replication.

Whilst there is some evidence of non-homogeniety of variance, a consistent relationship between

mean and variance cannot be fully established, and thus the data are considered suitable.

Step 3 (Key 8.5a) - the ordinary least squares method is considered appropriate as the there is

considered to be no uncertainty (error) in the predictor variable (relative density).

Step 4 (Key 8.5b) - determine the lack of fit to the regression line by comparing deviations of

observations from the regression line to deviations of observations from their means per density.

> anova(lm(SURVIVAL ~ DENSITY + as.factor(DENSITY), beetles))

Analysis of Variance Table

Response: SURVIVAL

Df Sum Sq Mean Sq F value Pr(>F)

DENSITY 1 403.93 403.93 32.0377 0.0001466 ***

as.factor(DENSITY) 2 19.77 9.89 0.7842 0.4804305

Residuals 11 138.69 12.61

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Conclusions - deviations from linear not significantly different from zero (F = 0.7842, P =

0.480), hence there is no evidence that a straight line is not an adequate representation of these

data.

Step 5 (Key 8.5b) - consider whether to pool deviations from the regression line and the

deviations from the predictor level means

> #calculate critical F for alpha=0.25, df=2,11

> qf(0.25,2,11, lower=T)

[1] 0.2953387

Conclusions - Sokal and Rohlf (1997) suggest that while there is no difference between the

deviations from the regression line and the deviations from the predictor level means, they

should not be pooled because F = 0.784 > F0.75[2,11] = 0.295.

Step 6 (Key 8.5b) - to test whether the regression is linear by comparing the fit of the linear

regression with the deviations from linearity (non pooled).

> beetles.lm <- aov(SURVIVAL ~ DENSITY + Error(as.factor(DENSITY)),

+ beetles)

> summary(beetles.lm)

Error: as.factor(DENSITY)

Df Sum Sq Mean Sq F value Pr(>F)

DENSITY 1 403.93 403.93 40.855 0.02361 *

Residuals 2 19.77 9.89

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 11 138.687 12.608

Conclusions - Reject H0 that the population is not linear.

> #to get the regression coefficients

> lm(SURVIVAL~DENSITY, beetles)

Call:

lm(formula = SURVIVAL ~ DENSITY, data = beetles)

Coefficients:

(Intercept) DENSITY

65.960 -0.147

If we had decided to pool, the analysis could have been performed as follows:

> summary(lm(SURVIVAL ~ DENSITY, beetles))

Call:

lm(formula = SURVIVAL ~ DENSITY, data = beetles)
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Residuals:

Min 1Q Median 3Q Max

-6.8550 -1.8094 -0.2395 2.7856 5.1902

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 65.96004 1.30593 50.508 2.63e-16 ***

DENSITY -0.14701 0.02554 -5.757 6.64e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.491 on 13 degrees of freedom

Multiple R-squared: 0.7182, Adjusted R-squared: 0.6966

F-statistic: 33.14 on 1 and 13 DF, p-value: 6.637e-05

Note that these data could also have been analysed as a single factor ANOVA with polynomial

contrasts

> beetles$DENSITY <- as.factor(beetles$DENSITY)

> contrasts(beetles$DENSITY) <- contr.poly(4, c(5, 20, 50,

+ 100))

> beetles.aov <- aov(SURVIVAL ~ DENSITY, beetles)

> summary(beetles.aov, split = list(DENSITY = list(1, c(2,

+ 3))))

Df Sum Sq Mean Sq F value Pr(>F)

DENSITY 3 423.70 141.23 11.2020 0.0011367 **

DENSITY: C1 1 403.93 403.93 32.0377 0.0001466 ***

DENSITY: C2 2 19.77 9.89 0.7842 0.4804305

Residuals 11 138.69 12.61

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Example 8F: Model II regression

To contrast the parameter estimates resulting from model II regression, Quinn and Keough

(2002) used a data set from Christensen et al. (1996) (Box 5.7 Quinn and Keough (2002)).

Whilst model II regression is arguably unnecessary for these data (as it is hard to imagine

why estimates of the regression parameters would be the sole interest of the Christensen

et al. (1996) investigation), we will proceed with the aim of gaining a reliable estimate of the

population slope is required.

Step 1 - Import (section 2.3) the Christensen et al. (1996) data set

> christ <- read.table("christ.csv", header = T, sep = ",")
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Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot

with marginal boxplots and a lowess smoother.

> library(car)

> scatterplot(CWD.BASA ~ RIP.DENS, data = christ)
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Conclusions - no evidence of non-

normality (boxplots not overly asym-

metrical), non homogeneity of variance

(points do not become progressively

more or less spread out along the

regression line) or non-linearity.

Step 3 (Key 8.5b) - as there is likely to be uncertainty in the measured levels of the predictor

variable and the stated intention of the analysis is to obtain a reliable estimate of the population

slope, model II regression is considered appropriate. Furthermore, as the basal area of course

woody debris and the density of riparian vegetation are measured on different scales, the degrees

of uncertainty in the variables are unlikely to be equal (yet may well be proportionaly to the

respective variances of each variable), MA regression is not appropriate. Finally, as there is some

evidence that there may be outliers present, RMA is considered the most appropriate method.

Step 4 (Key 8.5b) - fit the RMA linear regression model.

> library(biology)

> christ.lm <- lm.II(CWD.BASA ~ RIP.DENS, christ, type = "RMA")

> summary(christ.lm)

$Call

lm.II(formula = CWD.BASA ~ RIP.DENS, data = christ, type = "RMA")

$Coefficients

Estimate Lower 95% CI Upper 95% CI

(Intercept) -113.9042556 -187.1524427 -61.7666149

RIP.DENS 0.1450207 0.1032249 0.2037396

Step 5 (Key 8.12) - summarize the findings of the linear regression analysis with a scatterplot

including the regression line, regression equation and r2.

> #create a plot with solid dots (pch=16) and no axis or labels

> plot(CWD.BASA~RIP.DENS, christ, pch=16, axes=F, xlab="",

ylab="")

> #put the x-axis (axis 1) with smaller label font size
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> axis(1, cex.axis=.8)

> #put the x-axis label 3 lines down from the axis

> mtext(text="Riparian tree density", side=1, line=3)

> #put the y-axis (axis 2) with horizontal tick labels

> axis(2, las=1)

> #put the y-axis label 3 lines to the left of the axis

> mtext(text="Course woody debris basal area", side=2, line=3)

> #add the regression line from the fitted model

> abline(christ.lm)

> #add the regression parameters

> text(1600,50,expression(paste(beta[1]==0.145)), pos=4)

> text(1600,40,expression(paste(beta[0]==-113.904)), pos=4)

> #put an L-shaped box to complete the axis

> box(bty="l")
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Example 8G: Linear regression - non-parametric regression

Smith (1967) investigated the effects of cloud seeding on rainfall in the Snowy Mountains,

Australia. The experiment took place in two areas (the target and control). Within a

year a number of periods were randomly allocated for seeding and additional periods for

non-seeding. The total rainfall in the target and control areas during each of these periods

were recorded. Within a single year, the impact of seeding was assessed via a double ratio

(ratio of rainfall in target to control areas for seeding periods versus ratio of target to control

areas during non-seeding times) and the experiment was repeated over 5 years (Example 9.2

Hollander and Wolfe (1999)).

Step 1 - Import (section 2.3) the Smith (1967) data set

> smith <- read.table("smith.csv", header = T, sep = ",")

Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot

with marginal boxplots and a lowess smoother.

> scatterplot(RATIO ~ YEARS, smith)
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Conclusions - whilst there may not

appear to be any evidence of non-

normality (boxplots not overly asym-

metrical), non homogeneity of variance

(points do not become progressively

more or less spread out along the

regression line) or non-linearity, it

could be argued that there are too

few observations on which to make

meaningful decisions about normality

and it might be safer to not make

distributional assumptions.

Step 3 (Key 8.7) - as far as we know, there are no reasons to suspect that that observations

wont be independent.

Step 4 (Key 8.8b) - it is difficult to assess normality, homogeneity of variance and linearity

with such a small sample size. We will take the conservative approach and not make any such

assumptions.

Step 5 (Key 8.9d) - perform non-parametric (Kendall’s) robust regression to assess the

H0 : β1 = 0.

> library(mblm)

> smith.mblm <- mblm(RATIO ~ YEARS, smith, repeated = F)

> summary(smith.mblm)

Call:

mblm(formula = RATIO ~ YEARS, dataframe = smith, repeated = F)

Residuals:

1 2 3 4 5

0.00000 0.06625 -0.02750 0.06875 -0.00500

Coefficients:

Estimate MAD V value Pr(>|V|)

(Intercept) 1.31625 0.04077 15 0.0625 .

YEARS -0.05625 0.03459 4 0.0137 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.05744 on 3 degrees of freedom

Conclusions - reject H0. The impact of cloud seeding significantly declines over time (b=-0.056,

V=4, P=0.0137).
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Step 6 (Key 8.10) - calculate 95% confidence intervals for the parameter estimates.

> confint.mblm(smith.mblm, level = 0.95)

0.025 0.975

(Intercept) 1.28875 1.385

YEARS -0.10000 -0.015

Example 8H: Linear regression - randomization test

McKechnie et al. (1975) investigated the relationship between altitude and the frequency of

hezokinase (HK) 1.00 mobility genes from colonies of Euphydras editha butterflies (Example

8.1 Manly (1991)).

Step 1 - Import (section 2.3) the McKechnie et al. (1975) data set

> mckechnie <- read.table("mckechnie.csv", header = T, sep = ",")

Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot

with marginal boxplots and a lowess smoother. For the purpose of this demonstration, lets

assume that the assumption of normality could not be met and more importantly, that the

observations are not independent, thereby necessitating an alternative regression method.

Step 3 (Key 8.7b) - use randomization to test whether the observed trend could be due to

chance.

1. define the statisticj to use in the randomization test - in this case the t-statistic

> stat <- function(data, index) {

+ summary(lm(HK ~ ALT, data))$coef[2, 3]

+ }

2. define how the data should be randomized - randomize the pairing of predictor and responses

(shuffle without replacement the predictor values amongst observations)

> rand.gen <- function(data, mle) {

+ out <- data

+ out$ALT <- sample(out$ALT, replace = F)

+ out

+ }

3. call a bootstrapping procedure to randomize 5000 times (this can take some time)

> library(boot)

j Consistent with Manly (1991), I have used OLS to estimate the regression parameters. However,

these parameters could alternatively be RMA or non-parametric regression estimates.
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> mckechnie.boot <- boot(mckechnie, stat, R = 5000,

+ sim = "parametric", ran.gen = rand.gen)

4. examine the distribution of t-values generated from the randomization procedure

> plot(mckechnie.boot)
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5. examine the bootstrap statistics

> mckechnie.boot

PARAMETRIC BOOTSTRAP

Call:

boot(data = mckechnie, statistic = stat, R = 5000,

sim = "parametric", ran.gen = rand.gen)

Bootstrap Statistics :

original bias std. error

t1* 4.830571 -4.846745 1.084864

6. calculate the number of possible t-values (including the observed t-value, which is one

possible outcome) that were greater or equal to the observed t-value and express this as a

percentage of the number of randomizations (plus one for the observed outcome).

> t <- length(mckechnie.boot$t[mckechnie.boot$t >=

+ mckechnie.boot$t0]) + 1

> t/(mckechnie.boot$R + 1)

[1] 0.00059988

Conclusions - probability of obtaining a t-value of 4.83 or greater when H0 is true is 0.0006

(0.06%). Note that as this is a randomization procedure, the p-value will vary slightly each

time.
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Step 4 (Key 8.10) - calculate 95% confidence intervals for the parameter estimates (example

8.2 Manly (1991))

1. define how the parameters (coefficients) are to be calculated (from OLS regression of a

random resample with replacement of the observations).

> par.boot <- function(mckechnie, index) {

+ x <- mckechnie$ALT[index]

+ y <- mckechnie$HK[index]

+ model <- lm(y ~ x)

+ coef(model)

+ }

2. call a bootstrapping procedure to randomize 5000 times (this can take some time)

> mckechnie.boot <- boot(mckechnie, par.boot, R = 5000)

> mckechnie.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = mckechnie, statistic = par.boot, R = 5000)

Bootstrap Statistics :

original bias std. error

t1* 10.65409 0.2426368 4.853195

t2* 29.15347 -0.1309074 5.581786

3. examine the bootstrap 95% confidence intervals for the second (index=2) parameter (slope)

> boot.ci(mckechnie.boot, index = 2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 5000 bootstrap replicates

CALL :

boot.ci(boot.out = mckechnie.boot, index = 2)

Intervals :

Level Normal Basic

95% (18.34, 40.22 ) (18.38, 40.81 )

Level Percentile BCa

95% (17.50, 39.92 ) (16.95, 39.52 )

Calculations and Intervals on Original Scale

Conclusions - 95% confidence interval for the true regression coefficients is 15.49 - 39.52
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Step 5 (Key 8.11) - predict the percentage of HK genes at an altitude of 1.

1. define the function to predict new values.

> pred.boot <- function(mckechnie, index) {

+ mckechnie.rs <- mckechnie[index, ]

+ mckechnie.lm <- lm(HK ~ ALT, mckechnie.rs)

+ predict(mckechnie.lm, data.frame(ALT = 1))

+ }

2. call a bootstrapping procedure to randomize 5000 times (this can take some time)

> mckechnie.boot <- boot(mckechnie, pred.boot, R = 5000)

> mckechnie.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = mckechnie, statistic = pred.boot, R = 5000)

Bootstrap Statistics :

original bias std. error

t1* 39.80756 0.1235158 4.914043

3. examine the bootstrap 95% intervals for this prediction

> boot.ci(mckechnie.boot, index = 1)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 5000 bootstrap replicates

CALL :

boot.ci(boot.out = mckechnie.boot, index = 1)

Intervals :

Level Normal Basic

95% (30.05, 49.32 ) (30.66, 49.80 )

Level Percentile BCa

95% (29.82, 48.96 ) (27.68, 47.58 )

Calculations and Intervals on Original Scale

Conclusions - 95% confidence interval for the true regression coefficients is 27.59 - 47.81

Alternatively, if the levels of the predictor variable were specifically set, then it might be

more appropriate to base hypothesis tests, predictions and confidence intervals on randomized

residuals rather than randomizing the predictor variable.
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Example 8I: Power analysis - sample size determination in testing H0 : ρ = 0

Zar (1999) provided a worked example in which the sample size required to reject the null

hypothesis (H0 : ρ = 0) 99% of the time when the correlation coefficient has an absolute

magnitude (ignore sign) greater or equal to 0.5 (|ρ| ≥ 0.5) (Example 19.5 Zar (1999)).

Step 1 - calculate the sample size required to detect a correlation of greater or equal to 0.5 with

a power of 0.99

> library(pwr)

> pwr.r.test(r = 0.5, power = 0.99)

approximate correlation power calculation (arctangh

transformation)

n = 63.50301

r = 0.5

sig.level = 0.05

power = 0.99

alternative = two.sided

Step 2 - generate a plot that illustrates the relationship between target correlation (from 0.4 to

0.9) and sample size for a range of levels of power (0.75,0.8,0.85,0.9).

> library(pwr)

> r <- seq(0.4, 0.9, l = 100)

> plot(sapply(r, function(x) pwr.r.test(r = x, power = 0.8)$n) ~

+ r, type = "l", lwd = 2, xlab = "Correlation coefficient",

+ ylab = "Sample size")

> points(sapply(r, function(x) pwr.r.test(r = x, power = 0.9)$n) ~

+ r, type = "l")

> points(sapply(r, function(x) pwr.r.test(r = x, power = 0.85)$n) ~

+ r, type = "l")

> points(sapply(r, function(x) pwr.r.test(r = x, power = 0.75)$n) ~

+ r, type = "l")
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Conclusions - graph provides a means

to evaluate the cost-benefit compromises

between power and sample size for a range

of possible correlations. Informed design

decisions can result from such graphs. If the

degree of correlation is expected to be high,

approximately 10 replicates would be ade-

quate. However, if the degree of correlation

is expected to be lower, a greater number

of replicates are required. Furthermore, as

the degree of correlation declines, the differ-

ence in estimated required sample size for

different levels of power becomes greater.


