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RESUMO: Este é um artigo sobre conceitos estatísticos que usualmente são apresentados em sala de aula. Vários exemplos são discutidos com o intuito de mostrar que esses conceitos podem produzir conclusões incoerentes. Os exemplos ilustram os seguintes fatos: variáveis aleatórias iid são de fato fortemente associadas; probabilidades condicionais podem depender da forma como os condicionantes foram introduzidos;  intervalos de confiança podem indicar diminuição de precisão quando a informação é aumentada; testes de significância podem não rejeitar hipóteses impossíveis.
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1. [bookmark: _Hlk117216104]INTRODUÇÃO
Atualmente, nota-se que o aprendizado de disciplinas básicas, como matemática ou física, tornou-se uma barreira para o aumento desejado de profissionais com formação direcionada aos desafios científicos e tecnológicos do mundo moderno. O desinteresse dos alunos pelas disciplinas técnicas, que exigem um maior poder de raciocínio lógico e abstrato, é observado em vários cantos do mundo.  Por outro lado, os valores da sociedade moderna vêm se transformando rapidamente, acompanhando a velocidade com que novas tecnologias são incorporadas ao nosso dia-a-dia.  
Interessante é observar como o jovem consegue adaptar-se rapidamente ao uso das novas tecnologias sem ao menos se interessar pelo modo como são criadas ou desenvolvidas e em conhecer os conceitos usados na determinação de seus valores.  O jovem torna-se rapidamente excelente usuário, superando em muito os adultos que foram educados sob um paradigma cultural totalmente distinto.  O adulto de agora foi um jovem que questionava a necessidade de uma nova tecnologia disponível.  Havia um desejo de entender-se como e por que aparatos tecnológicos eram criados e utilizados.   A dinâmica atual parece não permitir que o jovem “desperdice” parte de seu tempo para questionar o que lhe está sendo oferecido em termos conceituais.  Isto produz a idéia, talvez falsa, de o jovem só estar interessado por conhecimentos de uso imediato e, muitas vezes, de fácil aprendizado.  
Como convencer um aluno de estatística de que análise, e não apenas cálculo, é fundamental para desenvolver seu raciocínio lógico?  Em tempos idos, não era comum ao jovem questionar o professor sobre a utilidade do assunto que estava sendo ensinado.  Um Professor era um Mestre!  Hoje é um profissional do ensino, que é avaliado pela "produtividade".  Por produtividade muitas vezes entende-se a quantidade, maior ou menor, de alunos que são aprovados.  O mestre preocupava-se com a boa formação de seus alunos.  O professor de hoje pode preocupar-se apenas com o mínimo que permita seu aluno avançar a uma nova etapa.  
O Mercado de Trabalho, em função do perfil do novo profissional, também se transforma e hoje uma das exigências das empresas é o profissional com mestrado. Já não basta apenas um curso superior! O objetivo, como esperado, é a melhor qualificação do profissional.  Provavelmente, em futuro próximo, irão exigir um Doutorado.  Em resumo, hoje a pós-graduação já é parte da formação básica de um profissional.  No passado, com a excelência da formação universitária, a pós-graduação era mais uma exigência acadêmica do que profissional.
Este trabalho, no lugar de criticar o jovem, questiona o ensino que lhe é oferecido.  O objetivo é mostrar que a insegurança do jovem, ao discutir os fundamentos pelos quais um método é construído, pode ser conseqüência da forma imprecisa como os conceitos lhe são apresentados.   Conceitos estatísticos, fundamentais aos métodos que são usados no dia-a-dia do profissional, constituem o tema principal deste trabalho. A recomendação ao profissional é uma maior reflexão sobre seu instrumento de trabalho, os métodos estatísticos.  O estudante deve sempre questionar seu professor quando um conceito não estiver claro.  Esse questionamento deve ser sobre a lógica do método e não sobre seu uso imediato.  Isto porque, ao entender completamente um método, o profissional saberá quando e como usá-lo.  Imaginem as conseqüências da necessidade do uso imediato de um método quando o usuário não conhece a lógica de sua criação.  
Este é um trabalho objetivo, pois toda a discussão é feita através exemplos que mostram a inadequação de métodos de uso comum do estatístico. Evidentemente a inadequação diz respeito à situação específica do exemplo.  O uso inquestionável de um determinado método pode trazer sérios problemas ao usuário.  Muitas vezes a resposta a um problema pode não ser a resposta adequada. Conceitos imprecisos também aparecem como causa de soluções inadequadas.  De fato, este texto questiona a falta de precisão dos professores de estatística quando ensinam certos conceitos fundamentais ao trabalho profissional.  Não só a forma de ensinar, mas também os próprios conceitos precisam ser revistos.  O risco da fuga de estudantes dos cursos de estatística irá aumentar caso não haja, por parte de nossos líderes, um esforço para uma revisão drástica no ensino da estatística.  
Discutem-se na seqüência os conceitos de independência probabilística e estatística; os conceitos de dependência condicional e informação; os conceitos de intervalos de confiança e de credibilidade; e finalmente os conceitos de significância e evidência.   Toda a discussão é feita por meio de exemplos especiais em contextos muito simples.  

2. INDEPENDÊNCIA: PROBABILÍSTICA E ESTATÍSTICA
Em estatística, o conceito de dependência está intimamente ligado ao conceito mais usual de associação.  No entendimento comum, dois eventos estão associados quando um influencia a ocorrência do outro.  Por exemplo, a ocorrência de um pode aumentar a chance de o outro ocorrer e neste caso dizemos que a associação é positiva.  Muitas vezes a ocorrência de um fenômeno pode diminuir ou mesmo eliminar a chance de o outro ocorrer e neste caso dizemos que a associação é negativa.  Assim, a dependência entre duas quantidades aleatórias pode ocorrer em diferentes níveis, tanto positivamente quanto negativamente.  Por outro lado, é sempre bom lembrar que os conceitos equivalentes de associação e dependência têm uma característica simétrica.  Isto é, se x é dependente de y, com um determinado nível, então y é dependente de x com o mesmo nível.   
A negação de dependência é a independência e este sim é um conceito preciso.  Não há diferentes níveis de independência!  Afirma-se que duas quantidades aleatórias são independentes quando, ao conhecer-se o valor de uma, a distribuição da outra não se altera. Em outras palavras, se x e y são duas quantidades aleatórias independentes então p(y)=p(y|x); isto é, o fato de x ter sido observado não altera a distribuição de y. Um bom exercício para o leitor é provar que as seguintes três igualdades são equivalentes:
 i) p(y)=p(y|x);
 ii) p(x)=p(x|y) e
 iii) p(x,y)= p(y)p(x).

O conceito de independência probabilística é naturalmente estendido para o de independência condicional quando outra quantidade z entra no contexto.  As quantidades x e y são ditas condicionalmente independentes, dado z, se p(x,y|z)= p(y|z)p(x|z). Outro bom exercício para o leitor é mostrar a equivalência das seguintes igualdades:
 iv) p(y|z)=p(y|x,z);
 v) p(x|y)=p(x|y,z) e
 vi) p(x,y|z)= p(y|z)p(x|z).
Independência estatística é na verdade independência condicional.  Em estatística o parâmetro, desconhecido e de interesse, exerce o mesmo papel da quantidade z.  Os Exemplos 1, 2 e 3 ilustram os conceitos de independência probabilística e estatística.

Exemplo 1: Normal Padrão
Considerem-se duas variáveis aleatórias normais independentes, x e y, com mesma distribuição normal com média zero e variância um.  Inicialmente,  sabe-se que embora os valores das duas quantidades possam ocorrer em toda a reta, muito provavelmente não estarão fora do intervalo [-6;+6].  Além disso, a informação de que x=3, por exemplo, não irá alterar a distribuição de y. Isto é, p(y)=p(y|x). Novamente y pertence com grande chance ao intervalo [-6;+6].  O conhecimento da ocorrência de x=3 não alterou a distribuição de probabilidades inicialmente proposta para y. No presente caso, a independência é a probabilística no sentido usual.  

Exemplo 2: Normal com Média Desconhecida
Sejam duas variáveis aleatórias normais independentes, x e y, com a mesma distribuição normal com média z, desconhecida, e variância um.  Como o valor da média, z, é desconhecido, tanto x como y podem variar em toda a reta, sem preferências.  A observação x=3 agora é bastante informativa com respeito à distribuição de y. Evidentemente, existe uma grande chance de que x=3 esteja no intervalo [z-6;z+6].   Assim,  -3 < z < 9 e,  portanto, y  muito  provavelmente  irá  pertencer  ao  intervalo   [-9;15].   Note-se que, antes da observação de x, o valor de y era completamente desconhecido e poderia assumir qualquer valor em toda a reta.  No entanto, após observar-se x=3, sabe-se que quase certamente y pertence ao intervalo finito [-9;15].   Isto prova que x e y não podem ser independentes, visto que a observação do valor de x modifica de fato a distribuição de y. 	No exemplo acima o correto seria dizer: caso z fosse conhecido, x e y seriam independentes.  Esse é o caso da independência estatística.  Na linguagem probabilística, ao considerar-se z como variável aleatória, x e y seriam condicionalmente (em relação a z) independentes.  Na perspectiva freqüentista da estatística, o parâmetro, representado aqui por z, não é considerado como variável aleatória.  Conseqüentemente, sem uma estrutura probabilística para z, o uso do conceito de independência condicional estaria prejudicado.  Contudo, o estatístico poderia sempre afirmar que, no caso do valor de z ser conhecido, fosse ele qual fosse, x e y seriam independentes.  Isto é, p(x,y|z)= p(y|z)p(x|z). 
Para, de forma definitiva, sensibilizar os professores de estatística, o Exemplo 3 é mais dramático do que o anterior. 

Exemplo 3: Uniforme com Média Desconhecida
Considerem-se duas variáveis aleatórias independentes, x e y, com mesma distribuição uniforme no intervalo [z-;z+], onde a média z é desconhecida.  No inicio, pode-se dizer que -< y < +.  No entanto, observando-se x=3, conclui-se que 2 < z < 4 e, assim, y certamente pertencerá ao intervalo [1;5].  Isto é, o conhecimento de que x = 3 faz com que, novamente, apresente-se o caso de independência condicional (estatística) entre x e y, dado z.
Esse terceiro exemplo mostra que, embora ocorra a independência estatística – correspondendo, no caso de estrutura probabilística para z, à independência condicional de x e y, dado z –, na verdade tem-se uma forte dependência (não condicional).  Note-se que ambas as variáveis possuem um elemento desconhecido em comum nas suas distribuições e esse elemento, o parâmetro z, é o que provoca a forte associação entre x e y.

3. INFORMAÇÃO E DEPENDÊNCIA CONDICIONAL
O exemplo discutido nesta seção é de igual importância, pois ressalta mais uma vez a diferença entre o trabalho estatístico e o probabilístico.  O leitor deve entender, no entanto, que um não exclui o outro.  Na verdade, o probabilístico complementa o estatístico, e vice-versa!  
Apresenta-se apenas um exemplo, suficiente para a discussão, por ser crucial para o ensino da Estatística. Lembre-se de que a função de verossimilhança carrega toda a informação, contida nos dados x, sobre os parâmetros z. Diferenciem-se bem os dois elementos do modelo estatístico: a) a distribuição amostral é cacterizada pela função de probabilidade de x para cada valor fixado, z0, do parâmetro z, isto é, p(x|z0), e b) a função de verossimilhança para a observação x0 de x é a distribuição amostral avaliada em x0, como função do parâmetro z; isto é, L(z|x0) = p(x0|z).  Assim, a distribuição amostral pode ser caracterizada pela classe dos conjuntos z={  f(x|z); xX } e a verossimilhança da observação x pelo conjunto x={  f(x|z); z Z } onde X e Z são, respectivamente, os espaços amostral e paramétrico.  

Exemplo 4: Um Par de Filhos
A escola de dança do bairro compete todos os anos com um grupo de 10 meninas no concurso nacional de artes.  A professora Lily toma conhecimento de que as duas irmãs que fazem parte do grupo vão acompanhar os pais na imigração para o Chile.  Ela é informada de que a nova família, que vai morar na casa onde moram atualmente as duas bailarinas, possui um par de crianças.  Lily então pondera que se forem duas meninas poderão substituir as duas que estão saindo do grupo.  Dessa forma, terá tempo de treinar as novas componentes para a próxima competição. Acha então que tem probabilidade ¼ de o par ser formado por duas meninas.  Seu espaço de probabilidades equiprováveis é {(m,m);(m,h);(h,m);(h,h)}.  Conversando então com seu irmão, Jony, corretor de imóveis, a professora é informada de que o par é formado por pelo menos uma menina.  Essa informação Jony obteve quando ouviu por telefone a mãe dizendo "fique quieta minha filha" para uma criança que fazia algum ruído perto do telefone.  Lily fica alegre já que sua probabilidade aumentou para 1/3; desse modo seu espaço de probabilidades equiprováveis é agora {(m,m);(m,h);(h,m)}. Mary, a esposa de Jony, entra na sala e diz que uma das crianças da nova moradora é uma menina que está no carro. Lily sai e vai ao carro para ver a criança. Fica mais feliz, pois entende que sua probabilidade aumenta para ½ após ver a menina e se perguntar "qual a probabilidade de a outra criança ser menina?". Seu espaço de probabilidades equiprováveis, depois de ver a criança, é {m;h}, visto que a única fonte de incerteza é o sexo da outra criança. Aceitar passivamente o que foi apresentado na dramatização acima, implica aceitar-se que a afirmação "pelo menos uma menina no par" possui diferentes pesos quando recebida por diferentes canais: audição e visão. 
O olhar de um estatístico permite incorporar outras informações ocorridas no processo de coleta de dados.  Para entender a racionalidade estatística, é preciso definir apropriadamente todas as entidades do processo.  Seja o parâmetro z = 1 no caso de um par de meninas e z = 0 no caso de um casal.  A probabilidade a priori de z é definida por p(1) =1/3 =1-p(0).  Como variável observacional, para definir a verossimilhança, considere-se x =1 se a criança que acompanha Mary é uma menina e x=0 se menino. A função de verossimilhança, p(x|z) = L(z|x), no caso presente de x =1 é L(z|1). No caso de z=1 (par de meninas), L(1|1) =1 e, se z = 0 (um casal), L(0|1) = q, onde q é um valor do intervalo [0;1]. Equivalentemente, pode-se escrever p(x=1|z=0) = q e p(x=1|z=1) =1.  Com um cálculo simples e após lembrar que sua observação foi x=1, o leitor deve ser capaz de mostrar que a probabilidade a posteriori de z =1 é então p(z=1| x=1) = [1+2q]-1.
A princípio Lily pensou que Mary teria probabilidades iguais (q =1/2) de trazer menino ou menina, no caso de o par ser um casal de crianças (z=0).  Neste caso, Lily estaria certa em se alegrar com o aumento da sua probabilidade para um par de meninas, pois, se q = ½, a probabilidade a posteriori de z = 1 seria ½ . Mas Lily logo percebeu seu erro!  Mary levou a criança, a pedido da mãe ocupada, para provar um vestidinho na nova loja de roupas femininas infantis, ali em frente.  Assim Lily teve de considerar q = 1 e nesse caso a posteriori seria 1/3, o mesmo valor da probabilidade a priori após a informação transmitida por Jony. Nesse caso a verossimilhança é constante e assim não informativa!
Como conclusão desta seção, o leitor deve entender que no momento da definição do modelo de probabilidades, é necessário sempre levar em consideração o modo como a ocorrência de eventos é observada.

4. CONFIANÇA E CREDIBILIDADE
[bookmark: _GoBack]O exemplo discutido nesta seção diz respeito à estimação por intervalo. O conceito de intervalo de confiança é o que mais dificulta a vida do estatístico.  Muitas vezes este precisa explicar ao cientista que o intervalo numérico apresentado, acompanhado da porcentagem 95%, não quer dizer que a probabilidade de esse intervalo conter o verdadeiro valor do parâmetro é 95%.  Deve na verdade explicar que, se o procedimento pudesse ser repetido uma série de vezes, os intervalos construídos conteriam o verdadeiro valor do parâmetro em 95% das vezes.  Para entender-se melhor a dificuldade  que  esse  procedimento representa, o  exemplo a  seguir mostra  a  diferença entre  probabilidade e confiança.

Exemplo 5: Uniforme com Média Desconhecida
Considerem-se quatro observações, {u,v,x,y}, independentes (estatisticamente) e identicamente distribuídas segundo uma uniforme no intervalo [z –½;z +½].  O objetivo é construir um intervalo de confiança para z a partir das quatro observações.  Represente-se por m e M, respectivamente, o menor e o maior valores amostrais.  Não é difícil ver que o intervalo [m;M] é um intervalo com confiança 87,5%, pois 1-2(½)4 = 0,875.  Lembre-se de que (½)4 é a probabilidade de que as quatro observações estejam acima (ou abaixo) da média z.; i.e., p(m > z) = p(M < z) = (½)4 = 0,0625.  Os quatro valores efetivamente observados foram: 1,11; 1,27; 1,43; 1,59.  Um estatístico clássico concluiria que [1,11; 1,59] é um intervalo com 87,5% de confiança.  Note-se que, se no lugar de 1,59 tivéssemos 1,50 ou mesmo 1,62, a confiança seria a mesma, embora os comprimentos dos intervalos fossem respectivamente 0,48, 0,39 e 0,51.  Mesmo no caso em que M fosse 1,91 a confiança do intervalo [1,11;1,91] continuaria sendo 87,5%.  O que um estatístico menos comprometido com métodos faria? Certamente consideraria que M < z + 0,5 e m > z - 0,5.  Isto é, o mínimo e o máximo de qualquer amostra devem situar-se no intervalo de variação da variável que está sendo estudada.  Com isso seria possível dizer que com probabilidade 1, certeza total, M - 0,5 < z < m + 0,5. Isto é, com certeza, o intervalo [M - 0,5; m + 0,5] contém z!   Resumindo: se m = 1,11, os casos em que M =1,59, M =1,50, M =1,62 e M =1,91 produziriam, respectivamente, os intervalos [1,09;1,61], [1,00;1,61], [1,12;1,61] e [1,41;1,61], cujos comprimentos seriam 0,52, 0,61, 0,49 e 0,21.  Todos esses intervalos, com certeza – com probabilidade 1 –, conteriam o verdadeiro valor do parâmetro, z.  Assim, o resultado amostral efetivamente observado pode ser mais ou menos informativo.  Isto é, quanto maior a diferença M-m, mais informativo deve ser o resultado da inferência sobre o valor de z.  Note-se que, com o procedimento do clássico intervalo de confiança de 87,5%, os intervalos seriam [1,11;1,59], [1,11;1,50], [1,11;1,62] e [1,11;1,91].  Os comprimentos dos intervalos seriam 0,48, 0,39, 0,51 e 0,81.  A conclusão é que o procedimento apresentado oferece menos informação ao cliente – intervalo de grande comprimento – justamente quando a amostra é mais informativa, M e m distantes.  Isto é uma incoerência!
Para uma solução Bayesiana do problema estudado no Exemplo 5, considere-se a priori que o parâmetro z se distribui uniformemente no intervalo [-1000;1000]. Com respeito às amostras descritas acima, as distribuições a posteriori seriam uniformes nos intervalos [1,09;1,61], [1,00;1,61], [1,12;1,61] e [1,41;1,61].  De posse dessas distribuições, poder-se-iam construir intervalos centrais com 0,875 de probabilidade.  Esses intervalos são conhecidos como intervalos de credibilidade com 87,5% de credibilidade. Conseqüentemente, [1,12;1,58], [1,04;1,57], [1,15;1,58] e [1,42;1,60] seriam os intervalos com credibilidade 87,5% e comprimentos 0,46, 0,53, 0,43 e 0,18.  Observe-se a coerência desse tipo de inferência em que amostras mais informativas oferecem respostas superiores; ao escrevermos 87,5% de credibilidade estamos, como é desejável, falando de o intervalo conter o valor desconhecido do parâmetro, z, com probabilidade 0,875. 
A Seção 5 conclui este artigo com uma discussão sobre o método estatístico “teste de significância”, o mais contemplado nas diversas áreas de aplicação.  Novamente, o interesse é mostrar que certos cuidados devem ser tomados e os resultados corretamente interpretados quando um determinado método é utilizado.  

5. SIGNIFICÂNCIA E EVIDÊNCIA
Neste capítulo discute-se, por meio de dois exemplos, o conceito de significância.  Foram usadas as recomendações comuns para o cálculo dos valores-p em problemas de teste de significância.  Trata-se de dois exemplos simples e talvez comuns ao dia-a-dia de um estatístico.  
É comum aos cursos de estatística o fato de não ser dada ênfase à hipótese alternativa quando testes de hipóteses baseiam-se no conceito de significância.  Após a obtenção das observações amostrais, apenas a hipótese nula é usada no momento da definição da distribuição nula e suas caudas.  Muitas vezes não se consideram o fato de distribuições sob as hipóteses alternativas possuírem caudas menos pesadas do que aquelas sob a hipótese nula.  Em alguns casos, os níveis de significância não devem ser áreas das caudas, mas sim áreas centrais da distribuição nula.  Os exemplos discutidos a seguir mostram quão importantes podem ser as hipóteses alternativas na definição da regra aceita/rejeita.

Exemplo 6: Bolinhas na Urna
Apresenta-se uma urna com três bolinhas de diferentes cores: preta, verde e branca. Após três retiradas de uma bola da urna, anotaram-se as quantidades x = número de pretas (0 ou 1) e y = número de verdes (0 ou 1).  Observado o resultado (x,y) = (1,1), o interesse é testar a hipótese H: a amostra foi obtida com reposição, contra a alternativa A: a amostra foi obtida sem reposição. A Tabela 1 apresenta a distribuição de (x,y), multiplicada por 27, quando H é verdadeira.  Note-se que o valor-p é igual a 100%, se a definição da cauda incluir o observado (1,1), ou 77,8%, no caso de sua exclusão.  Seguindo-se as regras ensinadas em cursos de estatística, H não seria rejeitada e A não seria considerada.  Isto é, se (x,y)=(1,1), H é aceita!  A questão é: A pode ser desconsiderada nesse caso?  Observe-se que amostras que teriam probabilidade de ocorrência baixa seriam aquelas diferentes de (1,1).  Entretanto, qualquer amostra diferente de (1,1) teria probabilidade zero de ocorrer no caso de A verdadeira.  Isto é, os pontos que poderiam levar à rejeição de H seriam pontos impossíveis de ocorrer sob A. Novamente, observa-se uma incoerência!  
Tabela 1: Distribuição nula de (x,y) do Exemplo 6.
	y
x
	0
	1
	2
	3

	 0
	1
	3
	3
	1

	 1
	3
	6
	3
	0

	 2
	3
	3
	0
	0

	 3
	1
	0
	0
	0



Analisando-se a questão com os olhos de um estatístico preocupado com o problema a ser resolvido e não com um método disponível, a razão de verossimilhanças seria algo a ser considerada.  A razão de verossimilhanças para um resultado (x,y) é a probabilidade desse resultado, quando A é verdadeira, dividido pela probabilidade, quando H é verdadeira.  Isto é, r(x,y) = p(x,y|A )p(x,y|H). Para todos os resultados possíveis, exceto o ponto (1,1), o valor de r seria zero.  No caso do resultado observado, r(1,1) = 9/2 = 4,5. Isto prova que privilegiar A em detrimento de H é a conclusão mais acertada com o resultado (x,y)=(1,1). Qualquer outro resultado indicaria a aceitação de H.
  Sob a perspectiva Bayesiana a análise fica mais simples.  Supondo-se eqüiprobabilidades a priori, p(H) = p(A) = ½, a conseqüente distribuição a posteriori de A seria p(A|1,1) = 1-p(H|1,1) = 1-6/33 = 9/11.  No caso de qualquer outro resultado, H certamente seria verdadeira.  Assim, com probabilidade a priori considerada, a observação de (x;y) = (1;1) tem como conseqüência o fato de a probabilidade de A passar a ser quatro vezes maior do que a probabilidade de H.  Isto é, a amostra observada favorece A em detrimento de H. 
	O exemplo final deste manuscrito é mais comum ao professor de estatística, pois se refere à distribuição normal, a mais discutida em salas de aula.  

Exemplo 7: Normal com variância desconhecida
	Considerem-se três observações, x, y e z, estatisticamente independentes e identicamente distribuídas segundo uma normal com média zero e variância desconhecida, representada por v, N(0,v).  A estatística suficiente neste caso é a soma dos quadrados das observações, s = x2+y2+z2.  As hipóteses a serem confrontadas são a nula H: v = 2 contra a alternativa A: v 2.  É importante ressaltar-se que a variável aleatória s/v é distribuída segundo uma 2 com 3 graus de liberdade (gl), independente do valor que v pode assumir.  Considere-se que os valores observados sejam x = 0,6, y = 0,3 e z = -0,2, conseqüentemente, s = 0,49.  Sob a hipótese H, N(0,2) é a distribuição nula e suas caudas, delimitadas por essas observações, seriam C(x) = 89%, C(y) = 83% e C(z) = 67%.  Multiplicando-se as áreas das três caudas, o resultado seria C(x,y,z)  50%.  Por outro lado, a correspondente área da cauda da distribuição nula (2 com gl = 3) de s/2 é calculada como p(s >0,49|H) = p3(2>0,245) = 0,97. Isto é, a amostra (x;y;z) = (0,6;0,3;-0,2) produz uma significância (valor-p) de 97%, favorecendo H contra A.  Todos esses cálculos padrões privilegiam a hipótese H, em detrimento de A.  Outra forma de obter-se um valor-p seria concentrar as atenções apenas em s, abandonando a amostra original, visto que s é uma estatística suficiente para (x,y,z) com respeito ao parâmetro z.  Ao considerar-se que valor da significância é a área das caudas da distribuição nula, o primeiro passo seria a definição das caudas da distribuição nula de s/2, de acordo com seu valor obtido na amostra, 0,245. O ponto com mesma densidade na distribuição 2 com gl = 3 é 2.6112. Com as caudas definidas pelos limites (de igual densidade) 0,245 e 2,6112, o novo valor-p seria 
p3(2< 0,245)+ p3(2> 2,6112)= 0,02998 + 0,45553=0,4855.
Dessa forma, a significância é 48,55%, novamente privilegiando H contra A.
Usando-se métodos padrões, como os descritos acima, as observações encontradas favoreceriam H contra A.  Contudo, usando a intuição, não é absurdo concluir-se que a observação s = 0,49 deveria privilegiar valores de v inferiores a 2: As três observações pertencem a um intervalo contido em (-1;1).  Relevante seria o leitor entender que valores baixos de s correspondem a pontos amostrais centrais.  Tais pontos são mais prováveis de ocorrer – maior densidade – quando v for baixo, como, por exemplo, v < 1. Neste caso, a hipótese alternativa é que deveria ser privilegiada e não a nula.  A conclusão desta discussão indicaria que as regiões críticas do teste seriam aquelas que contivessem valores amostrais próximos de zero (caso da amostra estudada) ou bem distantes de zero, isto é nas caudas da distribuição nula.  O problema aqui é a definição de região crítica: apenas a hipótese nula é usada na delimitação das caudas, usadas como região crítica.  A seguir, ambas as hipóteses serão usadas na definição de regiões que beneficiam A, em detrimento de H, mais do que a amostra efetivamente observada.
Para uma visão menos objetiva do Exemplo 7, considere-se que, sob A, u = v-1 tem uma distribuição a priori  com um grau de liberdade.    Ao usar-se a função de densidade h(u) dessa distribuição como um sistema de preferências no espaço (paramétrico) dos possíveis valores de u, a densidade preditiva sob A, f(s|A), é definida como a média – ponderada por h(u) – da densidade de s, f(s|u).  Obtém-se assim,

f(s|A) 
Com as densidades nula e preditiva –  f(s|H)= f(s|v=2) e f(s|A) – define-se a razão de verossimilhanças ou Fator de Bayes:  

r(s) = f(s|A)f(s|H)
O Fator de Bayes pode ser usado como um índice de ordem no espaço amostral.  Este índice, r(s), permite o calculo um valor-p que leva em consideração ambas as hipóteses.  Com a observação s = 0,49, procura-se o outro ponto s’ com mesmo valor de r. No caso do exemplo, o ponto s’=22,5845 satisfaz essa propriedade; isto é, r(0,49) = r(22,5845) = 4,073.  Com esses pontos delimitando as caudas da distribuição nula, obtém-se o valor-p modificado, pv = 4%.  Isto é,
1 - Pr(0,49 < s < 22,5845|H) = 1 - p3(0,245 << 11,292) = 0,04.
Seguindo a intuição do estatístico competente, este valor de pv, se considerado como índice de significância, privilegia a hipótese alternativa em detrimento da hipótese nula.  Por outro lado, se as probabilidades a priori das duas hipóteses fossem consideradas equiprováveis, a probabilidade a posteriori seria p(H|s) = (1+4,073)-1 = 0,197, novamente favorecendo A contra H.
Concentrando a atenção apenas na função de verossimilhança, que carrega toda a informação contida na amostra sobre o parâmetro, o estatístico na maioria das vezes tira as conclusões corretas e de forma coerente. Com a parametrização considerada, a hipótese nula é re-escrita como H: u= v-1 = ½.   A função de verossimilhança de u é proporcional a uma densidade gama com parâmetros A = 5/2 e B = 0,245.  Por outro lado, os valores assumidos por esta função nos pontos u = ½ e u = 24,2696 são iguais.  Conseqüentemente, todo valor de u no intervalo (0,5;24,2696) é mais verossímil do que ½, o valor de u da hipótese nula.  O conjunto T formado por todos os pontos paramétricos mais verossímeis do que o da hipótese nula é denominado conjunto tangente: T = (0,5;24,2696) no presente caso.  Como a função g(u), a função de verossimilhança normalizada por sua integral, é a densidade Gama com parâmetros A = 5/2 e B = 0,245, a área sob a função de verossimilhança em T é igual a 96,23% da área total. Isto é um indicativo de que há uma predominância de pontos mais verossímeis do que a hipótese nula. Como uma alternativa ao valor-p, define-se o valor da evidência da amostra em favor de H, valor-e ou ev, como o complemento da área do conjunto tangente; i.e., ev(t) = 3,77%.   Novamente, como esperado, apresenta-se um indicativo contra a hipótese nula em favor da alternativa.
Esta ultima avaliação da amostra, com relação à hipótese nula, foi baseada exclusivamente na função de verossimilhança, em completa concordância com o princípio da verossimilhança.  De acordo com esse princípio, duas funções proporcionais de verossimilhança devem produzir a mesma inferência estatística.  Evidentemente, ev pode ser calculado sempre que uma densidade de probabilidades esteja sendo definida no espaço paramétrico, como é o caso de uma densidade a posteriori, ou mesmo de uma função de verossimilhança cuja integral seja finita.  No caso discutido acima, os valores-e são baseados nas caudas da verossimilhança, caudas essas definidas a partir da hipótese nula.  Uma das vantagens deste método em relação a outros é que não existe restrição ao número de parâmetros envolvidos.  Além disso, não há a necessidade de eliminação de parâmetros indesejáveis, uma prática comum ao estatístico que atua sob o paradigma freqüentista.  Não há, teoricamente, restrições de dimensão nem ao espaço paramétrico nem ao amostral.  Evidentemente, quanto maior a dimensão, maior o desafio computacional.
Embora pv e ev sejam probabilidades calculadas, respectivamente, no espaço amostral e no espaço paramétrico, seus valores apontam para a mesma conclusão: evidência contra H favorecendo A.  As conclusões obtidas com os três métodos são: 
1. ao usar-se a receita freqüentista de olhar apenas a densidade sob a hipótese nula, desconsiderando a hipótese alternativa, os dados observados favorecem H em detrimento de A;
2. ao considerar-se a hipótese alternativa no cálculo do valor-p modificado, os mesmos dados desfavorecem H em favor de A e
3. sob uma visão genuinamente Bayesiana, onde a única contribuição da amostra é a função de verossimilhança, a conclusão baseada no valor da evidência também favorece A em detrimento de H.
Resumindo: as significâncias de H, pv ev 4%, obtidas com os dois métodos, clássico modificado e Bayesiano, indicam a rejeição de H, favorecendo A, enquanto o método padrão, com o valor-p de 49%, aponta para a direção inversa.

6. ILUSTRAÇÃO GRÁFICA
Nesta seção o leitor encontra uma série de ilustrações que visam auxiliá-lo no entendimento dos exemplos apresentados. Densidades normais e uniformes, discutidas nos exemplos 2 e 3, são apresentadas na Figura 1.  A Figura 2 apresenta os valores da probabilidade a posteriori do Exemplo 4 em função das possíveis verossimilhanças.  O objetivo principal é ressaltar que a subjetividade pode estar, muitas vezes, na licitação da função de verossimilhança e não apenas da distribuição a priori.   
O Exemplo 5 apresentou o caso onde intervalos de confiança efetivamente observados produzem uma incoerência de ordem prática.  Quanto melhor a amostra for, pior é a precisão produzida pelo método.  Em outras palavras, o intervalo de confiança aumenta seu comprimento, diminuindo a precisão, se uma nova amostra for mais informativa - o máximo M mais distante do mínimo m.  O método de intervalos de credibilidade discutido, caminha na direção oposta, isto é quanto mais informativa a amostra, maior a precisão obtida.  A Figura 3 apresenta os dois tipos de intervalos para as quatro amostras discutidas.   Com a amostra 4, a mais informativa, a incoerência do método padrão fica evidente.  Com uma amostra ainda mais informativa, por exemplo se m 1,1e M 2,1, qualquer pessoa deveria concluir que certamente z  1,55.  Mas, o intervalo com confiança de 87,5% seria [1,1;2,1], produzindo uma inferência quase totalmente não informativa.
Como na Figura 1, a Figura 4 apresenta possíveis densidades normais para x, pertencentes ao conjunto de densidades que formam o modelo amostral de x|u. Note-se que todas as três observações possuem maior densidade quando u = 1, um ponto da hipótese alternativa.  Como os procedimentos de inferência são obtidos a partir da estatística suficiente s, a Figura 5 apresenta alternativas das densidades amostrais de s|u.  
A Figura 6 apresenta a função de verossimilhança normalizada por sua área.  As caudas e o conjunto tangente são ressaltados.  O conjunto tangente é definido em relação à hipótese H: u = ½.
A figura 7 apresenta a razão de verossimilhança r(x) para amostras unitárias. Finalmente, para amostras de três observações, a Figura 8 é a razão de verossimilhança r(s) para a estatística suficiente s.
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7. CONSIDERAÇÕES FINAIS
Este trabalho nasceu de desafios e incentivos que o autor recebeu de seus colegas.  Encontros informais, durante a participação em bancas ou seminários, permitiram ao autor expor idéias e discussões que aparentemente surpreendiam os presentes. 
O professor Dev Basu, supervisor do autor durante o programa de doutorado, foi o mestre dos contra-exemplos.  Muitos dos seus artigos tinham a perspectiva do desafio intelectual sobre o entendimento dos fundamentos da estatística.  Dev e Kemp - Oscar Kemptorne outro ilustre professor - criavam um ambiente de conflito que muito auxiliou o desenvolvimento da estatística. A impressão é a de que não concordavam entre si, mas certamente se desafiavam mutuamente para o desenvolvimento das idéias que tão brilhantemente defenderam.  Interessante é ressaltar que a admiração do autor pelos professores Dev e Kemp, bem como por I J Good e Bruno De Finetti, talvez se deva ao fato de todos, sem exceção, terem feito história por suas controvérsias e pela apresentação de alternativas metodológicas coerentes. 
O presente artigo é a tentativa do autor de criar, no ambiente da estatística brasileira, o conflito de idéias para impedir que métodos sejam usados apenas porque foram criados por líderes de renome.  É evidente que o artigo é pretensioso!   Mas é justamente essa pretensão que talvez leve os colegas ao conflito.  O desafio é fazer com que todos saibam defender, com conhecimento dos fundamentos, os métodos que usam.
Os agradecimentos vão para os colegas de departamento por expor o autor aos desafios que surgem com problemas práticos que se apresentam no CEA, Centro de Estatística Aplicada.  O principal responsável, entretanto, é o Professor Francisco Louzada Neto, do departamento de estatística da UFSCar, por insistir com o autor sobre a necessidade da divulgação de idéias em forma escrita.
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