Não foi possível enviar o arquivo. Será algum problema com as permissões?
Diferenças

Diferenças

Aqui você vê as diferenças entre duas revisões dessa página.

Link para esta página de comparações

Ambos lados da revisão anterior Revisão anterior
Próxima revisão Ambos lados da revisão seguinte
disciplinas:verao2007:exercicios [2007/02/17 22:37]
paulojus
disciplinas:verao2007:exercicios [2007/02/17 22:48]
paulojus
Linha 26: Linha 26:
   - (6) Is the following a legitimate correlation function for a one-dimensional spatial process $S(x) : x \in \IR$? Give either a proof or a counter-example.\\ ​   - (6) Is the following a legitimate correlation function for a one-dimensional spatial process $S(x) : x \in \IR$? Give either a proof or a counter-example.\\ ​
 <m> rho(u) = delim{lbrace}{matrix{2}{1}{{1-u : 0 <= u <= 1}{0  :  u>1}}}{} </​m>​\\ <m> rho(u) = delim{lbrace}{matrix{2}{1}{{1-u : 0 <= u <= 1}{0  :  u>1}}}{} </​m>​\\
-  - (7) Consider the following method of simulating a realisation of a one-dimensional spatial process on $S(x) : x \in \IR$, with mean zero, variance 1 and correlation function $\rho(u)$. Choose a set of points $x_i \in \IR : i=1,​\ldots,​n$. Let $R$ denote the correlation matrix of $S=\{S(x_1),​\ldots,​S(x_n)\}$. Obtain the singular value decomposition of $R$ as $R = D \Lambda D^\prime$ where $\lambda$ is a diagonal matrix whose non-zero entries are the eigenvalues of $R$, in order from largest to smallest. Let $Y=\{Y_1,​\ldots,​Y_n\}$ be an independent random sample from the standard Gaussian distribution,​ ${\rm N}(0,1)$. Then the simulated realisation is S = D \Lambda^{\frac{1}{2}} Y +  - (7) Consider the following method of simulating a realisation of a one-dimensional spatial process on $S(x) : x \in \IR$, with mean zero, variance 1 and correlation function $\rho(u)$. Choose a set of points $x_i \in \IR : i=1,​\ldots,​n$. Let $R$ denote the correlation matrix of $S=\{S(x_1),​\ldots,​S(x_n)\}$. Obtain the singular value decomposition of $R$ as $R = D \Lambda D^\prime$ where $\lambda$ is a diagonal matrix whose non-zero entries are the eigenvalues of $R$, in order from largest to smallest. Let $Y=\{Y_1,​\ldots,​Y_n\}$ be an independent random sample from the standard Gaussian distribution,​ ${\rm N}(0,1)$. Then the simulated realisation is <​latex>​$S = D \Lambda^{\frac{1}{2}} Y$</​latex> ​
   - (7) Write an ''​R''​ function to simulate realisations using the above method for any specified set of points $x_i$ and a range of correlation functions of your choice. Use your function to simulate a realisation of $S$ on (a discrete approximation to) the unit interval $(0,1)$.   - (7) Write an ''​R''​ function to simulate realisations using the above method for any specified set of points $x_i$ and a range of correlation functions of your choice. Use your function to simulate a realisation of $S$ on (a discrete approximation to) the unit interval $(0,1)$.
   - (7) Now investigate how the appearance of your realisation $S$ changes if in the equation above you replace the diagonal matrix $\Lambda$ by truncated form in which you replace the last $k$ eigenvalues by zeros.   - (7) Now investigate how the appearance of your realisation $S$ changes if in the equation above you replace the diagonal matrix $\Lambda$ by truncated form in which you replace the last $k$ eigenvalues by zeros.

QR Code
QR Code disciplinas:verao2007:exercicios (generated for current page)