Não foi possível enviar o arquivo. Será algum problema com as permissões?
Diferenças

Diferenças

Aqui você vê as diferenças entre duas revisões dessa página.

Link para esta página de comparações

Ambos lados da revisão anterior Revisão anterior
Próxima revisão
Revisão anterior
Última revisão Ambos lados da revisão seguinte
disciplinas:verao2007:exercicios [2007/02/17 23:42]
paulojus
disciplinas:verao2007:exercicios [2007/02/18 16:51]
paulojus
Linha 1: Linha 1:
 ===== Exercícios ===== ===== Exercícios =====
  
-**Atenção**:​ para visualizar melhor esta página voce deve se ''​autenticar''​ neste wiki. Para isto clique no botão ''​AUTENTICAR''​ no canto inferior desta página e entre com o usuário e senha ''​verao2007'' ​ 
  
 ==== Semana 1 ==== ==== Semana 1 ====
Linha 23: Linha 22:
   - (4) Consider the following two models for a set of responses, <​m>​Y_i : i=1, ... ,​n</​m>​ associated with a sequence of positions <​m>​x_i:​ i=1,​...,​n</​m>​ along a one-dimensional spatial axis <​m>​x</​m>​.   - (4) Consider the following two models for a set of responses, <​m>​Y_i : i=1, ... ,​n</​m>​ associated with a sequence of positions <​m>​x_i:​ i=1,​...,​n</​m>​ along a one-dimensional spatial axis <​m>​x</​m>​.
     - <​m>​Y_{i} = alpha + beta x_{i} + Z_{i}</​m>,​ where <​m>​alpha</​m>​ and <​m>​beta</​m>​ are parameters and the <​m>​Z_{i}</​m>​ are mutually independent with mean zero and variance <​m>​sigma^2_{Z}</​m>​.     - <​m>​Y_{i} = alpha + beta x_{i} + Z_{i}</​m>,​ where <​m>​alpha</​m>​ and <​m>​beta</​m>​ are parameters and the <​m>​Z_{i}</​m>​ are mutually independent with mean zero and variance <​m>​sigma^2_{Z}</​m>​.
-    - <​m>​Y_i = A + B x_i + Z_i</​m>​ where the <​m>​Z_i</​m>​ are as in (a) but //A// and //B// are now random variables, independent of each other and of the <​m>​Z_i</​m>,​ each with mean zero and respective variances <​latex>​$\sigma_A^2$</​latex>​ and <​latex>​$\sigma_B^2$</​latex>​.\\ For each of these models, find the mean and variance of <​m>​Y_i</​m>​ and the covariance between <​m>​Y_i</​m>​ and <​m>​Y_j</​m>​ for any <m>j != i$</m>. Given a single realisation of either model, would it be possible to distinguish between them?+    - <​m>​Y_i = A + B x_i + Z_i</​m>​ where the <​m>​Z_i</​m>​ are as in (a) but //A// and //B// are now random variables, independent of each other and of the <​m>​Z_i</​m>,​ each with mean zero and respective variances <​latex>​$\sigma_A^2$</​latex>​ and <​latex>​$\sigma_B^2$</​latex>​.\\ For each of these models, find the mean and variance of <​m>​Y_i</​m>​ and the covariance between <​m>​Y_i</​m>​ and <​m>​Y_j</​m>​ for any <m>j != i</​m>​. Given a single realisation of either model, would it be possible to distinguish between them?
   - (5) Suppose that <​latex>​$Y=(Y_1,​\ldots,​Y_n)$</​latex>​ follows a multivariate Gaussian distribution with <​latex>​${\rm E}[Y_i]=\mu$</​latex>​ and <​latex>​${\rm Var}\{Y_i\}=\sigma^2$</​latex>​ and that the covariance matrix of <​m>​Y</​m>​ can be expressed as <​m>​V=\sigma^2 R(phi)</​m>​. Write down the log-likelihood function for <​latex>​$\theta=(\mu,​\sigma^2,​\phi)$</​latex>​ based on a single realisation of <​m>​Y</​m>​ and obtain explicit expressions for the maximum likelihood estimators of <​m>​mu</​m>​ and <​m>​sigma^2</​m>​ when <​m>​phi</​m>​ is known. Discuss how you would use these expressions to find maximum likelihood estimators numerically when <​m>​phi</​m>​ is unknown.   - (5) Suppose that <​latex>​$Y=(Y_1,​\ldots,​Y_n)$</​latex>​ follows a multivariate Gaussian distribution with <​latex>​${\rm E}[Y_i]=\mu$</​latex>​ and <​latex>​${\rm Var}\{Y_i\}=\sigma^2$</​latex>​ and that the covariance matrix of <​m>​Y</​m>​ can be expressed as <​m>​V=\sigma^2 R(phi)</​m>​. Write down the log-likelihood function for <​latex>​$\theta=(\mu,​\sigma^2,​\phi)$</​latex>​ based on a single realisation of <​m>​Y</​m>​ and obtain explicit expressions for the maximum likelihood estimators of <​m>​mu</​m>​ and <​m>​sigma^2</​m>​ when <​m>​phi</​m>​ is known. Discuss how you would use these expressions to find maximum likelihood estimators numerically when <​m>​phi</​m>​ is unknown.
   - (6) Is the following a legitimate correlation function for a one-dimensional spatial process <​latex>​$S(x) : x \in R$</​latex>?​ Give either a proof or a counter-example.\\ ​   - (6) Is the following a legitimate correlation function for a one-dimensional spatial process <​latex>​$S(x) : x \in R$</​latex>?​ Give either a proof or a counter-example.\\ ​

QR Code
QR Code disciplinas:verao2007:exercicios (generated for current page)