Não foi possível enviar o arquivo. Será algum problema com as permissões?
Essa é uma revisão anterior do documento!
Éder David Borges da Silva
- Graduado em Engenharia Agronômica - Eng Agronômica - UFPR
- e-mail: ederdbs@gmail.com / eder@leg.ufpr.br
Área de Interesse
- Estatística Experimental
- Estatística Espacial
- GEM² Grupo de estudos em modelos mistos
Minicursos
Codigos
###buf
buf <- function(n){
ttt <- NULL
ttt[1] <- 0
x <- runif(n)
th <- runif(n,0,pi)
st <- sin(th)
for ( i in 1:n){
if(st[i]>x[i]){
ttt[i+1] <- ttt[i]+1
}
else {
ttt[i+1] <- ttt[i]
}}
if (ttt[n+1]>0){
plot((0:n)[ttt>0],2*(0:n)[ttt>0]/ttt[ttt>0],type='l',xlab='numero simulação',ylab='pi')
}
else{print('no sucesso')}
abline(pi,0)
}
buf(100000)
### MOnte carlo
### inversão de p
################################################################################
### Regressão beta
rm(list=ls())
require(betareg)
###----------------------------------------------------------###
### pacote oficial
data("FoodExpenditure", package = "betareg")
fe_beta <- betareg(I(food/income) ~ income + persons , data = FoodExpenditure)
summary(fe_beta)
###----------------------------------------------------------###
### log vero
log.vero <- function(B0,B1,B2,phi,y,x1,x2){
mu <- exp((B0 + B1 * x1 + B2 * x2))/(1+exp((B0 + B1 * x1 + B2 * x2)))##logit^-1
ll <- sum(dbeta(y, mu* phi, (1-mu)*phi,log = TRUE))
return(ll)
}
###----------------------------------------------------------###
log.vero(-0.62,-0.12,0.11,35,y=FoodExpenditure$food/FoodExpenditure$income,
x1=FoodExpenditure$income,
x2=FoodExpenditure$persons)
###----------------------------------------------------------###
### B0 B1
par.vals <- expand.grid(B0=seq(0,2,l=100),B1=seq(-1,1,l=100))
logL <- apply(as.matrix(par.vals),1,log.vero,B2=0.11,phi=35,y=FoodExpenditure$food/FoodExpenditure$income,
x1=FoodExpenditure$income,
x2=FoodExpenditure$persons)
contour(unique(par.vals$B0),unique(par.vals$B1),matrix(logL,ncol=100))
###----------------------------------------------------------###
opt <- optim(c(-0.5,-0.12,0.11,35),logvero,y=FoodExpenditure$food/FoodExpenditure$income,
x1=FoodExpenditure$income,
x2=FoodExpenditure$persons,
hessian = TRUE, control=(list(fnscale=-1)))
Regressão beta